用户名: 密码: 验证码:
黄河三角洲植被的空间格局、动态监测与模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄河三角洲有着中国暖温带最广阔、最完整的新生河口湿地生态系统,同时也是东北亚内陆和环西太平洋鸟类迁徙的重要越冬栖息地和繁殖地,是生物多样性保护的热点地区和生态保育的难点地区。黄河三角洲特有的多种物质交汇、多种动力系统相互作用的多重生态界面决定了黄河三角洲植被的特殊性、自然灾害频繁、生态系统脆弱的特点。因此利用遥感与地理信息系统(Geographic information system, GIS)技术迅捷、精确、有效的特点开展黄河三角洲植被研究有着重要的现实和理论意义。
     黄河三角洲是研究多尺度植被环境关系的理想区域。通过遥感技术和地理信息系统技术解译黄河三角洲地区的植被信息,搜集、获取区域重要的环境变量,在GIS平台上对植被环境关系进行多尺度的排序分析,结果表明:土壤水分与盐分的交互作用是所有研究尺度上植被分布的决定性变量;在小尺度上,土壤表面蒸发是土壤水分和盐分调控主要机制;在大尺度上,地形因素参与水分再分配的过程,并极有可能通过地表径流和地下水再分配过程对土壤水分和盐分进行调控:排序轴与部分人类干扰变量显著相关,表明区域内的人类干扰已经对植被格局产生了明显的作用。
     通过基于三期Landsat TM和ETM+影像的NDVI数据,进一步探讨黄河三角洲植被和地形要素间的尺度依赖关系以确定在大尺度上是否存在水分再分配的过程:黄河三角洲四种主要植物群落间的NDVI值差异显著,可以作为指示该地区不同植物群落的良好指标;空间滞后响应模型显著地降低了模型残差的Moran's I系数,可以较好地抑制空间自相关对于模型的不利影响,从而得到更加真实可靠的生态学结论;多尺度的回归分析表明地形湿润度指数和坡度均在750m尺度左右表现为显著或者接近于显著,表明地形要素极有可能在该尺度上通过水分再分配过程对土壤盐分和水分进行调控;基于样线的小波分析表明降水再分配的过程虽然在较小的尺度上也存在,但是一般分布在较大尺度上。
     选择多种监测方法和阈值判别方法,利用随机生成的目视判别点筛选适合黄河三角洲的基于遥感特征的环境变化监测方法,结果表明:基于最大期望理论的阈值确定方法与简单的植被指数差分技术结合可以取得良好的监测效果;NDVI或者OSAVI指数与基于最大期望理论的阈值确定方法相配合是监测黄河三角洲区域环境变化方法中最优的,而基于遥感光谱特征的人工神经网络方法也有不错的表现。
     利用1992、1996、2001、2005和200等5期遥感影像,通过遥感与地理信息系统技术对黄河三角洲1992-2008年间土地利用状况进行解译,获取了土地利用的动态变化特征:刁口河附近海岸线蚀退速度较为缓慢,在2001年以后海岸线基本上处于一种相对平衡的状态;1996年后形成的新河口的南汊部分逐步蚀退,而北汊部分的西侧则表现出逐步扩展的趋势;1992-2008年间,研究区域内土地利用变化迅速而复杂,灌草地、耕地、裸地、水域和滩涂地的状态转换频繁,水资源条件和人类活动是区域土地利用的最主要驱动要素;1992-2008年间,强烈变化区域和较强变化区域主要分布在人类干扰较为频繁的区域,而新河口地区也有一定面积的强烈变化和较强变化区域。
     空间自相关是生态学中的常见问题,但是在元胞自动机研究中,空间自相关问题并没有得到应有的关注。利用元胞自动机模型模拟柽柳(Tamarix chinensis Lour.)种群的时空动态,并在模型中考虑空间自相关要素,比较加入空间自相关后元胞自动机参数的变化和模型的表现。结果表明,普通Logistic方程的残差中存在着显著的空间自相关效应,且普通Logistic方程不能获取所有的空间效应:Autologistic回归方程的AICc较低,模型的解释力较高,且模型残差的空间自相关效应不显著;Autologistic回归有效的降低了模型残差中的Moran' s I系数,消除了空间自相关对模型的统计学影响;基于Autologistic回归的ALCA模型与普通的基于普通Logistic回归的OLCA模型相比,其模拟精度显著提高,且在统计学上稳健,是一种非常有效的景观模拟模型。
     本文利用遥感和GIS技术较为系统地研究了黄河三角洲植被的空间格局、动态监测和模拟,结果表明:土壤水分和盐分的交互作用是黄河三角洲植被环境关系的决定性要素,植被空间格局在大尺度上存在基于地形要素的水分再分配调控作用;NDVI和OSAVI与基于最大期望理论的阈值确定方法相配合的方法是目前检测的最优监测方法;1992-2008年间黄河三角洲土地利用动态变化快速而复杂,主要是灌草地、耕地、裸地、水域和滩涂地几种类型间的频繁转换,主要的驱动力为区域水资源条件和人类互动;基于Autologistic回归的元胞自动机不仅模拟精度显著提高,且在统计学意义上稳定,是一种非常有效的景观模拟模型。在GIS和遥感的新平台下利用传统生态学方法分析黄河三角洲的多尺度植被关系,检验研究区域是否存在景观尺度上的水分再分配过程,筛选适宜黄河三角洲的遥感检测指数,明确了研究区域土地利用变化的时空变异并构建考虑空间自相关的元胞自动机,研究方法具有较强的创新性,不仅可以提供对生态系统的多尺度认识,还可以有效地监测和模拟景观尺度上的环境变化和时空动态。在利用遥感和GIS时应当着重注意尺度和空间自相关的问题,进行多尺度分析可以更好的了解格局背后的多尺度调控关系,而在研究中考虑空间自相关特性可以获得更加真实可靠的生态学结论和更加精确模拟结果。
The Yellow River Delta is one of the most active regions of land-ocean interaction among the large river deltas in the world. The area of perennial waterlogged wetlands in the Yellow River Delta including rivers, lakes, estuary waters, pits and ponds, reservoirs, channels, salt lakes, shrimp and crab pools, and tidal flats is 964.8 km2, accounts for 63.06% of total area. The Yellow River Delta is regarded as the largest and most well-preserved wetland in Chinese temperate area. The Yellow River Delta also has become an important over-wintering and breeding site for migrating birds in Northeast Asian Inland and Western Pacific Rim. And the delta is a complex depositional environment, with multiscale sedimentological, hydrological and ecological progress and georelational environment variables, which makes the Yellow River Delta to be a typical site for biodiversity conservation, environmental monitoring, multiscale analysis on vegetation-environmental relationships and spatially-explicit simulation using combined RS and GIS methodology.
