用户名: 密码: 验证码:
电解加钛Al-Mg-Si合金板材组织和性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以电解加钛Al-Mg-Si合金为研究对象,通过SEM、TEM、XRD、HRTEM、DSC差热分析及力学性能测试等,对合金的微观组织和性能进行了全面分析。重点研究了电解加钛Al-Mg-Si合金的半连续铸造组织,铸态及均匀化的结晶相:研究了热处理工艺对Al-Mg-Si合金组织和性能的影响,对时效组织进行了的高分辨分析;分析了固溶态合金的DSC曲线对应的放热峰组织并计算了T4态合金β”和β’相的激活能;研究了不同过剩Si含量,Mg_2Si含量及Ti/B对电解加钛Al-Mg-Si合金组织和性能的影响;对热处理态电解加钛Al-Mg-Si合金的SEM原位拉伸过程中裂纹萌生与扩展进行了观察,并阐明了萌生和扩展机理。研究成果对电解加钛Al-Mg-Si合金的开发与工业应用具有重要的理论意义和实际意义。
     应用电解加Ti的方法配制了Al-Mg-Si合金,分别研究了不同Mg含量对铸态、均匀化处理和T4态合金结晶相的影响,描述了结晶相在铸态、均匀化及T4态的类型、形态及数量变化规律。铸态合金组织面扫描和线扫描结果表明,Mg、Si元素在晶界处偏聚,形成非平衡组织。电解加钛Al-Mg-Si合金铸态结晶相主要为Al_(1.9)CuMg_(4.1)Si_(3.3)、Al_(0.75)MnSi_(1.25)、Mg_2Si相,结晶相中Mn、Fe具有互相代替作用。Al_(1.9)CuMg_(4.1)Si_(3.3)相呈颗粒状,均匀化处理可使Al_(1.9)CuMg_(4.1)Si_(3.3)相溶入基体。AlMnSi类结晶相主要包括Al_(0.75)MnSi_(1.25)和Al_5Mn_(12)Si,其形态均为不规则条状。随着Mg含量增加,仅AlMnSi类结晶相数量减少。铸态合金中Mg_2Si相为不规则的黑色块状,提高Mg含量时,合金中Mg_2Si相增多;均匀化处理时,Mg_2Si相变化不大。
     首次研究了预时效、预时效+模拟烘烤、预时效+预拉伸+模拟烘烤等工艺对Al-Mg-Si合金组织和性能的影响。电解加钛Al-Mg-Si合金水淬之后立即进行短时预时效,可使过饱和固溶体中溶质的分布不均匀,抑制随后自然时效硬化效果,减轻淬火后停留时间对合金力学性能的影响;预时效过程形成的大量的β”核心,在随后的人工时效(即烤漆过程)时,将促进β”相的均匀析出,从而产生明显的烤漆硬化效应。优化出4号合金最佳热处理工艺为550℃×30min固溶+170℃×5min预时效+5天自然时效+180℃×30min模拟烘烤,强度达337MPa,延伸率达19.9%,与熔配加钛6009变形铝合金在T6态下强度345MPa接近,塑性超过该热处理条件下的数值(12%)。预拉伸使组织中产生大量的位错,位错缠结使合金强度得到提高。8号合金最佳热处理工艺为550℃×30min固溶+170℃×5min预时效+3%预拉伸+5天自然时效+180℃×30min模拟烘烤,强度达到373MPa,延伸率达到22.2%,高于熔配加钛6009变形铝合金在T6态下强度345MPa和塑性(12%)。
     时效组织的高分辨分析表明,180℃时随着时效时间的增加,调幅分解逐渐形成,在180℃×8h的人工时效条件下,调幅分解呈现花格尼状。经过计算,调幅组织的晶格相晶面间距比基体晶面间距大35%。这是由于Al的原子半径为0.1432nm,Mg的原子半径0.1602 nm,Mg、Si原子在α(Al)中(200)晶面偏聚,使晶格产生畸变造成的。
     通过DSC差热分析,发现电解加钛Al-Mg-Si合金的时效初期(150℃左右)其组织为G.P.区,形貌为针状或粒状。随着加热温度的升高,到250℃左右,开始形成与基体完全共格的针状β”相。继续升高温度,在320℃左右形成了与基体部分共格的β’相,最后形成稳定的β(Mg_2Si),时效析处序列为GP→β″→β’→β(Mg_2Si)。推导出时效过程中析出产物激活能的热力学方程,,通过该方徘出了T4态β”和β’激活能分别为63KJ/mol、121KJ/mol,说明试验合金容易形成β”相,β”的强化作用优于β’相。
     电解加钛Al-Mg-Si合金,随过剩Si含量的增加,模拟烘烤前板材强度提高明显,延伸率也有一定程度增加。模拟烘烤后板材强度增加趋势变小,延伸率没有明显变化,说明适量的过剩Si有利于板材的成形性和强度提高。不同Mg_2Si含量的电解加钛Al-Mg-Si合金板材,模拟烘烤前后强度均有所提高。模拟烘烤前强度的提高主要是通过过剩Si形成附加的团簇沉淀起强化作用,模拟烘烤后主要通过Mg_2Si的沉淀强化起主要作用。Ti和B的加入有效的细化电解加钛铝合金,随着Ti/B比的减小,铸态组织得到细化。电解加钛铝合金中,Ti分布弥散,加入B元素有效的提高细化能力。
     首次运用扫描电镜原位拉伸台对电解加钛变形Al-Mg-Si合金进行了原位拉伸观察,电解加钛变形铝合金的断裂过程与一般塑性材料基本相同。局部应力集中和应变造成粗大的分散相和基体分离及缺陷是裂纹优先萌生的部位。裂纹的扩展主要是平行于滑移条纹扩展和沿晶扩展,当裂纹尖端有较大Mg_2Si颗粒存在时,微裂纹会在Mg_2Si/基体界面再形核而扩展,最终导致合金断裂。
Microstructure and properties of an electrolytic titanium aluminum alloy (Al-Mg-Si) were investigated by Transmission Electron Microscope(TEM), Scanning Electron Microscope(SEM) incorporating energy dispersive X-ray analysis(EDX), High Resolution Transmission Electron Microscope(HRTEM), Differential Thermal Analyzer (DSC) and Electronic Tensile Tester. The microstructure of the half-continuously cast electrolytic titanium aluminum alloy (Al-Mg-Si) and the phase structure of the cast and uniform heat-treated electrolytic titanium aluminum alloy (Al-Mg-Si) were investigated emphatically. The influence of heat treatment parameters on microstructure and properties of the Al-Mg-Si alloys was studied and the HRTEM analysis of aging-treated Al alloy was carried out. The activation energies ofβ" andβ' phase in a T4 heat-treated state were calculated by measuring the exothermic peak of the corresponding DSC curves. The effect of excess Si, Mg_2Si and Ti/B contents on the microstructure and properties of the Al-Mg-Si alloy was analyzed. An in-situ SEM observation of the fracture process during tensile test was carried out to understand the initiating and propagating mechanism of cracks. The results obtained present theoretical and practical significance to the research and development of the electrolytic titanium aluminum alloy (Al-Mg-Si).
