用户名: 密码: 验证码:
土壤中DDT和DDE的生物强化降解及对土壤微生物群落结构的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
DDT是22种持久性污染物之一,其在土壤环境中的残留浓度依然居高不下,有关DDT残留及其风险一直是研究关注的热点之一,2008年我国环保部将DDT列入第一批“高污染、高环境风险”产品名录。如何快速消除农田土壤中的残留DDTs,是保障农产品安全和人体健康的重要问题。消除土壤中DDTs等有机污染物的有效方法通常是基于微生物降解作用的生物修复。本实验室采用富集培养法和直接培养法从农药厂的污水、污泥样品中获得数株降解细菌,通过对其降解产物的研究发现,菌株KK只能把p,p'-DDT降解为p,p'-DDE,而不能进一步降解;而部分菌株能将DDT降解为DDE,但是DDE仍然为具有毒性的环境内分泌干扰物,所以筛选到能降解DDE的菌株是本试验的目的,通过初步研究,确定DXZ9对培养液中p,p'-DDT和p,p'-DDE的降解能力分别为55.0%和39.88%。本论文在已有研究工作基础上,选用菌株DXZ9进行下一步研究,主要研究内容包括三个方面:菌株DXZ9在培养液中对p,p'-DDT和p,p'-DDE降解机理的研究;室内模拟研究了菌株DXZ9对土壤中p,p'-DDT和p,p'-DDE的降解能力;利用盆栽试验方法研究了菌株DXZ9与黑麦草对土壤中p,p'-DDT和p,p'-DDE的联合生物降解,主要
     研究结果如下:
     1.明确菌株对DDT的降解途径。本研究采用了两种有机溶剂提取方法提取降解产物,一种方法采用非极性溶剂苯进行提取,另外采用混合溶剂正己烷和乙酸乙酯提取。推断出菌株对p,p'-DDT的降解途径可能为:p,p'-DDT先降解为p,p'-DDE和p,p-DDD,然后生成中间产物9-Methylidenefluorene,最后可能分解为1,2-benzenedicarboxylic Acid,2,6-bis (1,1-dimethylethyl)-4-methyl-phenol,2-benzenedicarboxic Acid,Dodecanoic Acid和2,6-bis(1,1-dimethylethyl)-4-methyl-phenol。
     2.建立了适合本试验的有机氯农药残留测定方法。在该测定条件下:OV-1701(30m×0.25mm(ID)×0.25μm);Col:150℃(保持1min)→以4℃/min升到240(保持5min),以1.5℃/min升到270℃(保持5min),进样口:250℃;DET(ECD):300℃;尾吹85KPa;载气80KPa。土壤样品中10种有机氯农药的色谱峰分离比较好,无明显的杂质干扰,说明选用的测定条件和样品的前处理方法比较适合土壤中这10种农药的残留测定,在该测定条件下10种有机氯农药的仪器最小检测量为10-12~10-13g,方法的最小检测浓度在10-2~10-3mg·kg~(-1)之间,灵敏度很高。六六六的四种异构体和DDT的四种异构体在土壤中的添加回收率范围在90.90%-104.4%之间,变异系数小于8.93%,完全符合农药残留分析方法要求。
     3.采用室内培养研究方法研究了菌株对土壤中DDT和DDE的降解作用,研究结果表明接种降解菌株能明显缩短DDTs在土壤环境中的降解半衰期。p,p'-DDT、p,p'-DDE和DDTs降解动态采用双室降解模型进行表示,由模型计算p,p'-DDT、p,p'-DDE和DDTs在自然土壤的T_(1/2)分别为420天、1203天和532天,添加降解菌株后T_(1/2)分别减少为42.5天、642天和221天,添加降解菌株能明显缩短p,p'-DDT、p,p'-DDE和DDTs在土壤环境中的降解半衰期。p,p'-DDT在第150天时,接种菌株处理和不接种菌株处理残留浓度分别为1.38mg.kg~(-1)和2.06mg.kg~(-1),降解率分别为55.3%和33.3%;p,p'-DDE在第150天时,接种菌株处理和不接种菌株处理残留浓度分别降为1.19mg.kg~(-1)和1.43mg.kg~(-1),降解率分别为37.0%和24.3%;到试验的第150天,DDTs土壤中残留浓度分别降低为2.67mg.kg~(-1)和3.60mg.kg~(-1),降解率分别为45.2%和29.3%。
     4.在盆栽试验中,利用DGGE明确了菌株在土壤中的定殖状况。黑麦草和菌株联合修复过程中菌株的定殖状况采用DGGE电泳图谱的条带进行评价,DXZ9菌株在30天之内的处理土壤中优势较明显,条带比210天的目标条带清晰,说明菌株DXZ9在试验的初期能成为优势菌群的一种,随着时间的延长,菌株DXZ9优势度逐渐减弱。
     5.利用盆栽试验方法,得出联合修复处理效果最好,且菌株的作用大于黑麦草的作用,采用植物和微生物的联合修复能显著缩短DDTs在土壤环境中的降解半衰期。研究表明不同处理下土壤中p,p'-DDT和p,p'-DDE及DDTs的残留浓度变化差异很大,均表现为前期降解较快后期降解较慢的特点,根据降解率评价其降解效果看,S+G+D+B处理效果最好,对土壤中农药的降解率最高,p,p'-DDT和p,p'-DDE及DDTs降解率分别为80.7%、54.5%和69%;S+D+B处理也非常好,降解率分别为77.1%、52.4%和65.5%;S+G+D处理降解效果较好,降解率分别为72.2%、48.4%和60.8%;均比S+D处理即仅靠土著微生物降解效果要好,其降解率为30.0%、30.9%和28.8%。p,p'-DDT在S+G+D+B、S+D+B、S+G+D和S+D处理中的T_(1/2)分别为48.0、58.5、75.5和1055天,p,p'-DDE在四个不同处理中的T_(1/2)分别为162.5、229、235和745天,DDTs在四个不同处理中的T_(1/2)分别为71.8、86.5、114.8和1095天。通过比较不同处理土壤中农药的降解半衰期,由于接种菌株和种植黑麦草的强化降解作用,显著降低了土壤中的农药浓度。
     6.利用植物和微生物的联合修复能够显著减少DDTs污染土壤的毒性。土壤中p,p'-DDT和p,p'-DDE降解前后对生物的遗传毒性采用对赤子爱胜蚓体腔细胞DNA损伤程度这个指标进行评价,S+D处理对蚯蚓DNA损伤程度最大,S+G+D+B处理对蚯蚓DNA损伤程度最小,S+G+D处理对蚯蚓DNA损伤程度略大于S+D+B处理,说明接种降解菌株和植种黑麦草能显著降低土壤中污染物的毒性,结合前面的残留浓度发现,表现毒性小的处理土壤中p,p'-DDT和p,p'-DDE残留浓度亦小。210天时,S+G+D+B、S+D+B、S+G+D处理和S+D相比,土壤中污染物对生物的遗传毒性分别降低了58.1%、52%、36.9%,可见,利用植物和微生物的修复能够明显减少p,p'-DDT和p,p'-DDE污染土壤的毒性。
     7.明确了修复过程中对土壤微生物群落结构影响较小。黑麦草和菌株联合修复过程中,由于接种菌株和植种黑麦草及其农药的作用,土壤中微生物数量和土壤酶活性受到不同程度的影响,随着时间的延长,影响越来越小。在修复过程的这210天内,土壤中细菌的数量发生了比较大的变化,在第5天和第10天时接种菌株的处理和其他处理之前差异极其显著。利用DGGE研究表明采用植物和微生物的联合修复对土壤细菌群落结构存在一定的影响,但是随着时间的延长,影响逐渐变小。
DDT (1,1,1-trichloro-2,2-bi (4-chlorophenyl) ethane) belongs to the one of the22persistent organic pollutes, high DDT levels in the soil were still being observed recently inChina in the soil, and its residue and the risk was still an issue of great contention, DDT wasclassed the first product directory with the high pollutes and high environment risk. It was theimportant thing that speedy removal the residue of DDTs in the soil for protection the safetyof agricultural products and health of the people. The effective way of removal of DDTs fromthe contaminated soils was bioremediation using the microorganism degrading. Many DDT-degrading bacteria were isolated from the sewage and sewage sludge from the pecticidefactory, it was discovered by the research of metabolite that the p,p'-DDT was degraded intop,p'-DDE