     We tend to derive a holistic understanding of vegetation-environment relationships at mesoscales using an integrated remote sensing and GIS method. Canonical correspondence analysis (CCA) was employed to specify the relationships between vegetation pixels that obtained from high-resolution imagine and a group of biophysical, geographical and anthropogenic variables at different aggregation levels in the Yellow River Delta. Our study found that the statistic correlations between vegetation composition and environment variables increased as the grain sizes increased. The first CCA axes were closely related to the environmental variable of SS (soil salinity) and temperature vegetation dryness index (TVDI) at all the five scales, and mainly reflected the gradient of soil moisture-salinity interaction. The changes in other environmental variables that significantly related to the first axes at different scales may associate with the different processes and mechanisms that dominate on soils moisture and salinity. Several environmental variables used to depict anthropogenic activity were closely related to the second CCA axes, which indicated that the human disturbances had imposed obvious impacts on vegetation pattern in the delta. Our study confirmed that the relationships between vegetation and environmental factors at mesoscales in the delta were scale-dependent. The integration of GIS and remote sensing could be a promising method to detect relationships between vegetation and environment at different spatial scales.
     At larger scale, the elevation gradient and the redistribution of water and soil solutes always interact as a whole to determine regional vegetation pattern, especially in the region with small variation in elevation. The objective of this section is to test if water redistribution affects vegetation pattern at large scales in a coastal ecosystem in the Yellow River Delta, using an integrated remote sensing and GIS method with the Landsat images and a series of topographic variables. Results showed that:(1) NDVI was highly different among four prevailing communities, which was determined by the differences in habitat structure of coastal plant; (2) the spatial lagged model was statistically sound to obtain less significant Moran's I index in model residuals and reasonable and robust ecological conclusions; (3) topographical variables affected the vegetation pattern via the scale-dependent adjustment and handle on soil moisture and salinity. At small scales, topographic factors regulate soil water and salinity through the evaporation from soil surface. At large scales, however, topographic factors redistribute the soil water and salinity through the runoff and groundwater system.
     A couple of vegetation index and other derived index, coupled by threshold determination methods, were selected to monitor regional environmental changes, with the randomly selected points in 1992,1996,2001 and 2005 as the validation points. The result showed that the combination of two vegetation index (NDVI and OSAVI) and Expectation Maximization (EM) provided considerable performance in environmental monitoring. The result also showed that the adoption of ANN also showed good performance in the study.
     With the aim to investigate the dynamic changes in land use, the combination of remote sensing and geographic information system were adopted to interpret the land use dynamics of the Yellow River Delta from five Landsat images from 1992 to 2008. As shown by the land use maps, the coastline in Diaokou river mouth was relatively gently, achieving to equilibrium since 2001, while, the coastline near the new river mouth showed rapid expansion. From 1992 to 2008, the land use changes in the delta were rapid and complex, with frequent transition among tide land, shrub and grass land, bare land and water body. Condition of water resources and anthropic activities were the main driving forces for land use changes. The most dynamic area and less dynamic area mainly located in the areas where the anthropic activities were intense. And there were also dynamic and less dynamic areas distributing in the new river mouth.
     Spatial autocorrelation (SAC) is frequently encountered in most spatial data in ecology. Cellular automata (CA) models have been widely used to simulate complex spatial phenomena. However, little has been done to examine the impact of incorporating SAC into CA models. Using image-derived maps of Chinese tamarisk (Tamarix chinensis Lour.), CA models based on ordinary logistic regression (OLCA model) and autologistic regression (ALCA model) were developed to simulate landscape dynamics of T. chinensis. In this study, significant positive SAC was detected in residuals of ordinary logistic models, whereas non-significant SAC was found in autologistic models. All autologistic models obtained lower AICc (Akaike's information criterion corrected for small sample size) values than the best ordinary logistic models. Although the performance of ALCA models only satisfied the minimum requirement, ALCA models showed considerable improvement upon OLCA models. Our results suggested that the incorporation of the autocovariate term not only accounted for SAC in model residuals but also provided more accurate estimates of regression coefficients. The study also found that the neglect of SAC might affect the statistical inference on underlying mechanisms driving landscape changes and obtain false ecological conclusions and management recommendations. The ALCA model is statistically sound when coping with spatially structured data, and the adoption of the ALCA model in future landscape transition simulations may provide more precise probability maps on landscape transition, better model performance and more reasonable mechanisms that are responsible for landscape changes.
     Our holistic and systemtic research on the spatial pattern, monitoring and dynamic simulation relied on the combination of remote sensing and GIS techniques. The result indicated that the integrated application of remote sensing and GIS not only provided scale-dependent knowledge on multiscale vegetation-environment relationships, but also provide effective ways to monitor, detect and simulate environmental changes and spatiotemporal dynamics at landscape scale. The results also clearly showed the necessity to pay special attention to scale and spatial autocorrelation when using integrated remote sensing and GIS. The analysis that carried at multiple scales would provide more holistic and comprehensive knowledge on the underlying operating processes. The incorporation of spatial autocorrelation into ecological studies would eliminate the disturbance of spatial autocorrelation, and provide more sound and reliable ecological conclusions and more accurate model performance.
引文
1. Aguiar M R, Sala O E. Patch structure, dynamics, and implications for the functioning of arid ecosystems. Trends in Ecology and Evolution,1999,14: 273-277.
    2. Akaike H. Information theory as an extension of the maximum likelihood principle. In Petrov, B.N., Csaki, F. (eds.), Second International Symposium on Information Theory. Akademiai Kiado, Budapest,1973,267-281.
    3. Alpargu G, Dutilleul P. To be or not to be valid in testing the significance of the slope in simple quantitative linear models with autocorrelated errors. Journal of Statistic and Computer Simulation,2003,73,165-180.
    4. Auestad I, Rydgren K,Okland RH. Scale-dependence of vegetation-environment relationships in semi-natural grasslands. Journal of Vegetation Science,2008,19: 139-148.
    5. Augustin N H, Mugglestone M A, Buckland S T. An autologistic model for the spatial distribution of wildlife. Journal of Applied Ecology,1996,33:339-347.
    6. Austin M P, Nicholls A O. Species associates within herbaceous vegetation in an Australian Eucalyptus forest. In During HJ, Werger MJA, Willianms JH. eds. Diversity and Pattern in Plant Communities. SPB Academic Publishing, The Hague,1988,95-114.
    7. Bakker J P, de Vries Y. Germination and early establishment of lower salt-marsh species in grazed and mown salt marsh. Journal of Vegetation Science,1992,3: 247-252.
    8. Barbosa H A, Huete A R, Baethgen W E. A 20-year study of NDVI variability over the Northeast Region of Brazil. Journal of Arid Environment,2006,67: 288-307.
    9. Beale C M, Lennon J J, Elston D A, et al. Red herrings remain in geographical ecology:A reply to Hawkins et al. Ecography,2007,30:845-847.