     The influence of the Mg content, uniform heat treatment and T4 status on the microstructure and phase structure of the electrolytic titanium aluminum alloy (Al-Mg-Si) was investigated by SEM, EDX and XRD. The area and line scanning analysis by SEM revealed that the Mg and Si clustering at the grain boundaries generated non-equilibrium microstructure. The crystalline phases of cast electrolytic titanium aluminum alloy (Al-Mg-Si) is consisted of Al_(1.9)CuMg_(4.1)Si_(3.3)、Al_(0.75)MnSi_(1.25)、Mg_2Si, and element Mn and Fe are of mutual replacement. Al_(1.9)CuMg_(4.1)Si_(3.3) is sphere-like and dissolvable into the matrix. A1MnSi type phases include Al_(0.75)MnSi_(1.25) and Al_5Mn_(12)Si with irregular morphology, and the content of these phases reduces with an increase in Mg content. The cast alloy is consisted of Mg_2Si phase with black block appearance, the corresponding content increase with an increase in Mg content and uniform heat-treatment has no obvious influence on Mg_2Si phase.
     The effect of pre-aging treatment, pre-aging treatment plus simulatively baking and pre-aging treatment + pre-tensile + simulatively baking on the microstructure and properties of the Al-Mg-Si alloy were investigated for the first time. A short time pre-aging treatment of the alloy after water quenching resulted in inhomogeneous distribution of elements in the Al-matrix solid solution, restrained the hardening effect during natural aging process, and relieve the effect of residence time on the properties of the alloy. The formation of a large amount ofβ" nucleus induced by pre-aging treatment promoted the precipitation ofβ" phase and increased the hardening effect significantly during the sequent artificial aging process. A good combination of both high strength (337MPa) and good plasticity (19.9%) (marked alloy 4) was achieved by the optimal treating parameters, i.e., solid solution treatment at 550℃for 30min+ pre-aging treatment at 170℃for 5min+natural aging treatment for 5 days+silulatively-baking treatment at 180℃for 30min, which nearly approachs to the strength of wrought aluminum alloy 6009 heat-treated at T6 status (345MPa). The optimal heat treatment parameters for pre-tensile treatment of alloy 8 is solid solution treatment at 550℃for 30min+pre-aging treatment at 170℃for 5min+natural aging treatment for 5 days+silulatively-baking treatment at 180℃for 30min, by which the strength and extensibility are 373 MPa and 22.2% respectively, which is a little higher than the strength (345MPa) and the extensibility (12%) of wrought aluminum alloy 6009 heat-treated at T6 status.
     HRTEM analysis revealed that the interplanar distance of the spinodal-decomposed phase is 35% larger than that of the matrix since the clustering of Mg and Si on the plane of (200) ofα(Al) (the atomic radius of Ai and Mg is 0.1432nm and 0.1602 nm respectively.) resulted in distortion of crystal lattice.