by the bacterial KK and p,p'-DDE was not further degraded, but p,p'-DDE wasdegraded furthermore by the other bacteria named with DXZ9, by the preliminary research,the degrading rates of p,p'-DDT and p,p'-DDE by the DXZ9were55.0%and39.88%respectively in the medium. Basing on the research foundation, the DXZ9was chosen andfurther researched. The contents of the thesis included three aspects, the degradingmechanism of p, p'-DDT and p, p'-DDE in the medium was researched firstly; and secondly,the biodegradation of p, p'-DDT and p, p'-DDE in the soil was researched by the DXZ9in theexperiment culture; in the end, the combined biodegradation of p, p'-DDT and p,p'-DDE inthe soil was researched by the DXZ9and the ryegrass in the pot.
     1. The step of a proposed pathway for the biodegradation of DDT by DXZ9was confirmed.The degradation products were extracted by the different polar organic solvents, the twodifferent polar organic solvents were used, one was benzene, the other was hexane and ethylacetate, from this study we can reasonably infer that p,p'-DDT firstly degraded into p,p'-DDEand p,p'-DDD, and then translated into9-Methylidenefluorene, and in the end degraded into1,2-benzenedicarboxylic Acid,2-benzenedicarboxic Acid, Dodecanoic Acid and2,6-bis(1,1-dimethylethyl)-4-methyl-phenol。
     2. The residual methods of the ten organochlorine pesticides in the soil were established.The column was OV-1701(Australia) capillary column (30m length,0.25mm i.d., and0.25μm film thicknesses). The oven temperature was programmed from an initial temperature of150℃(1.0min hold), and to240℃at a rate of4C/min, maintained at240℃for5min, and then to270℃at a rate of1.5℃/min, maintained at270℃for5min; Injector temperatureswere maintained at250℃, Detector temperatures (ECD) were maintained at300℃; the flowpressure of make up and the carrier gas was both80kpa. The chromatograms of tenorganochlorine pesticides in the soil were separated very well without the interference fromthe impurity peak. The chromatograms of the soil samples were separated very well not onlyin the high addition level but also in the low addition level, it was indicated that the detectioncondition and pretreatment method were suitable for the ten organochlorine pesticides, at thiscondition, minimum detection quantity of the ten organochlorine pesticides was10-12~10-13g,minimal detectable concentration of the methed was10-2~10-3mg·kg~(-1), the method is sensitiveenough to detect the presence of the low level residue of the pesticides in the soil. Recoveriesrate of the four DDT isomers and六六六isomers pesticides in the soil tested were90.90%-104.4%, and the coefficient variation (CV) was less8.93%, and it could fulfill therequirements of the high standard of the pesticides residue.
     3. The biodegradation of p, p'-DDT and p, p'-DDE in the soil was researched by the DXZ9in the indoor experiment, it was explicit that DDT was degraded by the DXZ9in the soil; thedegradation half-life of DDTs was reduced through inoculating strains. Double chamberdegradation model was used in the degradation dynamics of DDTs, by the model, thedegradation half-life of p,p'-DDT, p,p'-DDE and DDTs was420d、1203d and532d in thesoil without the inoculation DXZ9treatment respectively, the degradation half-life of DDTswas reduced in the soil with the inoculation DXZ9treatment, its was42.5d,642d and221drespectively. Comparing the two modes, it was obvious that the treatment with the DXZ9could reduce the half-lives of pesticides in the soil. The residual concentrations of p, p'-DDTwere1.38mg·kg~(-1)and2.06mg·kg~(-1)in the soil with the two different treatments, the degradedrate were55.3%and33.3%. The residual concentrations of p,p'-DDE were1.19mg·kg~(-1)and1.43mg·kg~(-1)in the soil with the two different treatments, the degraded rate were37.0%and24.3%. The residual concentrations of DDTs were2.67mg·kg~(-1)and3.60mg·kg~(-1)in the soilwith the two different treatments, the degraded rate were45.2%and29.3%.