    10. Bertness M D. Interspecific interactions among high marsh perennials in a New England salt marsh. Ecology,1991,72:125-137.
    11. Besag J. Nearest-neighbour systems and the auto-logistic model for binary data. Journal of Royal Statistic Society B,1972,34:75-83.
    12. Beven K J, Kirkby M J. A physically based variable contributing area model of basin hydrology. Hydrological Science Bulletin,1979,24:43-69.
    13. Bonis A, Bouzille J B, Amiaud B, et al. Plant community patterns in old embanked grasslands and the survival of balophytic flora. Flora,2005,200: 74-87.
    14. Borcard D, Legendre P, Drapeau P. Partialling out the spatial component of ecological variation. Ecology,1992,73:1045-1055.
    15. Brewer S J, Grace J B. Plant community structure in an oligohaline tidal marsh. Vegetatio,1990,90:93-107.
    16. Bruzzone L, Fernandez Prieto D. A minimum-cost thresholding technique for unsupervised change detection. International Journal of Remote Sensing,2000, 21:3539-3544.
    17. Burnham K P, Anderson D R. Model selection and multimodel inference:A practical information-theoretic approach, second ed. Springer, New York,2002.
    18. Cabral A I R, Martins E, Bartholome E, et al. A land cover map of Southern hemisphere Africa based on SPOT-4 vegetation data. International Journal of Remote Sensing,2006,27:1053-74.
    19. Cantero J J, Leon R, Cisneros J M, et al. Habitat structure and vegetation relationships in central Argentina salt marsh landscapes. Plant Ecology,1998, 137:79-100.
    20. Cao M C, Liu G H. Habitat suitability change of red-crowned crane in Yellow River Delta Nature Reserve. Journal of Forestry Research,2008,19(2):141-147.
    21. Cao X, Chen J, Imura H, et al. A SVM-based method to extract urban areas from DMSP-OLS and SPOT VGT data. Remote Sensing of Environment,2009,113: 2205-2209
    22. Carlson K M, Asner G P, Hughes R F, et al. Hyperspectral remote sensing of canopy biodiversity in Hawaiian lowland rainforests. Ecosystems,2007,10(4): 536-549.
    23. Chapman V J. Salt marshes and salt desert of the world. In Reinold RJ, Queen WH. eds. Ecology of Halophytes, Academic Press, London,1974,3-19.
    24. Chen J M, Cihlar J. Retrieving leaf area index of boreal conifer forests using landsat TM images. Remote Sensing of Environment,1996,55:153-162.
    25. Chen J Y, Taniguchi M, Liu G Q, et al.,2007. Nitrate pollution of groundwater in the Yellow River delta, China. Hydrogeology Journal,15:1605-1614.
    26. Chen Z S, Hsieh C F, Jiang F Y, et al. Relations of soil properties to topography and vegetation in a subtropical rain forest in southern Taiwan. Plant Ecology, 1997,132,229-241.
    27. Cheng K S, Wei C, Chang S C. Locating landslides using multitemporal satellite images. Advance in Space Research,2004,33:296-301.
    28. Chuvieco E, Coccero D, Riano D, et al. Combining NDVI and surface temperature for the estimation of live fuel moisture content in forest fire danger rating. Remote Sensing of Environment,2004,92:322-331.
    29. Clawges R, Vierling K, Vierling L, et al. The use of airborne lidar to assess avian species diversity, density, and occurrence in a pine/aspen forest. Remote Sensing of Environment,2008,112(5):2064-2073.
    30. Cliff A D, Ord J K. Spatial autocorrelation. Pion, London, England,1973.
    31. Cliff A D, Ord JK. Spatial processes:models and applications. Pion, London, England,1981.
    32. Coops N C, White J C, Johnson M, et al. Assessment of Quick-Bird high spatial resolution imagery to detect red attack damage due to mountain pine beetle infestation. Remote Sensing of Environment,2006,103:67-80.
    33. Crist EP, Cicone RC. A physically-based transformation of thematic mapper data-the TM Tasseled Cap. IEEE Transaction of Geoscience and Remote Sensing, 1984,22:256-263.
    34. Cui B, Yang Q, Yang Z, et al. Evaluating the ecological performance of wetland restoration in the Yellow River Delta, China. Ecological Engineering, 2009,35:1090-1103.
    35. Dale M R T, Mah M. The Use of Wavelets for Spatial Pattern Analysis in
    Ecology. Journal of Vegetation Science,1998,9(6):805-814.
    36. Dargie T C D, El-Demerdash M A. A quantitative study of vegetation-environment relationships in two Egyptian deserts. Journal of Vegetation Science,1991,2:3-10.
    37. De Frutos A, Olea PP, Vera R. Analyzing and modelling spatial distribution of summering lesser kestrel:The role of spatial autocorrelation Ecological Modelling,2007,200,33-44.
    38. Del Barrio G, Alvera B, Puigdefabregas J, et al. Response of high mountain landscape to topographic variables:Central Pyrenees. Landscape Ecology,1997, 12:95-115.
    39. Deng Y, Chen X, Chuvieco E, Warner T, et al. Multi-scale linkages between topographic attributes and vegetation indices in a mountainous landscape. Remote Sensing of Environment,2007,111:122-134.
    40. Diniz-Filho J A F, Hawkins B A, Bini LM, et al. Are spatial regression methods a panacea or a Pandora's box? A reply to Beale et al. (2007). Ecogaphy,2007,30: 848-851.
    41. Dogan H M. A new approach to diversity indices modeling and mapping plant biodiversity of Nallihan forest ecosystem in frame of geographic information systems. Biodiversity and Conservation,2006,15 (3):855-878.
    42. Dormann C F. Effects of incorporating spatial autocorrelation into the analysis of species distribution data. Global Ecology and Biogeography,2007,16,129-138.
    43. Echeverria C, Coomes D A, Hall M, et al. Spatially explicit models to analyze forest loss and fragmentation between 1976 and 2020 in southern Chile. Ecological Modelling,2008,212:439-449.
    44. Emery N C, Ewanchuk P J, Bertness M D. Competition and salt-marsh plant zonation:Stress tolerators may be dominant competitors. Ecology,2001,82: 2471-2485.
    45. Fang H L, Liu G H, Kearney M. Georalational analysis of soil type, soil salt content, topography, and land use in the Yellow River Delta, China. Environment Management,2005,35:72-83.
    46. Fang J, Chen A, Peng C, et al. Changes in forest biomass carbon storage in China between 1949 and 1998. Science,2001,292:2320-2322.
    47. Field C B, Behrenfeld M J, Randerson J T, et al. Primary production of the biosphere:integrating terrestrial and oceanic components. Science,1998,281: 237-240.