     DSC analysis revealed that the primary aging stage of the electrolytic titanium aluminum alloy (Al-Mg-Si) (at around 150℃) was characterized by GP zone with needle- or sphere-like appearance. The needle-likeβ" phase having a total coherence relationship with the matrix appeared at about 250℃, a partial coherenceβ' phase formed at 320℃, and a stableβ(Mg_2Si) phase formed finally, which means that the aging sequence is GP→β"→β'→β(Mg_2Si). The thermodynamic equation of activation energy of precipitating phase by aging treatment is, by which the activation energy ofβ" andβ' in T4 status is 63KJ/mol, 121 KJ/mol respectively, it indicates that theβ" is easier to form thanβ' phase as well as the strengthening effect ofβ" is superior toβ'.
     The strength of the alloy is significantly improved and extensibility of the alloy is increased to a certain extent by an increase in excess Si content. The enhance extent of the strength of the electrolytic titanium aluminum alloy (Al-Mg-Si) before simulatively baking treatment was reduced but the corresponding extendibility of sheet material kept constant with an increase in excess Si content. The mechanism of improving strength of the alloy can be understood to be of the clustering precipitation of excess Si and the precipitation of Mg_2Si. The addition of Ti and B into the alloy effectively refined the grain size; the grain size of the as-cast alloy was refined with a decrease in the ratio of Ti to B.
     The in-situ tensile test was firstly carried out under SEM observation for the electrolytic titanium aluminum alloy (Al-Mg-Si). The fracture process of the alloy is similar to normal plastic materials. Cracks initiated at locations of stress concentration and the interface between the coarse precipitating phase and the matrix. Cracks propagated parallel to slipping stripes and along the grain boundaries. Cracks meeting coarse Mg_2Si phase propagated along the interface between Mg_2Si and the matrix. The conect of cracks resulted in final fracture.
引文
[1] R.W.卡恩,P.哈森,E.J.克雷默.非铁合金的结构与性能,材料科学与技术丛书,第8卷,33-122
    [2] 钟掘.提高铝材质量基础研究的进展 [J].轻合金加工技术,2002,22(5):1-10
    [3] L F.蒙多尔福.王祝堂,张振录,郑璇等译.铝合金的组织与性能[M].北京:冶金工业出版社,1988,103-207
    [4] 邦达列夫B.N.,那帕尔克夫B.N.,塔拉雷什金B.N.王永海,张发明,高革译.变形铝合金的细化处理[M].北京:冶金工业出版社,1988,55-123
    [5] 姜文辉,韩行霖.AlTiC中间合金晶粒细化剂的合成及其细化晶粒作用[J].中国有色金属学报,1998,8(2):268-271.
    [6] 于淑滨,张照东,刘晓英.90年代轿车新材料和新工艺(1)[J].轻合金加工技术,2000,28(9),4-7
    [7] 张士林,任颂赞.简明铝合金手册[M].上海:科学技术文献出版社,2001:7-8
    [8] 丁向群,何国求,陈成澎等.6000系汽车车用铝合金的研究应用进展[J].材料科学与工程学报,2005(2):302-305
    [9] 于旭光,邱竹贤.TiO2电解制取Al-Ti合金[J).东北大学学报(自然科学 版),2004,25(11),1088-1091
    [10] 徐君莉,石忠宁,邱竹贤.熔盐电解法制取Al-Ti合金[J].矿冶工程,2004,24(3),56-58
    [11] 王兆文,罗涛,高炳亮等.大型铁酸镍金属陶瓷惰性电极腐蚀研究[J].东北大学学报(自然科学版),2004,25(10),991-993
    [12] 杨升,杨冠群,顾松青.电解法生产铝基合金[J].特种铸造及有色合金,2001,(2),102-104
    [13] 杨冠群,杨升,杨巧芳等.电解法生产铝硅钛多元合金述评[J].铸造,1999,(4),22-27
    [14] 刘忠侠,宋天福,谢敬佩等.低钛铝合金的电解生产与晶粒细化[J].中国 有色金属学报,2003,13(5),1257-1261
    [15] 宋天福,刘忠侠,王明星等.电解生产低钛铝合金的可行性研究[J].郑州大学学报(理学版),2004,36(1),37-40
    [16] 苏学常.铝合金的强化[J].轻合金加工技术.1996,(9),2-5
    [17] 张新明,黄振宝,刘胜胆等。双级固溶处理对7A55铝合金组织与力学性能的影响[J].中国有色金属学报,2006,16(9):1527-1533
    [18] B. S. Murty, S. A. Kori, M. Chakraborty, Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying [J]. Internation Material Reviews, 2002, 47(3), 3-29
    [19] Backerud Johnsson, The relative importance of nucleation and growth mechanisms to control grain size in various aluminum alloys[J]. Light Metals, 1996, 27(4), 679-685
    [20] 刘诗安,袁东,严琦琦等.Al-Mg-Si-Cu合金的热处理工艺[J].金属热处理,2005,30(11):55-57
    [21] 何立子,张晓博,崔建忠等.6013铝合金热处理制度的研究[J].宇航材料工艺,1999,28(1):42-45.
    [22] Bergsma S C, Kassner M E, Li X, et al. Strengthening in the new aluminum alloy AA6069 [J]. Materials Science and Engineering, 1998, A254: 112-118.
