用户名: 密码: 验证码:
粉煤灰浸出及浸出液与介质相互作用的水文地球化学机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,粉煤灰对地下水环境影响的研究主要集中于粉煤灰浸出液对地下水环境影响的现状评价和预测上,对于粉煤灰浸出的化学特征和浸出液与不同介质相互作用的反应机理研究较少。本文以灞桥电厂灰场的粉煤灰为研究对象,通过室内实验和地球化学模拟,分析粉煤灰的浸出特征,揭示浸出液与不同介质相互作用机理。全文以浸出液的水—岩作用机理研究为主要目标,从粉煤灰浸出、浸出液的单相混合、浸出液的多相混合和浸出液的土柱实验四个角度出发,对粉煤灰浸出液及其与不同介质的水文地球化学作用进行系统研究,得出如下结论:
     1.通过粉煤灰浸出模拟实验,研究不同液固比和不同反应时间条件下粉煤灰的浸出特征,研究结果表明:由于粉煤灰中碱性氧化物CaO水解,粉煤灰浸出液为碱性溶液;随着液固比的增大,浸出液中Na~+、Cl~-、Ca~(2+)、SO_4~(2-)浓度呈现急剧下降的趋势,并迅速趋于稳定;在pH值高的粉煤灰浸出液中,Al~(3+)主要以Al(OH)_4~-形式存在、SiO_2主要以H_3SiO_4~-的形式存在。在灰—水系统中,矿物NaCl、石膏、方解石和白云石的溶解/沉淀量随液固比的增大而逐渐变小;在时间和液固比的影响下,硅铝酸盐的溶解量随着反应时间的延长逐渐上升,随着液固比的增大逐渐减少。不同矿物的溶解/沉淀作用直接影响浸出液水化学组分的形成。
     2.浸出液与不同介质相互作用的实验结果表明,粉砂、亚砂土和黄土三种不同介质的混合溶液水化学特征各不相同,以粉砂为介质的多相混合溶液中主要水化学类型是SO_4-Ca和HCO_3-Ca型,以亚砂土为介质的多相混合溶液中主要水化学类型是SO_4-Ca·Mg和SO_4-Ca型,以黄土为介质的多相混合溶液中主要水化学类型是SO_4-Mg·Ca和HCO_3-Mg·Ca型。液固比对以粉砂为介质混合溶液中Na~+浓度影响最大,对以亚砂土为介质的多相混合溶液中Ca~(2+)、Mg~(2+)、SO_4~(2-)浓度影响最大,对以黄土为介质的多相混合溶液中Cl~-浓度影响最大;对以亚砂土为介质的混合溶液中Na~+、Cl~-浓度影响最小,对以黄土为介质的混合溶液中Ca~(2+)、Mg~(2+)、SO_4~(2-)浓度影响最小。
     3.以PHREEQC为模拟手段进行地球化学模拟,深入研究不同条件下水—岩作用过程中的化学反应。模拟结果表明:
     ①在单相混合溶液中,随着混合比例增大,NaCl、石膏、方解石和白云石的饱和指数逐渐下降,由于混合过程中受到pH变化的影响,溶液中CO_3~(2-)活度降低较大,使方解石和白云石的饱和指数降低。
     ②在多相混合溶液中,不同混合溶液与粉砂(或亚砂土)混合过程中水化学组分的演变,从初始溶液到最终溶液是经历NaCl、石膏、CO_2、白云石、钾长石溶解作用,方解石、玉髓、伊利石沉淀作用及CaX_2/NaX阳离子交换作用之后形成的;不同混合溶液与黄土混合过程中水化学组分的演变,从初始溶液到最终溶液是经历NaCl、石膏、CO_2、白云石、钠长石溶解作用,方解石、玉髓、伊利石沉淀作用及CaX_2/NaX阳离子交换作用之后形成的。
     ③不同介质与不同溶液混合时,NaCl溶解量高低次序为:黄土>粉砂>亚砂土,NaCl溶解直接影响不同混合溶液中CI~-浓度高低;石膏溶解量的高低次序为:亚砂土>粉砂>黄土;石膏的溶解直接影响不同混合溶液中SO_4~(2-)浓度高低;方解石沉淀量高低次序为:黄土>亚砂土>粉砂;白云石溶解量的高低次序为:黄土>亚砂土>粉砂,白云石的溶解直接影响不同混合溶液中Mg~(2+)浓度的高低;阳离子交换作用使Ca~(2+)由固相进入液相的次序为:黄土>亚砂土>粉砂,从而使Na~+由液相进入固相的次序为:黄土>亚砂土>粉砂;硅酸盐和硅铝酸盐不等量的溶解/沉淀作用影响着溶液中K~+、Al~(3+)、SiO_2浓度的高低。
     4.最后,通过亚砂土柱实验研究和模拟结果分析得出,在土柱渗滤过程中,粉煤灰浸出液比自来水对亚砂土中的矿物具有更强的溶滤作用,使粉煤灰浸出液渗滤土柱的渗透系数高于自来水渗滤土柱的渗透系数,矿物的溶解量也高于后者。
A large amount of studies of the fly ash leachate is pertaining to the effects on groundwater environment present evaluation and prediction;however,only relatively few studies have attempted to predicting the chemical properties of leachate and the reaction mechanism in leachate-mediator interaction.Experimental and hydrogeochemical simulation focused on analyzing the chemical characteristic of fly ash leachate derived from the fly ash in Baqiao coal-fired power plant and explains the reaction mechanism in water-rock interaction of the leachate.Under the guidance of reaction mechanism in water-rock interaction of leachate,from the characteristic of leachate,the single-phase mixing,polyphase mixing and column experiment,the author discusses the hydrogeochemistry about the leachate with different meidiator.Through those work,some important conclusions can be drawn,as follows:
     (1)From leaching experiment,the author analyzes the chemical properties of leachate evolving over different solid/liquid ratio and time.It is shown the leachate is highly alkaline solution for the CaO dissolution.The concentrations of Na~+、Cl~-、Ca~(2+)、SO_4~(2-) is decreasing and being in stable quickly with solid/liquid ratio increasing.The dominant solution species of Al~(3+),SiO_2 is Al(OH)_4~-,H_3SiO_4~- in high pH.In flyash-water system,as the liquid/solid ratio increased,the dissolution/precipitation of halite,gypsum,calcite and dolomite decrease.As the reaction time increased,the dissolution of aluminosilicate increase;and as the liquid/solid increased,the dissolution of aluminosilicate decrease.The combined effects of these reactions result in the chemical characteristics.
     (2)The experiment of leachate water-rock interaction indicates the chemical characteristic that the mixing solution of silty sand,sandy loam,loess is different.The major chemical styles of silty sand mixing solution show SO_4-Ca and HCO_3-Ca,the major chemical styles of sandy loam mixing solution show SO_4-Ca·Mg and SO_4-Ca,and the major chemical styles of the loess mixing solution show SO_4-Mg·Ca and HCO_3-Mg·Ca.The liquid/solid ratio have the maximun influence on concentration of Na~+ in silty sand mixing solution,the concentration of Ca~(2+),Mg~(2+),SO_4~(2-) in sandy loam mixing solution,and the concentration of Cl~- in loess mixing solution.The liquid/solid ratio has the minimum influence on concentration of Na~+,Cl~- in sandy loam mixing solution,and the concentration of Ca~(2+),Mg~(2+), SO_4~(2-) in mixing solution.
     (3)The geochemical modeling approach was used to predict the chemical reaction in water-rock interaction of leachate to the water composition by the PHREEQC software.The simulations lead to following conclusions:
     ①In single-phase mixing solution,the saturations of halite,gypsum,dolomite and calcite are decreasing with mixing ratio rising.The activities of CO_3~(2-) decreased as a function of pH, so the saturation of calcite and dolomite decrease.