     4. The colonization of DXZ9was confirmed by denaturing gradient gel electrophoresis(DGGE) in the pot. On the basis of the monitoring predominant bacterium using denaturinggradient gel electrophoresis (DGGE), the colonization of DXZ9was evaluated by the band ofDGGE during the combination with ryegrass and the microorganism, DXZ9was predominantwithin the30d in the soil, the band was more distinct than the band of the210d, it is evident that DXZ9was predominant bacterium on the preliminary period of experiment, as time wenton, the dominance of DXZ9began to wear off gradually.
     5. It was explicit that the combined remediation was the best method by the pot experiment,and the contribution of the DXZ9was more than the ryegrass, the degradation half-life ofDDTs in the soil was reduced significantly through the combined remediation with theryegrass and the microorganism. The result showed that the residual concentration of p, p'-DDT p, p'-DDE and DDTs was significant difference in the soils with different treatments.There was the same trend that the degraded speed was very quickly in the earlier stage slowlyin the later stage, evaluating the degrading effect according to the degrading rate, thetreatment of S+G+D+B was the best method, the degrading rate of DDTs was the highest, thedegrading rate of p, p'-DDT, p, p'-DDE and DDTs were80.7%,54.5%and69%respectively.The treatment of S+D+B was better method, the degrading rate of p, p'-DDT, p, p'-DDE andDDTs were77.1%,52.4%and65.5%respectively. The treatment of S+G+D was bettermethod, the degrading rate of p, p'-DDT, p, p'-DDE and DDTs were72.2%,48.4%and60.8%respectively. The last one was the treatment with S+D, which was degraded by the indigenousmicroorganism, the concentration of p,p'-DDT, p,p'-DDE and DDTs varied very little in thetreatment with S+D during the210d experimental period, the degrading rate of p,p'-DDT,p,p'-DDE and DDTs were30.0%,30.9%and28.8%respectively. The degradation half-life ofp,p'-DDT was48.0d,58.5d,75.5d and1055d in the soil with S+G+D+B, S+D+B, S+G+Dand S+D treatment; The degradation half-life of p,p'-DDE was162.5d,229d,235d and745din the soil with the same four treatments, and the degradation half-life of DDTs was71.8d,86.5d,114.8d and1095d in the soil. Comparing the degradation half-lives of pesticides in thesoil with different treatments, we could conclude that the residual concentration of pesticidewas reduced significantly by the combination of bioremediation and phytoremediation.
     6. It is thus obvious that the gene toxicity of the polluted soil was reduced significantly bythe phytoremediation and microbial remediation. The gene toxicity of the metabolites of thep,p'-DDT and p,p'-DDE in the soil, which was evaluated by the coelomocytes comet olivetails moment of the earthworm (Eisenia foetida), the gene toxicity was the maximum in thesoil with S+D treatment, the gene toxicity was minimum in the soil with S+G+D+Btreatment, the gene toxicity of treatment with S+G+D was more than treatment with S+D+B,so it could be concluded that the gene toxicity was reduced significantly by the inculcationDXZ9and cultivating ryegrass. On the210d, the gene toxicity of pollutes in the soil wasreduced58.1%、52%and36.9%comparing the treatments S+G+D+B, S+D+B, S+G+D withS+D.
     7. It was explicit that the effect of the microbial community structure diversity of the soilwas less during the combination with ryegrass and the microorganism. During thecombination with ryegrass and the microorganism, under the action of the bacterial strain,ryegrass and pesticide, the microorganism amount and the activity of soil enzyme wereaffected with different degrees in the soil, and as time went on, the effect was tapering off. Inthe period of210d experiment, the bacteria amount in the soil changed very much, there wassignificant difference between the treatment with inoculated strains and treatment withoutinoculated strains, there was significance at1%level on the5d and10d. The bacteriacommunity structure was different in the different treatments during the combination withryegrass and the microorganism by DGGE, but as time went on, the effect was tapering off.
引文
W. D.冈吉等编,夏增禄等译.土壤和水中的农药.北京:科学出版社,1985,156.
    安凤春,莫汉宏,郑明辉等. DDT及其主要降解产物污染土壤的植物修复[J].环境化学,2003,22(1):19-25.
    安凤春,莫汉宏,郑明辉等. DDT污染土壤的植物修复技术.环境污染治理技术与设备,2002,3(7):39-44.
    鲍艳宇,周启星,万莹等.土壤有机质对土霉素在土壤中吸附-解吸的影响.中国环境科学,2009,29(6):651-655
    曹晓燕,景建宁,杨桂朋等.表面活性剂对DDT在胶州湾沉积物上吸附行为的影响.环境科学,2011,32(11):3327-3334.
    陈颖,王子健.用彗星试验检测土壤污染对蚯蚓活体基因损伤[J].土壤学报,2005,42,(4):577-583.
    程国玲,李培军,王凤友等.多环芳烃污染土壤的植物与微生物修复研究进展[J].环境污染治理技术与设备,2003,4(6):30-36.
    丛鑫,薛南东,梁刚等.有机氯农药污染场地表层土壤有机-矿质复合体中污染物的分布[J].环境科学,2008,29(9):2586-2591.
    丁克强骆永明刘世亮黑麦草对菲污染土壤修复的初步研究土壤,2002(4):233-236.
    顾立锋,何健,张明星. DDT降解细菌W-1的分离鉴定及其降解特性研究[J].农业环境科学学报,2007,26(2):568-571.
    郭志勇,化修艺,梁大鹏等.自然水体生物膜、悬浮颗粒物和表层沉积物的轻、重组分对有机氯农药的吸附特征,高等学校化学学报,2010,31(5):919-926.
    胡建信.中国淘汰滴滴涕的环境影响分析.环境污染与防治,2006,28(3):222-225.
    胡雅飞,于海歌,梁先敏等. p,p’-DDE和β-BHC联合染毒对大鼠离体支持细胞脂质过氧化的影响[J].环境与健康杂志,2008,24(11):845-847.
    黄洋,朱骏,赵维,赵浩,徐炎华. DDT污染土壤的修复技术[J].南京工业大学学报,2011,33(2):94-98.
    黄懿梅,安韶山,刘连杰等.黄土丘陵区土壤基础呼吸对草地植被恢复的响应及其影响因素[J].中国生态农业学报,2009,17(5):862-869.
    蒋金会. DDT和DDE降解细菌的筛选和降解特性的研究,山东农业大学硕士论文,2010.