    [23] 刘静安,谢水生.铝合金材料的应用与技术开发[M].北京:冶金工业出版社,2004,12-87
    [24] 王振卿.Al-Ti-C中间合金的制备及其细化α-Al的行为与机理研究[D].山东大学硕士学位论文,2001,2-10
    [25] 黄良余.铝及其合金的晶粒细化处理简述[J].特种铸造及有色合金,1997,17(3):42-45
    [26] 彭北山,宁爱林.7A04高强铝合金复合强韧化工艺[J].特种铸造及有色合金,2006,26(4):248-249
    [27] 蒋大鸣,张雨平.微量元素在铝合金中的作用[J].轻合金加工技术,2001,29(3):1-5
    [28] 高泽生.A356合金α(Al)的晶粒细化[J].特种铸造及有色合金,1999,19 (3) :49-53.
    [29] 刘相法,杨阳,边秀房等.杆状Al-Ti-B中间合金的组织形貌及晶粒细化行为的研究[J].铸造,1996,44(10):6-9.
    [30] 张柏清,马洪涛,李建国等.Al-Ti-C晶粒细化中间合金的组织及其晶粒细化 性能[J].金属学报,2000,36(4):341-346
    [31] 路贵民,柯东杰.铝合金熔炼理论与工艺.沈阳:东北大学出版社,1999:187-189
    [32] 王明星.电解加钛铝合金工业试验及其组织与性能的研究[博士论文].合肥:中国科学院等离子体物理研究所,2002(6),36-56
    [33] 刘忠侠,宋谋胜,李继文等。加钛方式及钛含量对A356合金的低周疲劳性能的影响[J],特种铸造及有色合金,2005(1):13-18
    [34] 丁向群,何国求,陈成澎等.6000系汽车车用铝合金的研究应用进展[J].材料科学与工程学报,2005,22(2):302-305
    [35] 张建新,高爱华.Al-Ti-C对AI-Mg-Si系合金组织及性能的影响分析[J].铸造技术,2005,26(4):313-315
    [36] 王祝堂,田荣璋.铝合金及其加工手册[M]。长沙:中南工业大学出版社,1989:44-105
    [37] Murty, B. S., Kori, S. A., Manufacture of Al-Ti-B master alloys by the reaction of complex halide salts with molten aluminum [J]. Journal of Materials Processing Technology, 1999, 89-90 (5): 152-158
    [38] K. Venkateswarlu. Effect of hot rolling and heat treatment of Al-5Ti-IB master alloy on the grain refining efficiency of aluminum [J]. Materials Science and Engineering A, 2001(301): 180-186
    [39] 李勇.微量Si、Mg元素对细化剂作用效果的影响[J].轻金属,2005,12:50-52
    [40] 蒋大鸣,张雨平.微量元素在铝合金中的作用[J].轻合金加工技术,2001,29(3):1-3
    [41] M. A. Kearns, R S.Cooper. Effects of solutes on grain refinement of selected wrought aluminum alloys[J]. Materials Science and Technology, 1997, 13(8): 650~653.
    [42] 杨军军,聂祚仁,金头男等.稀土铒在Al-Zn-Mg合金中的存在形式与细化机理[J].中国有色金属学报,2004,14(4):620-626
    [43] 宁远涛,周新铭,戴红.稀土元素在Al中固溶度亚稳扩展研究[J].金属学报,1992,28(3):95-100.
    [44] 黄淑敏,王新莉,陈海军.微量Sr对Al-Mg-Si-Cu基合金的时效析出过程及动力学的影响[J].机械强度,2006,28(2):303-305
    [45] 高英俊;王庆松;王娜.Al-Ms-Si合金GP区的原子键络与强化作用[J].矿冶工程,2006,26(5):89-91
    [46] Ravi C, Wolverton C. First-principle study of crystal structure and stability of A1-Mg-Si alloy [J]. Acta. Mater., 2004, 52: 4213-4227.
    [47] Andersen S J, Marioara C D, Froseth A, et al. Crystal structure of precipitate in the A1-Mg-Si alloy system and its relation to the and phases [J]. Mater. Sci. Eng. A, 2005, 390: 127-138.
    [48] Mstsuda K, Gamada H, Fujii K, et al. High-Resolution Electron Microscopy on the structure of GP zones in an A1-21.6%Mg2Si Alloy [J]. Metal. Mater. Trans. A, 1998, 29: 1161-1167.
    [49] Gao Yingjun. Electron structure and interface energy of GP Zone in Al-Zn alloy [J]. Mater Sci Forum, 2005, (475 -479): 3131 - 3135.
    [50] L.Y. Zhang, Z.J. Zhan, Y.Z. Jia, et al. Characterization of A1-Si-Mg alloys fast quenched from the melt by special medium [J]. Journal of Materials Processing Technology, 2007(187-188): 791-793
    [51] J.Wang, S. He, B. Sun, et al. Grain refinement of AI-Si alloy (A356) by melt thermal treatment, J. Mater. Process. Technol. 2003 (141): 29-34.