     ②In polyphase mixing solution,the evolution of chemical components,in mixing procedure of silty sand with solution,undergo the dissolution of halite,gypsum,CO_2, dolomite and k-feldspar,the precipitation of calcite,chalcedony,illite and cation exchange. The evolution of chemical component,in mixing procedure of loess with solution,undergo the dissolution of halite,gypsum,CO_2,dolomite and k-feldspar,the precipitation of calcite, chalcedony,illite,and cation exchange.
     ③As the solutions mix with silty sand,sandy loam,loess individually,the dissolution amount order of halite is loess>silty sand>sandy loam,the halite dissolution influence the concentration of Cl~- in solution.The dissolution amount order of gypsum is sandy loam>silty sandy>loess,the gypsum dissolution influence the concentration of SO_4~(2-) in solution.The precipitation amount order of calcite is loess>sandy loam>silty sand.The dissolution amount order of dolomite is loess>sand loam>silty sand,the dissolution of dolomite influence the concentration of Mg~(2+) in solution.The cation exchanges make the Ca~(2+) into the solution from solid,make the Na~+ into solid from solution,the exchange amount order is loess>sandy loam>silty sand.Under the combined effects of dissolution/precipitation of silicate and aluminosilicate,the concentration of Al~(3+) and SiO_2 is variation.
     (4) Finally,from the column experiment and geochemical simulation,the author puts up the leachate can dissolution more mineral than main-water,so permeability coefficient of the column filtration by leachate is bigger than by main-water,and the mineral dissolution capacity as so.
引文
[1]论我国电力能源的未来发展,http://nyj.ndrc.gov.cn/zywx,2004
    [2]hhn,C.;Mitsch,W.J.Chemical analysis of soil and leachate from experimental wetland mesocosmsli ned with coal combustion products.Journal of Environmental Quality 2001,30:1457-1463
    [3]Bosshard,P.P.;Bachofen,R.;and Brandl,H.,Metal leaching of fly ash from municipal waste incineration by Aspergillus niger,Environmental Science and Technology 1996,30:3066-3070
    [4]Seidel,A.;Zimmels,Y.Mechanism and kinetics of aluminum and iron leaching from coal fly ash by sulfuric acid.Chemical Engineering Science 1998,53:3835-3852
    [5]Rai,W.R.,and R.A.Griffin,Illinois basin coal fly ashes.Environ.Sci.Technol.1984,18:739-742
    [6]Rai,D and W.Szelmeczka.Aqueous behavior of chromium in coal fly ash.J.Environ.Qual.1990,19:378-382
    [7]Katrinak.K.A.and C.J.Zygarlicke.Size-related variations in coal fly ash composition as determined using automated scanning electron microscopy.Fuel Processing Technology.1995,44:71-79
    [8]Hansen,L.O.and G.L.Fisher.Elemental distribution in coal fly ash particles Environ.Sci.Technol.1980,18:181-186
    [9]Elseewi,A.A.;Page,A.L.;Grimm,S.R.Chemical characterization of fly ash aqueous systems.Journal of Environmental Quality 1980,9:424-428.