    蒋煜峰,王学彤,孙阳昭等.上海市城区土壤中有机氯农药残留研究[J].环境科学,2010,31(2):409-414.
    金广远,王铁宇,颜丽.北京官厅水库周边土壤DDTs和HCHs暴露特征与风险评价[J].环境科学,2010,31(5):1359-1364.
    黎志坤,朱红惠.一株番茄青枯病生防菌的鉴定与防病、定殖能力[J].微生物学报,2010,50(3):342-349.
    梁潘霞,董元华,安琼等.稻改草后土壤中DDT及其代谢产物的动态变化.土壤学报,2006,43(4):624-628.
    刘世亮,骆永明,丁克强等.黑麦草对苯并[a]芘污染土壤的根际修复及其酶学机理研究.农业环境科学学报,2007,26(2):526-532.
    刘世亮,骆永明,丁克强等.土壤中有机污染物的植物修复研究进展[J].土壤,2003,35(3):187-192.
    刘世亮,骆永明,吴龙华等.菲在黑麦草种植土壤中的降解及其对土壤酶的影响.土壤学报,2009,46(3):419-424.
    刘伟.硫丹对生物DNA损伤和土壤微生物群落多样性的影响博士毕业论文,山东农业大学.
    刘伟,朱鲁生,王军,谢慧,宋艳,王秀国,王倩,钱博.利用吸收光谱法和微核法测定三种农药对DNA损伤的作用,农业环境科学学报,2006,25(2):531-534.
    刘振声,林海波. DDT在土壤和农业生态系统中的行为研究.中山大学学报(自然科学版),1994,33(4):96~101.
    罗飞,宋静,潘云雨等.典型滴滴涕废弃生产场地污染土壤的人体健康风险评估研究.土壤学报,2012,49(1):26-35.
    罗海峰,齐鸿雁,张洪勋.乙草胺对农田土壤细菌多样性的影响[J].微生物学报,2004,44(4):519-522.
    马瑾,邱兴华,周永章等.湛江市土壤有机氯农药残留状况及空间分布特征[J].地理学报,2010,65(1):103-112.
    马伟芳,赵新华,孙井梅等. EDTA在植物修复复合污染河道疏浚底泥中的调控作用[J].环境科学,2006,27(1):85-90.
    钱晓荣,董毛毛对二氯苯污染土壤的植物修复研究环境污染与防治,2009,31(8):67-70.
    乔敏,王春霞,黄圣彪等.太湖梅梁湾沉积物中有机氯农药的残留现状[J].中国环境科学,2004,24(5):592-595.
    石玉琴,宋杨,王玉萍. p,p’-DDE对青春前期大鼠睾丸组织氧化应激及凋亡的影响,环境与健康杂志,2009,26(10):847-849.
    史雅娟,王昕,吕永龙,等. DDT和三氯杀螨醇对蚯蚓的急性和亚急性毒性影响[J].环境科学学报,2006,26(5):851-857.
    宋艳,朱鲁生*,王军,谢慧,刘伟,王秀国,王倩,钱博,涕灭威及其有毒代谢产物对DNA潜在损伤研究,生态毒理学报,2006,1(1):40-44.
    宋杨,杨克敌. p,p’-DDE对离体培养支持细胞DNA损伤与FasL基因表达的影响[J].卫生研究,2006,35(3):261-263.
    宋杨,杨克敌.p,p’-DDE对离体培养支持细胞DNA损伤与FasL基因表达的影响〔J〕.卫生研究,2006,35(3):261-263.
    苏郡,朱鲁生,李絮花等.土壤不同施肥处理对HB-5菌株降解莠去津及去毒效应的影响[J].环境科学,2010,31(10):2475-2480.
    唐东民,伍钧,陈华林等.溶解性有机质对芘在土壤中吸附解吸的影响.环境科学学报,2010,30(4):8l4-8l9.
    唐景春,王斐,褚洪蕊等.玉米草(Zea Mexicana)与海藻寡糖联合修复石油烃污染土壤的研究.农业环境科学学报,2010,2010,29(11):2107-2113.
    王菲,苏振成,杨辉,等.土壤中多环芳烃的微生物降解及土壤细菌种群多样性.应用生态学报,2009,20(12):3020-3026.
    王瑛,李扬,黄启飞等.有机质对污染土壤中DDTs热脱附行为的影响.环境工程学报,2011,5(6):1419-1424.
    王瑛,李扬,黄启飞等.温度和停留时间对DDT污染土壤热脱附效果的影响环境工程,2012,30(1):116-120.
    吴学玲,代沁芸,梁任星.利用高效降解菌株强化修复土壤中DBP及其细菌群落动态解析中南大学学报,2011,42(5):1188-1194.
    吴学玲,代沁芸,梁任星等.利用高效降解菌株强化修复土壤中DBP及其细菌群落动态解析[J].中南大学学报(自然科学版),2011,42(57):1188-1194.
    吴志昇,谢光炎,杨国义.广州市农业土壤中六六六(HCHs)和滴滴涕(DDTs)的残留特征[J].生态环境学报,2009,18(4):1256-1260.
    邢维芹骆永明李立平刘世亮丁克强.持久性有机污染物的根际修复及其研究方法[J].土壤,2004,36(3):258-263.
    邢兆伍,刘存玉等.三氯杀幔醇提存工艺.农药,2006,45(10):672-674.
    徐韵,陈海刚,李兆利等.蚯蚓体腔细胞彗星试验检测阿散酸在泥浆体系中降解前后的遗传毒性变化[J].应用与环境生物学报,2007,13(1):46-49.
    晏维金,亢宇,章申等.农药在土壤中的解吸动力学[J].中国环境科学,2000,(2):97-101.
    燕同祥.硫丹高效降解菌JBW4对硫丹污染土壤硫丹降解及去毒效应的影响山东农业大学硕士毕业论文,2012.
    杨承栋,孙启武,焦如珍.大青山一二代马尾松土壤性质变化与地力衰退关系的研究[J].土壤学报,2003,40(2):267-273.
    杨凯凯,商建,杜军辉,刘峰.阿维菌素乳油和微囊悬浮剂的光解及其在土壤和小麦中的消解动态.农药学学报,2011,13(6):637-640.