    48. Field C B, Randerson J T, Malmstrom C M. Global net primary production: combing ecology and remote sensing. Remote Sensing of Environment,1995,51: 74-88.
    49. Filippi A M, Jensen J R. Fuzzy learning vector quantization for hyperspectral coastal vegetation classification. Remote Sensing of Environment,2006,100: 512-30.
    50. Foody G M, Cutler M E J. Mapping the species richness and composition of tropical forests from remotely sensed data with neural networks. Ecological Modelling,2006,195:37-42.
    51. Franklin J, Woodcock C E, Warbington R. Digital vegetation maps of forest lands in California:Integrating satellite imagery, GIS modeling, and field data in support of resource management. Photogrammetric Engineering and Remote Sensing,2000,66:1209-1217.
    52. Franklin J. Predictive vegetation mapping:Geographic modeling of biospatial patterns in relation to environmental gradients. Progress in Physical Geography, 1995,19:474-499.
    53. French L J, Smith G F, Kelly D L. Ground flora communities in temperate oceanic plantation forests and the influence of silvicultural, geographic and edaphic factors. Forest Ecology and Management,2008,255:3-4.
    54. Galle S, Ehrmann M, Peugeot C. Water balance in a banded vegetation pattern-a case study of tiger bush in western Niger. Catena,1999,37:197-216.
    55. Garcia-Aguirre M C, Ortiz M A, Zamorano J J, et al. Vegetation and topography relationships at Ajusco volcano Mexico, using a geographic information system (GIS). Forest Ecology and Managment,2007,239:1-12.
    56. Gaudet C L, Keddy P A. Competitive performance and species distribution in
    shoreline plant communities:a comparative approach. Ecology,1995,76: 280-291.
    57. Geerken R, Zaitchik B, Evans J P. Classifying rangeland vegetation type and coverage from NDVI time series using Fourier Filtered Cycle Similarity. International Journal of Remote Sensing,2005,26:5535-5554.
    58. Gholz H L. Environmental limits on aboveground net primary production, leaf area, and biomass in vegetation zones of the Pacific North West. Ecology,1982, 63:469-481.
    59. Gutman G, Ignatov A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. International Journal of Remote Sensing,1998,19(8):1533-1543.
    60. Hagen A. Fuzzy set approach to assessing similarity of categorical maps. International Journal of Geographic Information Science,2003,17:235-249.
    61. Hansen M C, DeFries R S, Townshend J R, et al. Global land cover classification at 1 km spatial resolution using a classification tree approach. International Journal of Remote Sensing,2006,21:1331-1364.
    62. Hara M, Hirata K, Oono K. Relationship between microlandform and vegetation structure in an evergreen broad-leaved forest on Okinawa Island, S-W Japan. Natural History Research,1996,4:27-35.
    63. Hawkins B A, Diniz-Filho J A F, Bini L M, et al. Red herrings revisited:Spatial autocorrelation and parameter estimation in geographical ecology. Ecography, 2007,30:375-384.
    64. He C, Zhang Q, Li Y, et al. Zoning grassland protection area using remote sensing and cellular automata modeling-a case study in Xilingol steppe grassland in northern China. Journal of Arid Environment,2005,63:814-826.
    65. Holling C S. Cross-scale morphology, geometry, and dynamics of ecosystems. Ecological Monographs,1992,62:447-502.
    66. Huang S, Siegert F. Land cover classification optimized to detect areas at risk of desertification in North China based on SPOT VEGETATION imagery. J Arid Environ,2006,67:308-327.
    67. Hubbell S P, Ahumada J A, Condit R, et al. Local neighborhood effects on long-term survival of individual trees in a neotropical forest. Ecological Research, 2001,16,859-875.
    68. Hurvich C M, Tsai C. Regression and time series model selection in small samples. Biometrika,1989,76:297-307.
    69. Im J, Jensen J R. A change detection model based on neighborhood correlation image analysis and decision tree classification. Remote Sensing of Environment, 2005,99:326-340.
    70. Im J, Rhee J, Jensen J R, et al. An automated binary change detection model using a calibration approach. Remote Sensing of Environment,2007,106: 89-105.
    71. Ito A. Modelling of carbon cycle and fire regime in an east Siberian larch forest. Ecological Modelling,2005,187:121-139.
    72. Jewell K J, Arcese P, Gergel S E. Robust prediction of species distribution: Spatial habitat models for a brood parasite. Biological Conservation,2007,140: 259-272.
    73. Jiang Z, Alfredo R, Chen J, et al. Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction. Remote Sensing of Environment,206,101:366-378.
    74. Johnson R D, Kasischke E S. Change vector analysis:a technique for the multispectral monitoring of land cover and condition. International Journal of Remote Sensing,1998,19(3):411-426.
    75. Jung M, Churkina G, Henkel K, et al. Exploiting synergies of global land cover products for carbon cycle modeling. Remote Sensing of Environment,2006,101: 534-553.
    76. Keitt T H, Urban D L. Scale-Specific Inference Using Wavelets. Ecology,2005, 86(9):2497-2504.
    77. Kentula M E. A comparison of approaches to prioritizing sites for riparian restoration. Restoration Ecology,1997,5:69-74.
    78. Kerr J T and Ostrovsky M. From space to species:ecological applications for
    remote sensing. Trends in Ecology and Evolution,2003,18(6),299-304.
    79. Kerr J T, Packer L. Habitat heterogeneity as a determinant of mammal species richness patterns in high energy regions. Nature,1997,385:252-254.
    80. King R S, Richardson C J, Urban D L, et al. Spatial dependency of vegetation-environment linkages in an anthropogenically influenced wetland ecosystem. Ecosystem,2004,7:75-97.
    81. Knight J F, Lunetta R S, Ediriwickrema J, et al. Regional scale land cover characterization using MODIS-NDVI 250m multi-temporal imagery:a phenology-based approach. GIScience and Remote Sensing,2006,43:1-23.
    82. Kooistra L,Wamelink W, Schaepman Strub G, et al. Assessing and predicting biodiversity in a flood plain ecosystem:Assimilation of net primary production derived from imaging spectrometer data into a dynamic vegetation model. Remote Sensing of Environment,2008,112 (5):2118-2130.
    83. Kuhn I. Incorporating spatial autocorrelation may invert observed patterns. Diversity and Distributions,2007,13:66-69.
    84. Laba M, Downs R, Smith S, et al. Mapping invasive wetland plants in the Hudson River National Estuarine Research Reserve using quickbird satellite imagery. Remote Sensing of Environment,2008,112:286-300.
    85. Lambin E F, Turner B L, Helmut J, et al. The causes of land-use and land-cover change:moving beyond the myths. Global Environmental Change,2001,11: 261-269.