    [10]Eauy,L.E.,Rai,O.Mattigod,S.V.and Ainsworth,C.C,Geochemical factors controlling the mobilization of Inorganic constituents from follil fuel combustion residues,Review of the minor elements.J.Environ.Qual.1990,19:202-214
    [11]Alemi M.H.,Goldhamer,D.A.and D.R.Nielsen.Modeling selenium transport in steady-state,unsaturated soil columns.Journal of Environmental Quality.1991,20:89-95
    [12]Schwab,A.P,and P.O.Ohlenbusch.Geochemical modeling of coal ash.Groundwater Manage.1990,1:311-324
    [13]U.S.Environmental Protection Agency.Regulatory determination on waste from the combustion of fossil fuels;Final rule.Federal Register,2000,65(99):32213-32237
    [14]孙中惠、郭建新、冯金仙,粉煤灰对太原市地下水造成的放射性污染,华北地质矿产杂志,1996,11(2):199-208
    [15]范俊玲、尹国训、曹军,焦作市某电厂粉煤灰堆放场引起岩溶地下水Cr~(6+)污染的初步研究,能 源环境保护,2005,19(6):37-39
    [16]郑海亮、魏继莲,淮南洛河电厂储灰场粉煤灰有害金属随水迁移性研究,矿业安全与环保,2004,31(2):9-12
    [17]荣鸿敏,粉煤灰浸出试验方法,电力环境保护,1989,5(3):9-19
    [18]Praharaj,T.;Powell,M.A.;Hart,B.R.;Tripathy,S.,Leachability of elements from sub-bituminous coal fly ash from India,Environment International,2002,27(8):609-615
    [19]荣鸿敏,粉煤灰的理化特性与浸出特性试验,电力环境保护,1994,10(4):23-31
    [20]Querol,X.Umana,J.C.,Alastuey,A.Ayora,C.et al,Extraction of Soluble Major and Trace Elements From Fly Ash in Open and Closed Leaching Systems,Fuel,2001,80:801-813
    [21]Hjelmar,O.Leachate from Land Disposal of Fly Ash.Waste Management and Reseach,1990,8:429-449
    [22]Paul,B.C.,Chaturavedula,S.,Paudel,H.,and Chattererjees,S.,Use of Shake Tests as Predictors of Long Term Leaching of Coal Combustion Residues in Contact With Groundwater.Proc.Management of High Sulfur coal Combustion Residues:Issues and Practices,Southern Illinois University at Carbondale,Springfield Illinois,1994,4:58-59
    [23]Gerard J.de Groot etc.,Leaching Characteristics of Selected Elements from Coal Fly Ash as a Function of the Acidity of the Contact Solution and the Liquid/Solid Ratio,Envionment Spects of Stabilization and Soliddification of Hazardous and Radioactive Wastes,ASTM,1989
    [24]Teixeira,E.C.,Samma,J.and Burn,A,Study of Different Leaching Methods of Metallic Elements from Coal Fly Ash,Environmental Technology,1992,13:1187-1192
    [25]赵毅、韩虹琳,粉煤灰中氟、重金属和碱性物质污染地下水的试验研究,河北大学学报(自然科学版),1992,12(4):80-84
    [26]王运泉,任德贻、尹金双等,煤及其燃烧产物中微量元素的淋滤试验研究,环境科学,1996,17(1):16-19
    [27]朱法华、张景荣、荣鸿敏等,粉煤灰中污染物质的淋溶释放模型,环境科学学报,1996,16(2):203-210
    [28]Douglas S.Cherkauer,The Effect of Flyash Disposal on a Shallow Groundwater System,Groundwater,1980,18(6)
    [29]陈德放、李其萍、王凤玲等,火力发电厂的排灰场对土壤及浅层地下水的影响研究,中国环境监测,1997,13(3):33-36
    [30]时红、王玉和,电厂粉煤灰场对土壤及浅层地下水污染的试验研究,太原理工大学学报,2005,36(3):358-361
    [31]刘培云,粉煤灰淋溶液中的有害物质对地下水污染的试验研究,煤炭环境保护,2000,14(3):35-37
    [32]曹唯,粉煤灰淋溶液对地下水污染的试验研究,中州煤炭,2002,4:7-8
    [33]Shivakumar,D.S.& Dutta,M.J.Assessment of ground water contamination potential around ash pond through field sampling:a review.' Ash Pond and Disposal Systems,V.S.Raju,M.Oatta,V.Seshadari,V.K.Agarwal and V.Kumar(Editors),Narosa Publishing House,New Delhi,1996,pp.331-325.