    杨婷,林先贵,胡君利,等.发酵牛粪和造纸干粉对多环芳烃污染土壤菌根修复的影响[J].环境科学学报,2011,31(1):144-149.
    杨志群,姚焕炬,任婷等.p,p′-DDT在黄河兰州段沉积物的吸附/解吸特性及影响因素研究[J].农业环境科学学,2010,29(1):174-179.
    翟文,王保莉,曲东.铬污染土壤修复过程中土壤细菌群落多样性的RFLP分析.西北农林科技大学学报(自然科学版),2009,37(4):128-134.
    张大弟,张晓红编著.农药污染与防治.北京:化学工业出版社,2001.54-55.
    张蕾,李红霞,马伟芳等.黑麦草对复合污染河道疏浚底泥修复的研究农业环境科学学报2006,25(1):107-112.
    张明星,洪青,何健等. DDT降解菌株DB-1的分离、系统发育及降解特性[J].中国环境科学,2005,25(6):674-677.
    章家恩,蔡燕飞,高爱霞.土壤微生物多样性实验研究方法概述[J].土壤,2004,36(4):346-350.
    章瑞英,王国庆乙,陈伟伟.三种表面活性剂对高浓度DDTs污染土壤的洗脱作用.生态环境学报,2009,18(6):2166-2171.
    赵龙,侯红,李发生等.海河干流及河口地区土壤中有机氯农药的分布特征[J].2009,环境科学,30(2):543-550.
    赵汝东,樊剑波,何园球等.坡位对马尾松林下土壤理化性质、酶活性及微生物特性影响[J].生态环境学报,2010,19(12):2857-2862.
    钟红舰,刘进玺,吴绪金.75%氯吡嘧磺隆水分散粒剂在玉米及土壤中的消解动态与残留[J].农药,2011,50(12):906-908.
    周礼恺.土壤酶学[M].北京:科学出版社,1987:267-269.
    周丽沙,李慧,张颖等.石油污染土壤鞘氨醇单胞菌遗传多样性16S rDNA-PCR-DGGE分析[J].土壤学报,2011,48(4):804-812.
    周婷婷,李学德,张明,花日茂等.巢湖东半湖沉积物中有机氯农药的残留特征及风险评价[J].农业环境科学学,2009,28(11):2374-2378.
    Agarwar H C, Pillal M K K. Persistence and binding of DDT and gamma-HCH in a sandyloam soil under field conditions in Delni [J]. India Pesticide Science,1998,22(1):1-15.
    Ahuja R, Kumar A. Metabolism of DDT [1,1,1-Trichloro-2,2-bis (4-chlorophenyl) ethane]by Alcaligenes denitrificans ITRC-4under Aerobic and Anaerobic Conditions [J]. Currentmicrobiology,2003,46:65-69.
    Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection ofindividual microbial cells without cultivation [J].Microbiological Reviews,1995,59(1):143-169.
    Anderson T A, et al. Bioremediation in the rhizosphere [J]. Environ. Sci.&Technol.1993,27(13):2630-2635.
    Aulakh R. S., Bedi J. S., Gill J. P. S. Occurrence of DDT and HCH Insecticide Residues inHuman Biopsy Adipose Tissues in Punjab, India [J]. Bull Environ Contam Toxicol,2007,78:330–335.
    Baczynski T. P., Pleissner D., Grotenhuis T. Anaerobic biodegradation of organochlorinepesticides in contaminated soil significance of temperature and availability[J].Chemosphere,2010,78:22-28.
    Bakan G, Ariman S. Persistent organoehlofine residues in sediments along the coast of midBlack Sea region of Turkey [J]. Marine Pollution Bulletin,2004,48(11-12):1031-1039.
    Banks MK, Lee E, Schwab AP. Evaluation of dissipation mechanisms for benzo[a]pyrene inthe rhizosphere of tall fescue [J]. J. Environ. Qual.,1999,28:294-298.
    Brandt K. K., Frandsen R. J.N., Holm P. E. Development of pollution-induced communitytolerance is linked to structural and functional resilience of a soil bacterial communityfollowing a five-year field exposure to copper [J]. Soil Biology&Biochemistry,2010,42:748-757.
    Brooks R R. Plants those hyperaccumulate heavy metals [M]. Cambridge: the university Press,1998.
    Bumpus J, Powers R, Sun T. Biodegradation of DDE (1,1-dichloro-2,2-bis (4-chlorophenyl)ethane) by Phanerochaete chrysosporium [J]. Mycol Res1993,97:95–98.
    Buttona M, Jenkinb G R T, Bowmanc K J, et al. DNA damage in earthworms from highlycontaminated soils: Assessing resistance to arsenic toxicity by use of the Comet assay,Mutation Research,2010,696:95-100.
    Chen Laiguo, Ran Yong, Mai Bixian, et al. Contents and sources of polycyclic aromatichydrocarbons and organochlorine pesticides invegetable soils of Guang Zhou, China[J].Chemosphere,2005,60(7):879-890.
    Chiu T. C., Yen J. H., Liu T. L., et al. Anaerobic degradation of the Organochlorine pesticideDDT and heptachlor in river sediment of Taiwan [J]. Bull Environ Contam Toxicol,2004,72:821-828.
    Cornelissen G, Van N P C M, Grovers H A J. Desorption kinetics of chlorobenzenes,polycyclic aromatic hydrocarbons, and polychlorinated biphenyls sediment extraction withtenax and effects of contact time and solute hydrophobicity. Environ Toxic Chem.,1997,16(7):1351-l357.
    Feist GW, Webb MA, Gundersen DT, et al. Evidence of detrimental effects of environmentalcontaminants on growth and reproductive physiology of white sturgeon in impounded areasof the Columbia River [J]. Environ Health Perspect,2005,113:1675-1682.
    Gao H J, Jiang X, Wang F, et al. Residual level sand new inputs of chlorinated POPs inagricultural soils fromTaihu Lake region [J].Pedosphere,2005,15(3):301-309.
    Gong J, Chan K, Chiu S. Remediation of persistent toxic substances: toxicities of DDE onwheat and bioremediation of DDE by fungus Pleurotus pulmonarius [J]. Hum Ecol RiskAssess,2006,12:221–235.
    Grieg F S,Bethany D J, Bess B W. Development and testing of a DNA macroarry to assessnitrogenase (nifh) gene diversity. Applied and Environmental Microbiology,2004,70(3):1455-1465.