    86. Legendre, P. Spatial autocorrelation-Trouble or newparadigm. Ecology,1993,74: 1659-1673.
    87. Lenka C, Milan C. Supervised classification of plant communities with artificial neural networks. Journal of Vegetation Science,2005,16:407-414.
    88. Lennon J J. Red-shifts and red herrings in geographical ecology. Ecograph,2000, 23,101-113.
    89. Leone A P, Menenti M, Buondonno A, et al. A field experiment on spectrometry of crop response to soil salinity. Agricultural Water Management,2007,89: 39-48.
    90. Levine J M, Brewer J S, Bertness M D. Nutrients, competition and plant zonation in a New England salt marsh. Journal of Ecology,1998,86:285-292.
    91. Levins S A. The problem of pattern and scale in ecology. Ecology,1992,73: 1943-1967.
    92. Li H, Wu J. Use and misuse of landscape indices. Landscape Ecology,2004,19, 389-399.
    93. Li X B, Chen Y H, Yang H, et al. Improvement, comparison and application of field measurement methods for grassland vegetation fractional coverage. Journal of Integrative Plant Biology,2005,47:1074-1083.
    94. Li X W, Strahler A H. Geometric-Optical Modeling of a Conifer Forest Canopy. IEEE Transaction on Geoscience and Remote Sensing,1985,23(5):705-720.
    95. Li X, Yeh A G O. Neural-network-based cellular automata for simulating multiple land use changes using GIS. International Journal of Geographic Information Science,2002,16:323-343.
    96. Lichstein J W, Simons T R, Shriner S A, et al. Spatial autocorrelation and autoregressive models in ecology. Ecological Monograph,2002,72:445-463.
    97. Lieth H, Whittaker R H. Primary productivity of the biosphere. New York: Spring Verlag,1975.
    98. Linderman M, Bearer S, An L, et al. The effects of understory bamboo on broad scale estimates of giant panda habitat. Biological Conservation,2005,121(3): 383-390.
    99. Liu H Q, Huete A R. A feedback based modification of t he NDVI to minimize canopy background and atmospheric noise. IEEE Transaction on Geoscience and Remote Sensing,1995,33:457-465.
    100.Liu X P, Li X, Shi X, et al. Simulating complex urban development using kernel-based non-linear cellular automata. Ecological Modelling,2008,211: 169-181.
    101.Liu X, Lathrop R G JR. Urban change detection based on an artificial neural network. International Journal of Remote Sensing,2002,23:2513-2518.
    102.Lo CP, Choi J. A hybrid approach to urban land use/cover mapping using Landsat 7 Enhanced Thematic Mapper Plus (ETM+) images. International Journal of Remote Sensing,2004,25:2687-2700.
    103.Ludwig J A, Wilcox B P, Breshears D D, et al. Vegetation patches and runoff-erosion as interacting ecohydrological processes in semiarid landscapes. Ecology,2005,86:288-297.
    104.Mahesh P, Mather PM. An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sensing of Environment,2003,86: 554-565.
    105.McConnell W, Sweeney S, Mulley B. Physical and social access to land: spatio-temporal patterns of agricultural expansion in Madagascar. Agricultural, Ecosystem and Environment,2004,101:171-184.
    106.Mehner H, Cutle(?) M, Fairbaim D, et al. Remote sensing of upland vegetation: The potential of high spatial resolution satellite sensors. Global Ecology and Biogeography,2004,13(4):359-369.
    107.Mehrabian A, Naqinezhad A, Mahiny A S, et al. Vegetation Mapping of the Mond Protected Area of Bhehr Province (South-west Iran). Journal of Integrative Plant Biology,2009,51(3):251-260.
    108.Menard A, Marceau D J. Simulating the impact of forest management scenario in an agricultural landscape of southern Quebec, Canada, using a geographic cellular automata. Landscape and Urban Planning,2007,79:253-265.
    109.Mi X C, Ren H B, Ouyang Z S, et al. The use of the Mexican Hat and the Morlet wavelets for detection of ecological patterns. Plant Ecology,2005,179:1-19.
    110.Monsured R A, Leemans R. Comparing global vegetation maps with the kappa statistic. Ecological Modelling,1992,62:275-293.
    111.Moore I D, Gessler P E, Nielsen G A, et al. Soil attribute prediction using terrain analysis. Soil Science Society of America journal,1993,57:443-452.
    112.Moran M S, Bryant R, Thome K, et al. A refined empirical line approach for reflectance factor retrieval from Landsat-5 TM and Landsat-7 ETM+. Remote Sensing and Environment,2001,78:71-82.
    113.Moran P A P. Notes on continuous stochastic phenomena. Biometrika,1950,37:
    17-23.
    114.Muchoney D M. Earth observation for terrestrial biodiversity and ecosystems. Remote Sensing of Environment,2008,112 (5):1909-1911.
    115.Munoz-Reinoso J C, Novo F G. Multiscale control of vegetation patterns:the case of Donana (SW Spain). Landscape Ecology,2005,20:51-61.
    116.Ni J. Net primary productivity in forest of China:scaling up of national inventory data and comparison with model predictions. Forest Ecology and Management, 2003,176:485-495.
    117.0'Neill M P, Schmidt J C, Dobrowolske J P, et al. Identifying sites for riparian wetland restoration:application of a model to the Upper Arkansas River basin. Restoration Ecology,1997,5:85-102.
    118.Oindo B O, Skidmore A K, de Salvo P. Mapping habitat and biological diversity in the Maasai Mara ecosystem. International Journal of Remote Sensing,2003,24: 1053-1069.
    119.Okeke F, Karnieli A. Methods for fuzzy classification and accuracy assessment of historical aerial photographs for vegetation change analyses. Part Ⅰ:algorithm development. International Journal of Remote Sensing,2006,27:153-176.
    120.Overmars K P, de Koning G H J, Veldkamp A. Spatial autocorrelation in multi-scale land use models. Ecological Modelling,2003,164:257-270.
    121.Palmer M W, Earls P G, Hoagland B W, et al. Quantitative tools for perfecting species lists. Environmetrics,2002,13(2):121-137.
    122.Pan D Y, Bouchard A, Legendre P, et al. Influence of edaphic factors on the spatial structure of inland halophytic communities:A case study in China. Journal of Vegetation Science,1998,9:797-804.
    123.Pfeffer K, Pebesma E J, Burrough P A. Mapping alpine vegetation using vegetation observations and topographic attributes. Landscape Ecology,2003,18: 759-776.
    124.Piao S L, Fang J Y, Ciais P, et al. The Carbon balance of terrestrial ecosystems in China. Nature,2009,458,1009-1013.
    125.Pielou E C, Routledge R D. Salt marsh vegetation:latitudinal gradients in the
    zonation patterns. Oecologia,1976,24:311-321.
    126.Piernik A. Inland halophilous vegetation as indicator of soil salinity. Basic and Applied Ecology,2003,4:525-536.