    [34]Singh,D.N.Kolay,P.K.Rao,A.K.,A new approach to study leaching of fly ash from landfills,Journal of Solid Waste Technology and Management.2002,28(3):138-144
    [35]Hajarnavis,M.R.Bhide,A.D.,Leaching Behaviour of Coal-Ash:A Case Study,Indian Journal of Environmental Health.,2003,45(4):293-298
    [36]Ruane R J.,Aquatic Effects of Wet Ash Disposal and Wet Limestone Scrubber System,Water Science and Technology,1983,15(11)
    [37]夏为民、熊亮、欧阳小琴,燃煤中小电厂冲灰水污染及其防治措施,江西能源,2002,1:28-29
    [38]殷春玉,浅述燃煤电厂冲灰水处理,四川电力技术,2003,1:35-38
    [39]Choi,S.K.Lee,S.Song,Y.K.Moon,n.S.,Leaching characteristics of selected Korean fly ashes and its implications for the groundwater composition near the ash disposal mound,Fuel(Guildford).2002,81(8):1083-1090
    [40]赵丽囡,论火电厂灰场对地下水的影响及防治对策,城市管理与科技,2003,5(3):117-118
    [41]李莉、黄海、朱法华,电厂灰场对地下水污染的数值模拟及污染预测,环境科学,1997,18(5):59-61
    [41]许光泉、陈艺、李禄荣等,粉煤灰淋释污染物在地下水中运移模型探讨,淮南矿业学院学报,1998,18(4):12-15
    [42]许光泉、桂和荣、黄文辉等,粉煤灰中污染离子淋释试验及其运移模型,煤田地质与勘探,1999,27(1):48-51
    [43]黄爽、蔡树英、杨金忠,电厂粉煤灰场对地下水环境影响的初步研究,武汉大学学报(工学版),2001,34(5):7-11
    [44]Praharaj,T.;Swain,S.P.;Powell,M.A.;Hart,B.R.;Tripathy,S.,Delineation of groundwater contamination around an ash pond Geochemical and GIS approach,Environment International,2002,27(8):631-638
    [45]许佩瑶、朱洪涛,保定电厂冲灰水下渗污染地下水的数学模型,安全与环境学报,2003,3(6):6-8
    [46]Hassett D J,Scientifically Valid Leaching of Coal Conversion Solid Residues to Predict Environmental Impact Fuel Processing Technology,1994,39:445-459
    [1]Garrels R M,Thompson M E.Achemical Model for Sea water at 25℃ and One Atmospheric Total Pressure.Amer Jour Sci,1962,260:57-66
    [2]Garrels R M,Mackenzie F T.Origin of the Chemical Compositions of Some Springs and Lakes.In:Gould R F,ed.Equilibrium Concepts in Natural Water Systems.Advances in Chemistry.1967,67:222-242
    [3]Helgeson H C.Evalution of Irreversible Reactions in Geochemical Processes Involving Minerals and Aqueous Solutions.Thermodynamic Reactions.Geochimstry Cosmochim Acta,1968,32:853-877
    [4]Truesdell A H,Jones B F.A Computer Program for Calculating Chemical Equilibria of Natural Waters,US Geol Survey,J.Research,1974,2:233-248
    [5]Plummer L.N.,Prestemon E C,and Parkhurst D L,An Interactive Code(NETPATH) for Modeling NET Geochemical Reactions Along a Flow PATH.U.S.Geological Survey Water-Resources Investigations Report,1991,91-4078
    [6]Plummer.L.N,Geochemical Modeling of Water-Rock Interaction:Past,Present,Future.Water-Rock Interaction,Kharaka Maest(eds),1992,4:23-33
    [7]Truesdell,Alfred H.and Blair F.Jones,WATEQ A Computer Program for Calculating Chemical Equilibria of Natural Waters.In:Chemical Hydrogeology William Back R.A.Freeze(eds)Hutchinsin Ross Publishing Company,1974:277-292