    [52] X. Jian, H. Xu, T.T. Meek, et al. Effect of power ultrasound on solidification of aluminum A356 alloy, Mater. Lett. 2005 (59) : 190-193.
    [53] A. Bendijk, R. Delhez, L. Katgerman, et al. Characterization of A1-Si-alloys rapidly quenched from the melt, J. Mater. Sci. 1980 (28):2803-2810.
    [54] Y.S. Sato, M. Urata, H.Kokawa, et al. Hall-Petch relationship in friction stir welds of equal channel angular-pressed aluminum alloys, Mater. Sci.Eng. A, 2003 (354): 298-305.
    [55] R. Vissers, M.A. van Huis, J. Jansen The crystal structure of the β' phase in Al-Mg-Si alloys. Acta Mater (2007), doi: 10.1016/j.actamat.2007.02.032
    [56] M.A. van Huis, J.H. Chen, M.H.E, et al. Sluiter Phase stability and structural features of matrix-embedded hardening precipitates in A1-Mg-Si alloys in the early stages of evolution. Acta Materialia, 2007, 55( 6): 2183-2199
    [57] A. Gaber, A. Mossad Ali, K. Matsuda, et al. Study of the developed precipitates in AI-0.63Mg-0.37Si-0.5Cu (wt.%) alloy by using DSC and TEM techniques. Journal of Alloys and Compounds, 2007, 432(1-2): 149-155
    [58] J. Buha, R.N. Lumley, A.G. Crosky, et al. Secondary precipitation in an Al-Mg-Si-Cu alloy. Acta Materialia, Acta Mater (2007), doi: 10.1016/j. actamat. 2007.01.006
    [59] D. J. Chakrabarti, David E. Laughlin Phase relations and precipitation in Al-Mg-Si alloys with Cu additions. Progress in Materials Science, 2004, 49(3-4): 389-410
    [60] D. Ovono Ovono, I. Guillot, D. Massinon. Determination of the activation energy in a cast aluminium alloy by TEM and DSC. Joumal of Alloys and Compounds, 2007, 432(1-2): 241-246
    [61] L.Y. Zhang, B.D. Zhou, Z.J. Zhan. Mechanical properties of east A356 alloy, solidified at cooling rates enhanced by phase transition of a cooling medium. Materials Science and Engineering: A, 2007, 448(1-2): 361-365
    [62] S.C. Wang, M.J. Starink. Two types of S phase precipitates in A1-Cu-Mg alloys. Acta Materialia, 2227, 55(3): 933-941
    [63] Hong Jin Kim, S. Karthikeyan, David Rigney. The structure and composition of aluminum wear debris generated by unlubricated sliding in different environments. Wear (2007), doi: 10.1016/j.wear.2006.12.016
    [64] 何立于.Al-Mg-Si系合金组织性能[D],东北大学博士学位论文,2001,9
    [65] A.K.Gupta, D.J.Lloyd, S.A.Cour. Precipitation hardening in A1-Mg-Si alloys with and without excess Si [J]. Materials Science and Engineering A, 2001 (316): 11-17
    [66] Lars Lodgaard, Nils Ryum. Precipitation of dispersoids containing Mn and/or Cr in A1-Mg-Si alloys [J]. Materials Science and Engineering A, 2000 (283): 144-152
    [67] R.C. Dorward, C. Bouvie. A rationalization of factors affecting strength, ductility and toughness of AA6061-type A1-Mg-Si-Cu alloys, [J] Materials Science and Engineering A, 1998 (254):33-44
    [68] C.Cayron, P.A.Buffat. Transmission electron microscopy study of the [3' phase(Al-Mg-Si alloys) and QC phase(A1-Mg-Si-Cu alloys) ordering mechanism and crystallographic structure [J]. Acta mater, 2000 (48):2639-2653
    [69] L.Zhen, S.B.Kang. DSC analyses of the precipitation behavior of two Al-Mg-Si alloys naturally aged for different times [J]. Materials Letters, 1998 (37):349-353
    [70] F.Danoix, M.K.Miller, A.Bigot. Analysis conditions of an industrial Al-Mg-Si alloy by conventional and 3D atom probes [J], Ultramicoscopy, 2001 (89): 177-188
    [71] G. Albertini, G.Caglioti, F.Fiori, et al. SANS investigation of precipitation in heat-treated AA6082 alloy [J], Physics B, 2000 (276-278): 921-922
    [72] 关绍康,姚波,王迎新.Ti和Ce对AIMgSi基合金板材成型性能的影响[J].中国有色金属学报,2002,12(4):759-763
    [73] 刘静安.稀土元素对6063铝合金型材组织和性能的影响[J],轻金属,1998,(2) :59-62
    [74] 刘书珍,王冰.稀土对Al-Mg-Si系合金结构和性能的影响[J].稀土,1998(3):26-30
    [75] Kenji Matsuda, Tsutomu Naoi, Yasuhiro Uetani, et al. High resolution energy-filtering transmission electron microscopy for equilibrium βphase in an A1-Mg-Si alloy [J]. Scripta Materialia, 1999, 41 (4): 379-383
    [76] M. Murayama, K. Hono, M. Saga, et al. Atom probe studies on the early stages of precipitation in Al-Mg-Si alloys [J]. Materials Science and Engineering A, 1998, 250: 127-132
    [77] C.D. Marioara, S.J. Andersen, J. Jansen, et al. The influence of temperature and storage time at RT on nucleation of the β" phase in a 6082 A1-Mg-Si alloy [J]. Acta Materialia, 2003, 51: 789-796