    127.Pinder J E, Kroh G C, White J D, et al. The relationships between vegetation types and topography in Lassen Vocalnic National Park. Plant Ecology,1997, 131:17-29.
    128.Piorecky M D, Prescott D R C. Multiple spatial scale logistic and autologistic habitat selection models for northern pygmy owls, along the eastern slopes of Alberta's Rocky Mountains. Biological Conservation,2006,129:360-371.
    129.Pontius Jr R G, Cornell J, Hall C. Modelling the spatial pattern of land-use change with GEOMOD2:application and validation for Costa Rica. Agriculture, Ecosystems and Environment,2001,85:191-203.
    130.Pontius Jr R G. Statistical methods to partition effects of quantity and location during comparison of categorical maps at multiple resolutions. Photogrammetry and Remote Sensing,2002,68:1041-1049.
    131.Price. Estimating vegetation amount from visible and near infrared reflectances, Remote Sensing of Environment,1992,41:29-34.
    132.Purevdorj J T S, Tateishi R, Ishiyama T, et al. Relationships between percent vegetation cover and vegetation indices. International Journal of Remote Sensing, 1998,19(18):3519-3535.
    133.Qi J, Kerr Y H, Moran M S, et al. Leaf Area Index estimates using remotely sensed data and BRDF models in a semiarid region. Remote Sensing of Environment,2000,73:18-30.
    134.Qi Y, Wu J G. Effects of changing spatial resolution on the results of landscape pattern analysis using spatial autocorrelation indices. Landscape Ecology,1996, 11:39-49.
    135.Qin Z, Ouyang Y, Su G, et al. Characterization of CO2 and water vapor fluxes in a summer maize field with wavelet analysis. Ecological Informatics,2008,3: 397-409.
    136.R Development Core Team. R:A Language and Environment for Statistical
    Computing. R Foundation for Statistical Computing, Vienna, Austria,2008 (http://www.R-project.org).
    137.Rangel T F L V B, Diniz-Filho J A F, Bini L M. Towards an integrated computational tool for spatial analysis in macroecology and biogeography. Global Ecology and Biogeography,2006,15:321-327.
    138.Reed R A, Peet R K, Palmer M W et al. Scale dependence of vegetation-environment correlations:a case study of a north Carolina piedmont woodland. Journal of Vegetation Science,1996,4:329-340.
    139.Rindfuss R R, Walsh S J, Turner B L, et al. Developing a science of Land Change: Challenges and methodological issues. Proceedings of the National Academy of Sciences of the United States of America,2004,101(39):13976-13981.
    140.Rocchini D. Effects of spatial and spectral resolution in estimating ecosystem diversity by satellite imagery. Remote Sensing of Environment,2007,111(4): 423-434.
    141.Rondeaux G, Steven M, Baret F. Optimization of soil adjusted vegetation indices. Remote Sensing of Environment,1996,55:95-107.
    142.Roujean J L, Breon F M. Estimating PAR Absorbed by vegetation from bidirectional reflectance measurements. Remote Sensing of Environment,1995, 51:375-384.
    143.Rutherford, G N, Bebi P, Edwards P J, et al. Assessing land-use statistics to model land cover change in a mountainous landscape in the European Alps. Ecological Modelling,2008,212:460-471.
    144.Sanderson R A, Eyre M D, Rushton S P. Distribution of selected macroinvertebrates in a mosaic of temporary and permanent freshwater ponds as explained by autologistic models. Ecography,2005,28:355-362.
    145.Sandholt I, Rasmussen K, Andersen J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sensing of Environment,2002,79:213-224.
    146.Saunders S C, Chen J, Drummer T D, et al. Identifying scales of pattern in ecological data:a comparison of lacunarity, spectral and wavelet analyses. Ecological Complexity,2005,2:87-105.
    147.Schneider L, Pontius Jr R G. Modeling land-use change in the Ipswich watershed, Massachusetts, USA. Agriculture, Ecosystem and Environment,2001,85:83-94.
    148.Schroeder T A, Canty M J, Yang Z, et al. Radiometric correction of multi-temporal Landsat data for characterization of early successional forest patterns in western Oregon. Remote Sensing Environment,2006,103:16-26.
    149.Seppelt R, Muller F, Schroder B, et al. Challenges of simulating complex environmental systems at the landscape scale:A controversial dialogue between two cups of espresso. Ecological Modelling,2009,220:3481-3489.
    150.Seto K C, Fleishman E, Fay J P, et al. Linking spatial patterns of bird and butterfly species richness with Landsat TM derived NDVI. International Journal of Remote Sensing,2004,25(20):4309-4324.
    151.Sha Z, Bai Y, Xie Y, et al. Using a hybrid fuzzy classifier (HFC) to map typical grassland vegetation in Xilinhe River Basin, Inner Mongolia, China. International Journal of Remote Sensing,2008,29:2317-2337.
    152.Sluiter R. Mediterranean land cover change:modelling and monitoring natural vegetation using GIS and remote sensing. Nederlandse Geografische Stud,2005, 333:17-144.
    153.Snow A A, Vince S W. Plant zonation in an Alaskan salt marsh. II. An experimental study of the role of edaphic conditions. Journal of Ecology,1984, 72:669-684.
    154.Soares-Filho B S, Alencar A, Nepstad D, et al. Simulating the response of land-cover changes to road paving and governance along a major Amazon highway:the Santarem-Cuiaba corridor. Global Change Biology,2004,10: 745-764.
    155.Soares-Filho B S, Cerqueira G C, Pennachin C L. DINAMICA-a stochastic cellular automata model designed to simulate the landscape dynamics in an Amazonian colonization frontier. Ecological Modelling,2002,154:217-235.
    156.Sohl T L. Change analysis in the United Arab Emirates:an investigation of techniques. Photogrammetry and Remote Sensing,1999,65:475-484.
    157.Sohn Y, Qi J. Mapping detailed biotic communities in the Upper San Pedro Valley of southeastern Arizona using landsat 7 ETM+ data and supervised spectral angle classifier. Photogrammetry and Remote Sensing,2005,71: 709-718.
    158.Sohn Y, Rebello N S. Supervised and unsupervised spectral angle classifiers. Photogrammetry and Remote Sensing,2002,68:1271-1280.
    159.Song C. Spectral mixture analysis for subpixel vegetation fractions in the urban environment:How to incorporate endmember variability?. Remote Sensing of Environment,2005,95:248-263.
    160.Swanson F J, Kratz T K, Caine N, et al. Landform effects on ecosystem patterns and processes. BioScience,1998,38:92-98.
    161.Teng S P, Chen Y K, Cheng K S, et al. Hypothesis-test-based landcover change detection using multi-temporal satellite images-A comparative study. Advances in Space Research,2008,41:1744-1754.