    [8]Parkhurst,David L.,Ion-Association Models and Mean Activity Coefficients of Various Salts.In:Chemical Modeling of Aqueous Systems Ⅱ.Daniel C.Melchior,R.L.Bassett(eds)American Chemical Society,Washington D.C.,1990:32-43
    [9]Clegg.Simon L.and Peter Brimblecombe.Solubility of Volatile Electrolytes in Multicomponent Solutions with Atmospheric Applications.In:Chemical Modeling of Aqueous Systems Ⅱ.Daniel C.Melchior,R.L.Bassett(eds ) American Chemical Society,Washington D.C.,1990:58-73
    [10]沈照理主编,水文地球化学基础,地质出版社,北京,1986:14-15
    [11]钱会、马致远编著,水文地球化学,地质出版社,北京,2005:30-31
    [12]B.J.Merkel B.Planer-Friedrich著,朱义年,王焰新译,地下水地球化学模拟的原理及应用,中国地质大学出版社,2005:5-6
    [13]文冬光、沈照理、钟佐燊著,水-岩相互作用的地球化学模拟理论及应用,中国地质大学出版社,北京,1998:2-3
    [14]W.斯塔姆、J.J.摩尔根著,汤鸿霄等译,天然水体化学平衡导论,科学出版社,北京,1987:173-174
    [15]沈照理、朱宛华、钟佐燊编,水文地球化学基础,地质出版社,北京,1993:14-15
    [16]Deutsch W J.Groundwater Geochemistry-Fundamentals and Applications to Contamination. CRC Press,1997:110-112
    [17]Parkhurst D L,Geochemical Mole-Balance Modeling With Uncertain Data,Water Resources Research,1997,33(8):1957-1970
    [18]李雨新编著,水溶液理论概论,西北工业大学出版社,西安,1993:176-181
    [19]钱天伟,李书绅,武贵宾,地下水多组分反应溶质迁移模型的研究进展,水科学进展,2002,13(1):116-121
    [20]Chapelle F.H.Groundwater geochemistry and Calcite Cementation of the Aquia Aquifer in Southern Marylang.Water Resouces Research,1983,19(2):545-558
    [21]王广才、卢晓霞、陶澍等,地球化学模型的应用现状及发展趋势,煤炭学报,1997,22(2):117-121
    [22]王广才、陶澍、沈照理,平顶山矿区岩溶水系统水-岩相互作用的随机水文地球化学模拟,水文地质工程地质,2000,(3):9-12
    [23]钱会著,水溶组分平衡分布计算及其水文地质应用,西安地图出版社,西安,2002,26-54
    [24]张宗祜、沈照理、薛禹群等,华北平原地下水环境演化,地质出版社,北京,2000:157-158
    [25]Stephen Y.Acheampong.John W.Hess,Hydrogeologic and Hydrochemical Framework of the Shallow Groundwater System in the Southern Voltaian Sedimentary Basin.Ghana,Hydrogeology Journal,1998,6:527-537
    [26]Nizar hbu-Jaber,Geochemical Evolution and Recharge of the Shallow Aquifers at Tulul al Ashaqif,NE Jordan,Environmental Geology,2001,41:372-383
    [27]Alan E.Fryar-WilliamF.Mullican Ⅲ.Stephen A.Macko,Groundwater Recharge and Chemical Evolution in the Southern High Plains of Texas,USA,Hydrogeology Journal,2001,9:522-542
    [28]N.Abu-Jaber M.Ismail,Hydrogeochemical Modeling of the Shallow Groundwater in the Northern Jordan Valley,Environmental Geology,2003,44:391-399
    [29]郭永海、沈照理、钟佐燊,河北平原地下水化学环境演化的地球化学模拟,中国科学(D辑),1997,27(4):360-365
    [30]石培泽、马金珠、赵华,民勤盆地地下水地球化学演化模拟,干旱区地理研究,2004,27(3):305-309
    [1]EPRI.Chemical Characterization of Fossil Fuel Combustion Wastes,Palo Alto,CA:Electric Power Research Institute,1987a,EA-5321
    [2]荣鸿敏,粉煤灰的理化特性与浸出特性试验,电力环境保护,1994,10(4):23-31
    [3]Vassilev,S.V.and Vassileva,C.G.Geochemistry of Coals,Coal Ashes and Combustion Wastes Fro Coal-fired Power Stations,Fuel Processing Technology,1997,51:19-45