    [78] Yucel Birol. Pre-aging to improve bake hardening in a twin-roll cast AI-Mg-Si alloy [J], Materials science and engineering A, 2005(391): 175-180
    [79] Zhen L, Kang S B.The effect of pre-aging on microstructure and tensile properties of A1-Mg-Si alloys [J]. Scripta Materialia, 1997, 36:1089-1094
    [80] M. Murayama and K. Hono, Pre-precipitate clusters and precipitation processes in A1-Mg-Si alloys [J], Acta mater. 1999, 47(5): 1537-1548
    [81] Rafiq A.Siddiqui, Hussein A. Abdullah,Khamis R.A1-Belushi, Influence of aging parameters on the mechanical properties of 6063 aluminium alloy. [J] Journal of Materials Processing Technology, 2000 (102):234-240
    [82] J.Van de Langkruis, W.H.Kool, C.M.Sellars, etal. The effect of β, β' and β"precipitates in a homogenized AA6063 alloy on the hot deformability and the peak hardness [J]. Materials Science and Engineering A, 2001 (299) : 105-115
    [83] 关绍康,姚波.预时效及预应变对Al-Mg-Si基汽车板材性能的影响[J].机械工程材料,200l,25(12):17-28
    [84] Birol Yucel. Pre-aging to improve bake hardening in a twin-roll cast Al-Mg-Si alloy [J]. Materials Science and Engineering A, 2005, 391: 175-180
    [85] Janse L E, Zhuang L, Mooi J, et al. Evaluation of the effect of Cu on the paint bake response of presaged AA6×××[J]. Materials Science Forum, 2002, 396 - 402: 607 - 612
    [86] Kleiner S, Henkel Ch, Schulz P, et ai. Paint bake response of aluminium alloy 6016 [J ]. Aluminium, 2001, 77 (3): 185 - 189
    [87] Zhuang L, De Haan R, Bottema J, et al. Improvement in bake hardening response of Al-Si-Mg alloys [J]. Materials Science Forum, 2000, 331-337: 1309-1314
    [88] Siddiqui Rafiq A, Abdullah Hussein A, Al-Belushi Khamis R. Influence of aging parameters on the mechanical properties of 6063 aluminium alloy [J]. Journal of Materials Processing Technology, 2000, 102(1-3): 234-240.
    [89] Murayama M, Hono K. Pre-precipitate clusters and precipitatioin processes in AI-Mg-Si alloys [J]. Acta mater, 1999, 47: 1537-1548
    [90] Yucel Birol, Pre-straining to improve the bake hardening response of a twin-roll cast Al-Mg-Si alloy [J]. Scripta Materialia, 2005, 52: 169-173
    [91] 李普超,汪明朴,孙孝华等.Al-Mg-Si合金的时效研究[J].中南工业大学学报,1998,29(3):262-265
    [92] 刘宏,刘春明,左良.几种6000系汽车板铝合金时效行为及性能的研究[J].机械工程材料,2005,29(6):10-13
    [93]刘 静安.汽车工业用铝材的开发应用趋势与对策(1)[J].铝加工,2002,(5):1-6
    [94] 彭志辉.铝在汽车工业中的应用[J).湖南有色金属,1998,14(6),24-28
    [95] Chen X-G, Langlais J. Solidification behavior of AA611 lautomotive alloy [J]. Materials Science Forum, 2002, 331-337: 215-222
    [96] Kulun B, Zuliani D J. Applications for the strontium treatment of wrought and die-cast Al [J]. JOM, 48(10): 60-63
    [97] Engler O,Hirsch J.Recrystallization textures and plastic anisotropy in Al-Mg-Si sheet alloys [J], Materials Science Forum, 1996, 217-222: 479-486
    [98] Osada Y. Distribution of α-AlFeSi and β-AlFeSi particles in surface layer of AA6063 alloy billets after heat treatment [J], Journal of Materials Science, 2004, 39(4): 1227-1231
    [99] Singh R K, Singh A K. Evolution of texture during thermo-mechanical processing of and A1-Mg-Si-Cu alloy [J], Scripta Materialia, 1998, 38(8): 1299-1306
    [100] 潘青林,李绍禄,邹景霞等.微量Mn对AI-Mg-Si合金微观组织与拉伸性能的影响[J].中国有色金属学报,2002,12(5):972-976
    [101] Burger G, Gupta A K, Sutak L, et al. Recrystallization in a 6000-series automotive sheet alloy during solution heat treatment practice [J], Materials Science Forum, 1996, 217-222: 471-478
    [102] Lee D H, Park JH, Nam S W, et al. Enhancement of mechanical properties of AI-Mg-Si alloys by means of manganese dispersoids [J], Materials Science and Technology, 1999, 15(4): 450-455
    [103] Zhuang L, Bottema J, Kaasenbrood P, et al. The effect of small particles on annealed grain size and texture of Al-Mg-Si Alloys [J], Materials Science Forum, 1996, 17-222: 487-492
    [104] Claves S R, Elias D L, Misiolek W Z. Analysis of the intermet allic phase transformation occurring during homogenization of 6××× aluminum alloys [J], Materials Science Forum, 2002, 396-402:667-674
    [105] Thnihata H, Sugawara T, Matsuda K, et al. Effect of casting and homogenizing treatment conditions on the formation of A1-Fe-Si intermet allic compounds in 6063 A1-Mg-Si alloys [J], Journal of Materials Science, 1999, 34(6): 1205-1210
    [106] Zhen L, Fei W D. Precipitation behaviour of A1-Mg-Si alloys with high silicon content [J], Materials Science, 1997, 32(7): 1895-1902.