    162.Ter Braak C J F. Canonical correspondence analysis:a new eigenvector method for multivariate director gradient analysis. Ecology,1986,67:1167-1179.
    163.Ter Braak C J F. The analysis of vegetation-environment relationships by canonical correspondence analysis. Vegetatio,1987,69:69-77.
    164.Torrence C, Compo G P. Apractical guide towavelet analysis. Bulletin of the American Meteorological Society,1998,79:61-78.
    165.Torrence C, Webster P J. Interdecadal changes in the ENSO-monsoon system. Journal of Climatology,1999,12:2679-2690.
    166.Tso B, Olsen R. Combining spectral and spatial information into hidden Markov models for unsupervised image classification. International Journal of Remote Sensing,2005,26:2113-2133.
    167.Turner D P, Ollinger S V, Kimball J S. Integrating remote sensing and ecosystem process models for landscape to regional-scale analysis of the carbon cycle. Bioscience,2004,54:573-584.
    168.Turner M G. Landscape ecology:the effect of pattern on process. Annual Review of Ecological Systems,1989,20:171-197.
    169.Turner W, Spector S, Gardiner N, et al. Remote sensing for biodiversity science and conservation. Trends in Ecology and Evolution,2003,18 (6):306-314.
    170.Ungar I A, Hogan W, McClelland M. Plant communities of saline soils at Lincoln, Nebraska. American Midland Naturalist,1969,82:564-577.
    171.Ungar I A. Vegetation-soil relationships on saline soils in the northern Kansas. American Midland Naturalist,1967,78:98-120.
    172.Valentin C, d'Herbes J M, Poesen J. Soil and water components of banded vegetation patterns. Catena,1999,37:1-24.
    173.Van de Rijt C W C, Hazelhoff L, Blom C W P M. Vegetation zonation in a former tidal area:A vegetation-type response model based on DCA and logistic regression using GIS. Journal of Vegetation Science,1996,7:505-518.
    174.Vapnik V. The Nature of Statistical Learning Theory. Springer,1995.
    175.Veldkamp A, Fresco L O. CLUE-CR:an integrated multiscale model to simulate land use change scenarios in Costa Rica. Ecological Modelling,1996,91: 231-248.
    176.Verburg P H, De Nijs T, Ritsema van Eck J, et al. A method to analyse neighbourhood characteristics of land use patterns. Computer, Environment and Urban System,2004,28:667-690.
    177.Verburg P H, Soepboer W, VeldKamp A, et al. Modelling the spatial dynamics of regional land use:the CLUE-S model. Environment Management,2002,30(3): 391-405.
    178.Verhoef W. Light scattering by leaf layers with application to canopy reflectance modeling, the SAIL model. Remote Sensing of Environment,1984,16:125-141.
    179.Vierling K T, Vierling L A, Gould W A, et al. Lidar:Shedding new light on habitat characterization and modeling. Frontiers in Ecology and the Environment, 2008,6 (2):90-98.
    180.Wang Q, Li J, Chen B. Land cover classification system based on spectrum in Poyang lake basin. Acta Geographica Sinica,2006,61:359-68.
    181.Wang Q, Tenhunen J. Vegetation mapping with multitemporal NDVI in North Eastern China Transect (NECT). International Journal of Applied Earth
    Observation Geoinformation,2004,6:17-31.
    182.Wassenaar T, Gerber P, Verburg P H, et al. Projecting land use changes in the Neotropics:the geography of pasture expansion into forest. Global Environmental Change,2007,17:86-104.
    183.Weiss M, Baret F, Smith G J, et al. Review of methods for in situ leaf area index (LAI) determination Part Ⅱ. Estimation of LAI, errors and sampling. Agricultural and Forest Meteorology,2004,121:37-53.
    184.Whittaker R H, Niering W A. Vegetation of the Santa Catalina Mountains, Arizona. V. Biomass, production and diversity along an elevational gradient. Ecology,1975,56:771-790.
    185.Wolter P T, Johnston C A, Niemi G. Mapping submergent aquatic vegetation in the US Great Lakes using Quickbird satellite data. International Journal of Remote Sensing,2005,26:5255-5274.
    186.Wu X B, Archer S R. Scale-dependent influence of topography-based hydrologic features on patterns of wood plant encroachment in savanna landscapes. Landscape Ecology,2005,20:733-742.
    187.Wu, H L, Huffer F W. Modelling the distribution of plant species using the autologistic regression model. Environmental and Ecological Statistic,1997,4: 49-64.
    188.Wulder M A, White J C, Goward S N, et al. Landsat continuity:Issues and opportunities or land cover monitoring. Remote Sensing of Environment,2008, 112:955-969.
    189.Xiao X M, Zhang Q, Braswell B, et al. Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sensing of Environment,2004,91:256-270.
    190.Xie Y, Sha Z, Yu M. Remote sensing imagery in vegetation mapping:a review. Journal of Plant Ecology,2008,1(1),9-23.
    191.Xu M, Watanachaturaporn P, Varshney P K, et al. Decision tree regression for soft classification of remote sensing data. Remote Sensing of Environment,2005, 97:322-336.
    192.Xu X G, Lin H P, Fu Z Y. Probe into the method of regional ecological risk assessment-a case study of wetland in the Yellow River Delta in China. Journal of Environmental Management,2004,70:253-262.
    193.Yan Z, Jones P D, Moberg A, et al. Recent trends in weather and seasonal cycles: an analysis of daily data from Europe and China. Journal of Geophysical Research,2001,106:5123-5138.
    194.Yang Q S, Li X, Shi X. Cellular automata for simulating land use changes based on support vector machines. Computer Geoscience,2008,34:592-602.
    195.Yao Y, Liu Q, Liu Q, et al. LAI retrieval and uncertainty evaluations for typical row-planted crops at different growth stages. Remote Sensing of Environment, 112:94-106.
    196.Yassemi S, Dragicevic S, Schmidt M. Design and implementation cf an integrated GIS-based cellular automata model to characterize forest fire behaviour. Ecological Modelling,2008,210:71-84.
    197.Yoccoz N G, Nichols J D, Boulinier T. Monitoring of biological diversity in space and time. Trends in Ecology and Evolutionary,2001,16:446-453.
    198.Yuan D, Elvidge C D. Comparison of radiomet ricnormalization techniques. Photogrammetry and Remote Sensing,1996,51:117-126.
    199.Zeng X, Rao P Interannual variability and decadal trend of global fractional vegetation cover from 1982 to 2000. Journal of Applied Meteorology,2003,42: 1525-1530.
    200.Zhang G S, Wang R Q, Song B M,2007. Plant community succession in modern Yellow River Delta, China. Journal of Zhejiang University Science B,8: 540-548.
    201.Zhang J, Foody G M. A fuzzy classification of sub-urban land cover from remotely sensed imagery. International Journal of Remote Sensing,1998,19: 2721-2738.