    Gryndler Milan, Rohlenová Jana, Kopecky′Jan, Matucha Miroslav. Chloride concentrationaffects soil microbial community. Chemosphere,2008,71:1401-1408.
    Guenzi W D,Deard W E. Volatilization of lindane and DDT from soil [J]. Soil Sci Am Proc,1970,34(2):443-447.
    Gunnar T, Lars H, Alexander G, et al. Bonde. Epidemiological evidence on reproductiveeffects of persistent organ chlorines in humans [J]. Reproductive Toxicology,2004(19):5-26.
    Günther T, Dornberger U, Fritsche W. Effects of ryegrass on biodegradation of hydrocarbonsin soil. Chemosphere,1996,33:203-215.
    Heberner T, Dunnbier U. DDT metabolite bis (chlorophenyl)-acetic acid: the neglectedenvironmental contaminant[J]. Environ Sci Technol,1999,33:2346–2351.
    Holloway AnC, Stys KnA, Foster WnG, et al. DDE-induced changes inaromatase activity inendometrial stromal cells in culture. Endocrine,2005,27:45-50.
    Hu G J, Chen S L, Zhao Y G, et al. Persistent Toxic Substances in Agricultural Soils of LishuiCounty, Jiangsu Province, China. Bull Environ Contam Toxicol,2009,82:48-54.
    Hu W Y, Lu Y L, Wang T Y, et al. Factors affecting HCH and DDT in soils aroundwatersheds of Beijing reservoirs, China. Environ Geochem Health,2010a,32:85-94.
    Hu W Y, Lu Y L, Wang T Y, et al. Spatial variability and temporal trends of HCH and DDTin soils around Beijing Guanting Reservoir, China. Environ Geochem Health,2010b,32:441-449.
    Jan M. R, Shah J, Khawaja Mahmood A, Gul K. DDT residue in soil and water in and aroundabandoned DDT manufacturing factory. Environ Monit Assess,2009,155:31-38.
    Karlsson H, Muir D C G, Teixeira C F, et al. Persistent chlorinated pesticides in air, water andprecipitation from the Lake Malawi area, Southern Africa [J]. Environ Sci Technol.,2000,34:4490-4495.
    Kelce WR, Stone CR, Laus SC, et al. Persistent DDT metabolite p,p’-DDE is a potentandrogen receptor antagonist. Nature,1995,375:581-585.
    Knight B, Zhao F J, Mcgrath S P, et al. Zinc and cadmium uptake by the hyperaccumulatorThlaspi caer ulesce ns in contaminated soils and it s ef fects on the concentrat ion andchemical speciat ion of metals in soil solution [J]. Plant and Soil,1997,197:71-78.
    Kumar K, Devi S S, Krishnamurthi K, et al. Enrichment and isolation of endosulfandegrading and detoxifying bacteria. Chemosphere2007,68:317-322.
    Lalah J O, Yugi P O, Jumba I O, Wandiga S O. Organochlorine pesticide residues in Tanaand Sabaki rivers in Kenya [J]. Bull. Environ. Contam. Toxicol,2003,71:298-307.
    Li M, Liu ZT, Xu Y, Cui YB, Li DS, Kong ZM, Comparative effects of Cd and Pb onbiochemical response and DNA damagein the earthworm Eisenia fetida (Annelida,Oligochaeta),Chemosphere,2009,74:621-625.
    Li X H Wang X Z, Wang W. et al. Profiles of Organochlorine Pesticides in Earthworms fromUrban Leisure Areas of Beijing, China. Bull Environ Contam Toxicol,2010,84:473–476.
    Liu P W G, Chang T C, Wang L M. Bioremediation of petroleum hydrocarbon contaminatedsoil: Effects of strategies and microbial community shift [J]. International Biodeterioration&Biodegradation,2011,65:1119-1127.
    Liu W, Zhu L S, Wang J, et al. Assessment of genotoxicity of endosulfan in earthworm andwhite clover plants using comet assay. Archives of Environmental Contamination andToxicology,2009,56:742-746.
    Lu S J, Teng Y G, Wang J S, et al. Enhancement of pyrene removed from contaminated soilsby Bidens maximowicziana [J]. Chemosphere2010,81:645–650.
    Lv J G, Shi R G, Cai Y M,et al. Assessment of20Organochlorine Pesticides (OCPs)Pollution in Suburban Soil in Tianjin, China. Bull Environ Contam Toxicol,2010,85:137–141.
    Macdonald C. A., Clark I. M., Zhao F. J. Long-term impacts of zinc and copper enrichedsewage sludge additions on bacterial, archaeal and fungal communities in arable andgrassland soils. Soil Biology&Biochemistry,2011,43:932-941.
    Macek T, Mackova M, Kas J. Exploitation of plants for the removal of organics inenvironmental remediation. Biotechnolo gy Anvancds,2000,18(1):23-24.
    Makoi J H J R, Ndakidemi P A. Selected soil enzymes: Examples of their potential roles inthe ecosystem [J].African Journal of Biotechnology,2008,7(3):181-191.
    Marcato-Romain C E, Pinelli E, Pourrut B, et al. Assessment of the genotoxicity of Cu and Znin raw and anaerobically digested slurry with the Vicia faba micronucleus test. MutationResearch,2009,672:113-118.
    Mcglynn K.A., Abnet C C., Zhang M D. Serum Concentrations of1,1,1-Trichloro-2,2-bis (p-chlorophenyl)ethane (DDT) and1,1-Dichloro-2,2-bis (p-chlorophenyl)ethylene (DDE)and Risk of Primary Liver Cancer[J]. Journal of the National Cancer Institute,2006,98(14):1005-1010.
    Meharg A A, Cairney J W G. Ectomycorrhizas-extending the capabilities of rhizosphereremediation. Soil Biol. Biochem.,2000,32:1475-1484.
    Metcalf Robert L. An Increasing public concern (the pesticide question, part Ⅴ)[M].1993,426-430.
    Mills D K, Fitzgerald, Litchfield C D, et al. A comparison of DNA profiling techniques formonitoring nutrient impact on microbial community composition during bioremediation ofpetroleum-contaminated soils. Journal of Microbiological Methods,2003,54:57-74.