    [107] Gupta A K, Lloyd D J, Court S A. Precipitation hardening in Al-Mg-Si alloys with and without excess Si [J], Materials Science and Engineer A, 2001, 316(1-2): 11-17
    [108] G.A. Edwards, G.L. Dunlop. Procesdings of the Fourth International conference on Aluminum Alloy, Atanta, Georgia, USA, 1994, pp.636-642
    [109] Kleiner S, Henkel Ch, Schulz P, et al. Paint bake response of aluminium alloy 6016 [J]. Aluminium, 2001, 77(3): 185-189
    [110] 李继文.电解加钛A356合金工艺优化及应用研究[D].郑州大学博士学位论文,2005(5):66-91
    [111] 刘志勇.工业电解加钛铝基合金细化效果、细化机理及其应用研究[D].郑州大学博士学位论文,2003(5):66-87
    [112] 马润香,电解加钛铝合金在变形6063合金中的应用研究[D].郑州大学博士学位论文,2005(5):83-111
    [113] A.K. Gupta, D.J. Lloyd, in: L.Amber, O. Lohne, Proceeding of the Third International Conference on Aluminum Alloys, SINTEF, Trondhiem, Norway, 1992, pp.21-27
    [114] Kleiner S, Henkel Ch, Schulz P, et al. Paint bake response of aluminium alloy 6016 [J], Aluminium, 2001, 77(3): 185-189
    [115] Hirth S M, Marshall G J. Effects of Si on the aging behaviour and formability of aluminum alloys based on AA6016 materials [J], Science and Engineering, 2001, A319-321: 452-456.
    [116] 王志伟,汪明朴,王正安等。在线挤压淬火对地铁列车用6005A合金力学性能及微观组织的影响[J],中国有色金属学报,2001,11(4):603.
    [117] WANG Zhi-wei, WANG Ming-pu, WANG Zheng-an, et al. Effects of on-line extrusion quenching technique on mechanical properties and microscopic structure of 6005A alloys employed in underground railway trains [J], The Chinese Journal of Nonferrous Metala, 2001, 11(4): 603
    [118] 金相图谱编写组著.变形铝合金金相图谱[M].北京:冶金工业出版社,1975:13-15
    [119] B.Thanaboonsombut, T.H.Sanders, The effect of cooling rate from the melt on the recrystallization behavior of aluminum alloy 6013.Metall Mater.Trans.A, 1997, 28A(10): 2137-2143
    [120] O.Resio, N.Ryum, J.Strid. Melting of secondary-phase particles in Al-Mg-Si alloys. Metall.Mater.Trans.A, 1993, 24(12): 2629-2632
    [121] 张万金,王美琪.LD11铸锭均匀化实验及过烧温度的确定[J].轻合金加工技术,1998,26(7):40-42
    [122] S.Onurlu, A.Tekin. Effect of heat treatment on the insoluble intermetallic phases present in an AA6063 alloy [J]. Mater.Sci, 1994, 29: 1652-1658
    [123] 崔中圻.金属学与热处理.北京:机械工业出版社,1991:205,206-224
    [124] H.Uchida, H.Yoshida, in:J.D.Bryant (ED.), Aluminum and Magnesium for Automotive Applications, The Minerals, Metals and Materials Society, 1996, pp. 97-104
    [125] Siddiqui Rafiq A, Abdullah Hussein A, Al-Belushi Khamis R. Influence of aging parameters on the mechanical properties of 6063 aluminium alloy [J]. Journal of Materials Processing Technology, 2000, 102(1-3):234-240
    
    
    [126] Liao Hengcheng, Sun Yu, Sun Guoxiong. Restraining effect of strontium on the crystallization of Mg_2Si phase during solidification in Al-Si-Mg casting alloys and mechanisms [J]. Materials Science and Engineering A, 2003 (358) 164-170
    
    [127] Yucel Birol, Pre-straining to improve the bake hardening response of a twin-roll cast Al-Mg-Si alloy [J]. Scripta Materialia, 2005, 52:169-173
    [128] Edwards G A, Stiller K, Dunlop G L, et al.The precipitation sequence in Al-Mg-Si alloys [J], Acta materilala, 1998,46(11): 3893-3904
    [129] Muruyama N, Uemori R, Hashimoto N. Effect of silicon addition on the composition and structure of fine-scale precipitation in Al-Mg-Si alloys [J], Scrripta Materilala, 1997, 36(1):89-93
    [130] Murayama M, Hono K. Pre-precipitation clusters and precipitation processes in Al-Mg-Si alloys [J], Acta materiala, 1999,47(1):1537-1548