    202.Zheng C H, Zeng C S, Chen Z Q, et al. A study on the changes of landscape pattern of estuary wetlands of the Minjiang river. Wetland Science,2006,4: 29-35.
    203.常军,刘高焕,刘庆生.黄河口海岸线演变时空特征及其与黄河来水来沙关系.地理研究,2004,23(3):339-346.
    204.陈晋,何春阳,史培军等.基于变化向量分析的土地利用/覆盖变化动态监测.遥感学报,2001,5(4):259-266.
    205.陈利顶,傅伯杰.黄河三角洲地区人类活动对景观结构的影响分析.生态学报,1996,16(4):337-344.
    206.陈利顶,傅伯杰.黄河三角洲地区人类活动对景观结构的影响分析—以山东省东营市为例.生态学报,1996,16(4):337-344.
    207.丁秋祎,白军红,高海峰,等.黄河三角洲湿地不同植被群落下土壤养分含量特征.农业环境科学学报,2009,28(10):2092-2097.
    208.方秀琴,张万昌.叶面积指数(LAI)的遥感定量方法综述.国土资源遥感,2003,3:58-62.
    209.郭笃发.黄河三角洲滨海湿地土地覆被和景观格局的变化.生态学杂志,2005,24(8):907-912.
    210.郭笃发.黄河三角洲新生湿地土地利用/土地覆被演化研究.中国生态农业学报,2007,15(4):139-143.
    211.贺强,崔保山,赵欣胜,等.黄河河口盐沼植被分布、多样性与土壤化学因子的相关关系.生态学报,2009,29(2):676-687.
    212.黄翀,刘高焕,张海龙,等.黄河河口湿地景观变化影响丹顶鹤生境的评价分析.地球信息科学学报,2009,11(4):491-497.
    213.李静,赵庚星,范瑞彬.黄河三角洲土地利用及土地覆盖变化驱动力分析.西北农林科技大学学报(自然科学版),2003,31(3):117-122.
    214.李开丽,蒋建军,茅荣正,等.植被叶面积指数遥感监测模型.生态学报,2005,25(6):1491-1496.
    215.李祥,郭笃发,张宝雷,等.基于RS与GIS的近代黄河三角洲丹顶鹤生境分析.水土保持研究,16(6):69-73.
    216.李兴东.黄河三角洲植物群落与环境因子的典范分析和主分量分析.植物学报,1993,35(增刊):139-143.
    217.连煜,王新功,黄种,等.基于生态水文学的黄河口湿地生态需水评价.地理
    学报,2008,63(5):451-461.
    218.刘纪远,张增祥等.20世纪90年代中国土地利用变化时空特征及其成因分析.地理研究,2003,22(1):1-12.
    219.刘纪远.中国资源环境遥感宏观调查与动态研究.北京:中国科学技术出版社,1996:158-188.
    220.刘晓臣,范闻捷,田庆久,等.不同叶面积指数反演方法比较研究.北京大学学报(自然科学版),2008,2:57-64.
    221.朴世龙,方精云,郭庆华.利用CASA模型估算我国植被净第一性生产力.植物生态学报,2001,25(5):603-608.
    222.任海,彭少麟.鼎湖山森林群落的几种叶面积指数测定方法的比较.生态学报,1997,17(2):220-223.
    223.盛辉,廖明生,张路.基于典型相关分析的变化监测中变化阈值的确定.遥感学报,2004,8(5):451-457.
    224.舒莹,胡远满,冷文芳,等.黄河三角洲丹顶鹤秋冬季生境选择机制.生态学杂志,2006,25(8):954-958.
    225.宋创业,刘高焕,刘庆生,等.黄河三角洲植物群落分布格局及其影响因素.生态学杂志,2008,27(12):2042-2048.
    226.宋妍,袁修孝,付迎春.基于混合高斯密度模型和空间上下文信息的遥感影像变化监测方法及扩展.遥感学报,2009,13(1):117-128.
    227.王海梅,李政海,韩国栋,等.黄河三角洲土地利用及景观格局的动态分析.水土保持通报,2007,27(1):81-85.
    228.王红,宫鹏,刘高焕.黄河三角洲多尺度土壤盐分的空间分异.利用Cokriging提高估算土壤盐离子浓度分布的精度—以黄河三角洲为例.地理学报,2005,60(3):511-518.
    229.王仁卿,张治国,王清.黄河三角洲植被的分类.山东大学学报(自然科学版),1993,28(增刊):23-29.
    230.王仁卿,张治国.黄河三角洲植被概论.山东大学学报(自然科学版),1993,28(增刊):1-7.
    231.王秀兰,包玉海.土地利用动态变化研究方法探讨.地理科学进展,1999,18(1):81-87.
    232.吴志芬,赵善伦,张学雷.黄河三角洲盐生植被与土壤盐分的相关性研究.植物生态学报,1994,18(2):184-193.
    233.许学工.黄河三角洲生态系统的评估和预警研究.生态学报,1996,16(5):461-468。
    234.杨敏,刘世梁,孙涛,等.基于边界特征的黄河三角洲景观变化及空间异质性.生态学杂志,2008,27(7):1149-1155.
    235.姚荣江,杨劲松,刘广明,等.黄河三角洲地区典型地块土壤盐分空间变异特征研究.农业工程学报,2006,22(6):61-66.
    236.姚荣江,杨劲松,刘广明.黄河三角洲地区典型地块地下水特征的空间变异性研究.土壤通报,2006,37(6):1071-1075.
    237.张翠萍,牛建明,董建军,等.基于IKONOS数据的植被制图与植被空间格局.生态学报,2006,26(2):449-456.
    238.张高生,王仁卿.现代黄河三角洲生态环境的动态监测.中国环境科学,2008,28(4):380-384.
    239.张高生,王仁卿.现代黄河三角洲植物群落数量分类研究.北京林业大学学报,2008,30(3):31-36.
    240.张云霞,张云飞,李晓兵.地面测量与ASTER影像综合计算植被盖度.生态学报,2007,27(3):964-976.
    241.赵延茂,宋朝枢.黄河三角洲国家级自然保护区科学考察集.北京:中国林业出版社,1995:57-70
    242.赵延茂,宋朝枢.黄河三角洲国家级自然保护区科学考察集.北京:中国林业出版社,1995:57-70.
    243.周光裕,叶正丰.山东沾化县徒骇河东岸荒地地植物群落的初步调查.植物生态学与地植物学资料丛刊,1956,13.
    244.朱会义,李秀彬.关于区域土地利用变化指数模型方法的讨论.地理学报,2003,58(5):643-650.
    245.朱文泉,潘耀忠,张锦水.中国陆地植被净初级生产力遥感估算.植物生态学报,2007,31(3):413-424.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700