    Mitra J, Mukherjee P, Kale S. Bioremediation of DDT in soil by genetically improved strainsof soil fungus Fusarium solani [J]. Biodegradation,2001,12:235-245.
    Mitton F M., Gonzalez M, Pena A, et al. Effects of amendments on soil availability andphytoremediation potential of aged p,p′-DDT, p,p′-DDE and p,p′-DDD residues by willowplants (Salix sp.) Journal of Hazardous Materials2012,203-204:62-68.
    Muyzer G, Ellen C D W, Andre G U. Profiling of complex microbial population bydenaturing gradient gel electrophoresis analysia of polymerase chain reaction-amplifiedgenes coding for16S rRNA. Appl. Environ. Microbiol.,1993,59(3):695-700.
    Nadeau L, Menn F, Breen A, Sayler G. Aerobic degradation of1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (DDT) by Alcaligenes eutrophus A5[J]. Appl Environ Microbiol,1998,60:51-55.
    Nadeau L J., Sayler G S., Spain J C. Oxidation of1,1,1-trichloro-2,2-bis (4-chloroph-enyl)ethane (DDT)by Alcaligenes eutrophus A5[J].Arch. Micro,1998(171):44-49.
    Ngabe B., Bidleman T. F. DDT Concentrations in Soils of Brazzaville, Congo [J]. Bull.Environ. Contam. Toxicol.,2006,76:697-704.
    Ngabe B., Bidleman T. F. DDT Concentrations in Soils of Brazzaville, Congo [J]. BullEnviron Contam Toxicol,2006,76:697-704.
    Nguyen A. T. P., Sato Y., Iwasaki T. Characterization of the1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene (DDE) degradation system in Janibacter sp. TYM3221. Enzymeand Microbial Technology,2011,49:532-539.
    OECD (2004) Earthworm reproduction tests (Eisenia foetida/Eisenia andrei). OECDGuidelines for testing of chemicals, No.222.
    Organochlorine pesticide residues in water and fish samples: first report from rivers andstreams of Kumaon Himalayan region [J]. Bull Environ Contam Toxicol,2003,70:485-493.
    Peng J J, Cai C, Qiao M. Dynamic changes in functional gene copy numbers and microbialcommunities during degradation of pyrene in soils [J]. Environmental Pollution,2010,158:2872-2879.
    Perez-Maldonado I N, Herrera C, Batres L E, et al. DDT-induce oxidative damage in humanblood mononuclear cells [J]. Environ Res,2005,98:177-184.
    Purnomo A. S., Koyama F., Mori T. DDT degradation potential of cattle manures compost [J].Chemosphere,2010a,80:619-624.
    Purnomo A. S., Mori T., Kamei I. Application of mushroom waste medium from Pleurotusostreatus for bioremediation of DDT-contaminated soil [J]. International Biodeterioration&Biodegradation,2010b,64:397-402.
    Purnomo A. S., Mori T., Kondo R. Involvement of Fenton reaction in DDT degradation bybrown-rot fungi [J]. International Biodeterioration&Biodegradation,2010c,64:560-565.
    Purnomo A. S., Mori T., Takagi K. Bioremediation of DDT contaminated soil using brown-rot fungi [J]. International Biodeterioration&Biodegradation,2011,65:691-695.
    Qiao M, Chen Y, Wang CX, et al. DNA damage and repair process in earthworm after in-vivoand in vitro exposure to soils irrigated by wastewaters [J]. Environmental Pollution,2007,148:141-147.
    Qiu X h, Zhu T, Li J, Pan HS, Li QL, Miao GF, Gong JC. Organochlorine pesticides in the airaround Taihu Lake, China [J]. Environ. Sci. Technol.2004,38:1368-1374.
    Qiu X h, Zhu T, Yao B, Contribution of Dicofol to the Current DDT Pollution in China [J].Environ. Sci. Technol.,2005,39(12):4385-4390.
    Qiu X h, Zhu T. Using the o, p′-DDT/p, p′-DDT ratio to identify DDT sources in China [J].Chemosphere2010,81:1033-1038.
    Quensen III J F, Mueller S A, Jain M K. Reductive dechlorination of DDE to DDMU inmarine sediment Microcosms [J]. Science,1998,280:722-724.
    Quensen III J F, Tiedje J, Jain M K. Factors controlling the rate of DDE dechlorination toDDMU in Palos Verdes margin sediments under anaerobic conditions [J]. Environ SciTechnol,2001,35:286-291.
    Raloff J. The gender benders: are environment “hormones” emasculating wildlife [J]. SciNews,1984,145:24-27.
    Ratcliffe D A. Decrease in eggshell weight in certain birds of prey [J]. Nature (London),1967,215:208-210.
    Reilley K A, Banks M K, Schwab A P. Dissipation of polycyclic aromatic hydrocarbons inthe rhizosphere remediation. Biotechnology Anvancds,2000,18(1):23-24.
    Rignell-Hydbom A,Rylander L,Giwercman A,et al. Exposure to PCBs and p,p’-DDEand human sperm chromatin integrity [J].Environ Health Perspect,2005,113:175-179.
    Ross D J, Sparling G P, Burke C M, et al. Microbial biomass C and N, and mineralizable-n, inlitter and mineral soil under Pinus radiata on a coastal sand: Influence of stand age andharvest management [J]. Plant and Soil,1995,175(2):167-177.
    Sarkar U K, Basheer V S, Singh A K, et al. Organochlorine pesticide residues in water andfish samples: first report from rivers and streams of Kumaon Himalayan region [J]. BullEnviron Contam Toxicol,2003,70:485-493.
    Schwab AP, Banks MK. Biologically mediated dissipation of polyaromatic hydrocarbons inthe root zone. In: Anderson TA, Coats JR. eds. Bioremediation through rhizospheretechnology. Am. Chem. Soc., Washington, DC,1994:132-141.
    Sereda B. L., Meinhardt H. R. Contamination of the Water Environment in Malaria EndemicAreas of KwaZulu-Natal, South Africa by DDT and Its Metabolites [J]. Bull. Environ.Contam. Toxicol.,2005,75:538-545.
    Shen C F, Chen Y X, Huang S B. Dioxin-like compounds in agricultural soils near e-wasterecycling sitesfrom Taizhou area, China: Chemical and bioanalytical characterization [J].Environment International2009,35:50-55.