    [4]Nagataki,S.,H.Kamada,and N.Hosoda,Mechanical Properties of Pulverized Fuel Ash By-Product,Internation Symposium on Use and Management of Coal Combustion By-Products,American Coal Ash Association,1995,2:59-1-59-2
    [5]Wigley.F,and J.Filliamson,Modeling Fly Ash Generation for Pulverized Coal Combustion,Prog.Energy Combustion Science,1998,24,337-343
    [6]董瑞桢、张洪芹,用海水浸出粉煤灰液特性的研究,青岛化工学院学报,1993,14(1):48-52
    [7]Wilson,L.Leach Test Protocols for Slags,Proc.Conference on Mining and the Environment,Sudbury Ontario,1995,1:89-98
    [8]黄振华、易玉萍,粉煤灰中微量有害元素分析方法,电力环境保护,1996,12(2):21-25
    [9]Vander Sloot,H.A.de Groot,G.J,and Wijkstra,J.,Leaching Characteristic of Construction Materials and Stabilization Products Containing Waste Materials,in Envrironmental Aapects of Stabilization and Solidification of Hazardous and Radioactive Wastes.P.L.Cote and T.M.Gilleam,eds.American Society for Testing and Materials,1989,125-149
    [10]曹良国、马彦涛,粉煤灰中元素浸出特性对水体的影响,粉煤灰综合利用,2003,(1):24-25
    [11]Ackman,T.E,J.R.Jones and A.G.Kim,Water Quality Changes at Three Reclaimed Mine Sites Related to The Injection of Coal Combustion Residues,Annual Pittsburgh Coal Conf,University of Pittsburgh,Pittsburgh,PA,USA,1996:1055-1060
    [12]Solc.J,Foster.H.J.,and Butler,R.D.Environmental Impact of Fly Ash Deposition at Colorado,Illinois and Ohio Test Sites-Hydrogeological Approach,Groundwater Quality:Remediation and Protection,Prague,1995,3:383-389
    [13]西安灞桥电厂技术改造工程环境影响报告书,电力工业部西北电力设计院,1995
    [14]林介东、莫乾凯、江潮全,电厂粉煤灰综合利用技术的现状及发展方向,中国能源,2002,4:36-39
    [15]Robert W.Talbot,Marc A.Anderson and A.W.Andren,Qualitative Model of Hexerogenous Equilibria in a Flyash Pond,Environmental Science and Technology,1978,12(9)
    [16]唐克旺,粉煤灰填埋方式及其对地下水水质的影响研究,中国地质大学,1990:13
    [17]宋晓红、李刚、常清海,灰场外排水pH值变化原因的分析,河北电力技术,1998,17(3):58-60
    [18]Belevi,H.;Stampfli,D.M.;Baccini,P.Waste Manage,Res.1992,10:153-167
    [19]赵尚传、宋国栋,高抗氯离子渗透性能混凝土试验研究,公路,2003,(7):160-163
    [20]张欣,氯离子对混凝土结构的侵蚀作用及预防措施,山西建筑,2005,31(10):114-115
    [21]李雨新编著,水溶液理论概论,西北工业大学出版社,西安,1993:175-176
    [22]Schwab,A.P.Application of Chemical Equilibrium Modeling to Leachates From Coal Ash.SSSA Special Publication.Madison,Wis.Soil Science Society of America.1995,42:143-161
    [23]Fruchter J.S.,Rai,D.,Zachara J.M.,Identification of Solubility-Controlling Solid Phases in a Large Fly Ash Field Lysimeter.In Murark,I.P.,and S.Cordle(ed.)Proceedings:Environmental Research Conference on Groundwater Quality and Waste Disposal,1990:EN-6749
    [24]Perre E.Burns,Identifying Mechanisms the Mobilization and Attenuation of Elemental Constituents From Weathered Alkaline Coal Ash Using Geochemical Modeling,Doctor Degree Paper,Purdue University,2003:75-76
    [25]Roy W R and Griffin,R.R.,Illinois Basin Coal Fly Ashes:1.Chemical Characterization and Solubility:2.Equilibria Relationships and Qualitative Modeling of Ash-Water Reactions,Environ.Sci.Technol.1984,18:734-742