    [131]Gupta A K, Lloyd K J, Court S A. precipitation hardening processes in Al-0.4%Mg-1.3%Si-0.25%Fe aluminum alloy [J], Materials Science and Engineering A, 2001, 301(2):140-146
    [132] Peroxic A, Perovic D D, Weatherly G C, et al. precipitation in aluminum alloys AA6111 and AA6016[J], Scrripta Materiala, 1999,41(7):703-708
    [133] Miao W F, Laughlin D E. Precipitation hardening in aluminum alloy 6022 [J], Scrripta Materiala, 1999,40(7):873-878
    [134] Daniel J, Bryant. The effects of presaging treatments on aging kinetics and mechanical properties in AA6111 aluminum autobody sheet [J], Metallurgical and Materials Transactions A, 1999,30(8): 1999-2006
    [135] Miao W F, Laughlin D E. A differential scaning calormetry study of aluminum alloy 6111 with different pe-aging treatments [J], Journal of Materials Science Letters, 2000, 19:201-203
    [136] C. D. Marioara, S.J. Andersen, J. Jansen. The influence of temperature and storage time at RT on nucleation of the β " phase in a 6082 Al - Mg - Si alloy [J]. a. Acta Materialia 2003 (51):789-796
    [137] 宋学孟.金属物理性能分析[M].北京:机械工业出版社,1987,20
    [138] 波特D A,伊斯特林KE著,李长海,余永宁译.金属和合金中的相变[M].北京:冶金工业出版社,1988,295
    [139] Esmaeili, Slioyd D J, Poole W J. A yield strength model foe the Al-Mg-Si-Cu alloy AA6111 [J], Acta Materiala, 2003, 51(8): 2243-2257
    [140] Zhen L, Kang S B. Effect of natural aging and presaging on subsequent precipitation process of an Al-Mg-Si alloy with high excess silicom [J], Materials Science and Technology, 1997, 13(11): 905-910
    [141] 神户博太郎.热分析[M].北京:化学工业出版社,1984,66-75
    [142] 林肇琦,孙贵经.铝合金显微组织的不均匀性与分级时效理论(上)[J],轻金属,1978,28(1):47-56
    [143] 刘天湖,孙友松.新材料新工艺在新型汽车开发中的应用[J].金属成形工艺,2001(1):49-52.
    [144] 赵丽娟,叶志平.铸造Al-Si系铝合金强韧化研究进展[J].铝加工,2006,168:39-42
    [145] 沈健,李彦利,朱鸣峰.在线淬火工艺对6005A合金挤压型材组织与性能的影响[J].中国有色金属学报,2003(12),1461-1466
    [146] Fred Vermolen, Kees Vuik, Sybrand vander Zwaag, A mathematical model for the dissolution kinetics of Mg2Si-phases in A1-Mg-Si alloys during homogenization under industrial[J]. Materials Science and Engineering A, 1998 (254) 13-32
    [147] C.D. Marioara, S.J.ANDERSEN, J.JANSEN, et al. Atomic model for GP-zones in a 6082 Al-Mg-Si system [J]. Acta mater, 2001 (49): 321-328.
    [148] J. van de Langkruis, W.H. Kool, S. van der Zwaa. Assessment of constitutive equations in modelling the hot deformability of some overaged A1-Mg-Si alloys with varying solute contents [J]. Materials Science and Engineering A, 1999 (266): 135-145
    [149] O. R. MYHR, φ. GRONG, S.J.ANDERSEN. Modeling of the age hardening behaviour of A1-Mg-Si alloys [J]. Acta material, 2001 (49): 65-75
    [150] G. Liu, G.J. Zhang, et al. Modeling the strengthening resonse to aging process of heattreatable aluminum alloys containing plate/disc or rod/needle-shaped precipitates [J]. Materials Science and Engineering A, 2003 (344): 113-124
    [151] Jiang D., Wang C., Influence of microstructure on deformation behavior and fracture mode of AI-Mg-Si alloys [J]. 2003, 352,(7): 29-33
    [152] Harald Feufel, Tilo Godecke, Hans Leo Lukas, et al. Investigation of the A1-Mg-Si system by experiments and thermodynamic calculation [J], Joumal of Alloys and Compounds, 1997 (247): 31-42.
    [153] 张宝昌,有色合金及其热处理[M].西安:西北工业大学出版社,1993,55-63
    [154] 张静武.金属塑性变形与断裂的了EM/SEM原位研究[D].燕山大学博士学位论文,2002(5):72-78
    [155] Davidson, C. J., Griffiths, J. R., Céceres, C.H. The deformation and fracture behaviour of an Al-Si-Mg casting alloy [J], Materials Science and Engineering: A, 1995, 197(2): 171-179

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700