    Shi Y, Meng F, Guo F, et al. Residues of organic chlorinated pesticides in agricultural soils ofBeijing, china [J]. Ar-chives of Environmental Contamination and Toxicology,2005,49(1):37-44.
    Simonich S L, Hites R A. Global distribution of persistent organochlorine compounds [J].Science,1995,269:1851-1854.
    Song Y, Zhu LS, Wang J, Wang JH, Liu W, Xie H (2009) DNA damage and effects onantioxidative enzymes in earthworm (Eisenia foetida) induced by atrazine [J]. Soil Biology&Biochemistry,41(5):905-909.
    Song Y, Zhu L S, Wang J, et al. DNA damage and effects on antioxidative enzymes inEarthworm (Eisenia foetida) induced by atrazine [J], Soil Biology&Biochemistry,2009,41(5):905-909.
    Sonia Gómez. Organochlorine pesticide residues in sediments from coastal environment ofCantabria (northern Spain) and evaluation of the Atlantic Ocean [J]. Environ Monit Assess.2011,176:385-401.
    Sturgeon S R, BroCk J W, Potischman N, et al. Serum concentrations of organochlorinecompounds and endometrial cancer risk.(United States)[J]. Cancer Causes Control,1998,9:417-424.
    Syed Jabir Hussain, Malik Riffat Naseem. Occurrence and source identification oforganochlorine pesticides in the surrounding surface soils of the Ittehad ChemicalIndustries Kalashah Kaku, Pakistan [J]. Environmental Earth Science.2011,62:1311-1321.
    Takazawa Y,Tanaka A,Shibata Y. Organochlorine Pesticides in Muscle of Rainbow Troutfrom a Remote Japanese Lake and Their Potential Risk on Human Health [J]. Water air soilpollut,2008,187:31-40.
    Tang J C, Wang R G, Niu X W, et al. Enhancement of soil petroleum remediation by using acombination of ryegrass (Lolium perenne) and different microorganisms [J]. Soil&TillageResearch,2010,110:87-93.
    Thomas J. E., Gohil H. Microcosm studies on the degradation of o,p′-and p,p′-DDT, DDE,and DDD in a muck soil [J]. World J Microbiol Biotechnol,2011,27:619-625.
    UNEP Regionally Based Assessment of Persistent Toxic Substances Global Report,2003.
    Vega F A; Covelo E F; Andrade M L. Accidental Organochlorine Pesticide Contamination ofSoil in Porri o, Spain [J]. Journal of Environmental Quality,2007:272-279.
    Wang T Y,Lu Y L,Shi Y J,et al. Organochlorine pesticides in soils around GuantingReservoir, China [J]. Environ Geochem Health [J].2007,29:491-501.
    Wang X T,Chu S G,Xu X B. Organochlorine pesticide residues in water from Guantingreservoir and Yongding River, china[J]. Bull Environ Contam Toxicol,2003,70:351-358.
    Wang Y H, Guo S J, Xue R, et al. Organochlorine pesticides in the soil of a karst cave inGuilin, China [J]. Environ Monit Assess.2011,180:489-500.
    Weiderpass E, Adami H O, Baron J A, et al. Organochorines and endometrial cancer risk [J].Cancer Epidemiol Biomarker Prev,2000,9:487-493.
    White J.C. Plant-facilitated mobilization and translocation of weathered2,2-bis (p-chlorophenyl)-1,1-dichloroethylene (p,p-DDE) from an agricultural soil [J]. Environ.Toxicol. Chem.2001,20:2047-2052.
    White J.C., Kottler B.D. Citrate-mediated increase in the uptake of weathered2,2-bis (p-chlorophenyl)1,1-dichloroethylene residues by plants [J]. Environ. Toxicol. Chem.,2002,21:550-556.
    Xiao P F, Mori T, Kamei I, et al. A novel metabolic pathway for biodegradation of DDT bythe white rot fungi, Phlebia lindtneri and Phlebia brevispora [J]. Biodegradation,2011,22:859-867.
    Xie H, Zhu L S, Xu Q F, et al. Isolation and degradation ability of the DDT-degradingbacterial strain KK [J]. Environmental Earth Sciences,2011,62:93-99.
    Yrjala K, Keskinen A K, kerman M L, et al. The rhizosphere and PAH amendment mediateimpacts on functional and structural bacterial diversity in sandy peat soil [J].Environmental Pollution,2010,158:1680-1688.
    Yu X Z, Wu S C, Wu F Y, et al. Enhanced dissipation of PAHs from soil using mycorrhizalryegrass and PAH-degrading bacteria [J]. Journal of Hazardous Materials,2011,186:1206-1217.
    Yu Y X, Li C L, Zhang X L, et al. Route-specific daily uptake of organochlorine pesticides infood, dust, and air by Shanghai residents, China [J]. Environment International,2012,50:31-37.
    Zabaloy M. C., Gómez E., Garland J. L. Assessment of microbial community function andstructure in soil microcosms exposed to glyphosate[J]. Applied Soil Ecology.2012,61:333-339.
    Zhang G, Parker Andrew, House Alan. Sedimentary Records of DDT and HCH in the PearlRiver Delta, South China [J]. Environ Sci Technol,2002,36(17),3671-3677.
    Zhang Q M, Zhu L S, Su J,et al. Impacts of nitrogen and phosphorus on atrazine-contaminated soil remediation and detoxification by Arthrobacter sp. strain HB-5. EnvironEarth Sci,2013. DOI10.1007/s12665-013-2551-4
    Zhao X, Quan X, Zhao H.Effects of nature organic matters and hydrated metal oxides onthe anaerobic degradation of lindane, p,p′-DDT and HCB in sediments[J]. EnvironmentalSciences,2003,15(5):618-621.
    Zhu Z Q, Yang X E, Wang K, et al. Bioremediation of Cd-DDT co-contaminated soil usingthe Cd-hyperaccumulator Sedum alfredii and DDT-degrading microbes[J]. Journal ofHazardous Materials,2012,235-236:144-151.
    Zimmermann E, Pedersen J Q, Saraubon K. DDT in human milk from chiang mai mothers: apublic health perspective on infants exposure [J]. Bull Environ Contam Toxicol,2005,74:407-414.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700