    [1]时红、王玉和,电厂粉煤灰场对土壤及浅层地下水污染的试验研究,2005,36(3):358-361
    [2]佟元清、王立新、王永池,污水粉煤灰-土地处理及地下水环境影响研究,2001,22(4):351-354
    [3]王元贞,电厂冲灰水对地下水环境影响的研究,辽宁地质学报,1991,(2):114-128
    [4]Fruchter,J.S.,Rai,D.,Zachara,J.M.,Identification of Solubility-Controlling Solid Phases in a Large Fly Ash Field Lysimeter.In Murark,I.P.,and S.Cordle(ed) Proceedings:Environmental Research Conference on Groundwater Quality and Waste Disposal.EN-6749.Electric Power Res.Inst.,Palo Alto.CA,1990:425-456
    [5]Fisher RS.Mullican WF Ⅲ,Hydrochemical evolution of sodium-sulfate and Sodium-Chloride Groundwater Beneath the Northern Chi huan huan Desert,Trans-Pecos,Texas,USA,Hydrogeol,1997(5):4-16
    [6]Hem JD,Study and Interpretation of the Chemical characteristics of Natural Water,3rd edn.Geological Survery Water-Supply Paper 2254,US Government Printing Office,Washington DC,1992:56-59
    [7]H.Murat Ozler,Hydrochemistry and Salt-Water Intrusion in the Van Aquifer,East Turkey,Environmental Geology,2003,43:759-775
    [8]N.Subba Rao,Geochemistry of Groundwater in Parts of Guntur District,Andhra Pradesh,India Environmental Geology,2002,41:552-562
    [8]Toran LE,Saunders JA,Modeling Alternative Paths of Chemical Evolution of Na-HCO3-type groundwater near Oak Ridge,Tennessee,USE.nydrogeology,1999,7(1):355-364
    [10]Mathess G,The Properties of Groundwater,Wiley,New York,1982:47-50
    [11]M.Gabreela Garcia,Margarita del V.Hidalgo,Miguel A.Blesa,Geochemistry of Groundwater in the Alluvial Plain of Tucuman Province,Argentina,Hydrogeology Journal,2001,(9):597-610
    [1]比契叶娃K E.水文地球化学,北京,地质出版社,1981:318
    [2]区永和、陈爱光、王恒纯,水文地质学概论,中国地质大学出版社,北京,1988:171
    [3]Roy,W.R.,and R.A.Griffin,R.R.Dickerson,Chemical Characterization and Solubility.Environ.Sci.Technol.1984,18:734-739
    [4]Hem J D.Study and Interpretation of the Chemical Characteristics of Natural Waters.U.S.Geological Survey,Water-Supply Paper,1970:1473
    [5]Custodio E.et al.Tests for the Study of Waste Water Recharge in the Besos Delta.Second National Assembly of Geodesy and Geophysics.Barcelona Meeting,Instituto GeogTafico Catastral,1976:1936-1983
    [6]Bhatt KB,Saklani S,Bydrogeochemistry of the Upper Ganges River,India.J Geol Soc India,1996,48:171-182
    [7]曹玉清,胡宽珞著,岩溶环境水文地质,吉林大学出版社,长春,1994:11-12
    [8]李振拴,中国北方喀斯特水源地勘探方法研究,煤炭工业出版社,北京,2000:105-106
    [9]Arad A,Kafri U,Fleisher E.The Na' Aman Springs,Northern Israel:Salinization Mechanism of Irregular Freshwater-Sea Water Interface,Journal of Hydrology,1975,Vol.25:81-104
    [10]Ondra Sracek Ricardo Hirata,Geochemical and Stable Isotopic Evolution of the Guarani Aquifer System in the State of Sao Paulo,Brazil,Hydrogeology Journal,2002,10:643-655

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700