用户名: 密码: 验证码:
非均相类芬顿催化剂用于上流式多相氧化塔处理红霉素废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红霉素作为典型的、高产量的大环内酯类抗生素,其废水具有有机物浓度高、成分复杂、处理难度大等特点,是国内外研究的重点、难点。Fenton技术是一种应用最广的高级氧化技术(AOP),主要用于处理制药废水和印染废水等高浓有机废水。论文通过对非均相类Fenton催化剂用于上流式多相氧化塔处理红霉素废水的研究,阐述负载型类Fenton催化剂、非均相Fenton技术在大环内酯类抗生素废水处理中的应用及其机理,为我国负载型类Fenton催化剂及非均相Fenton技术的发展提供一定的技术和理论依据。
     研究采用铁盐溶液油浴蒸发法在石英砂上负载铁氧化物(synthes i s iron oxide coated sand,简称SCS),通过SEM/EDAX, XRD以及表面分析仪对SCS进行表征,结果表明:SCS的粒径为100nm左右,SCS的比表面积为3.1347m2/g,是原砂的5倍;SCS表面氧化铁的晶型为赤铁矿(α-Fe203),XRD谱图在d=2.7082,2.4776,1.7202处出现了吸收峰,SCS催化剂表面铁氧化物的晶型主要以赤铁矿为主;原子分光光度计测得SCS表面铁含量为8.014mgFe/g,具有好的抗酸碱性,铁氧化物与石英砂之间附着强度高。
     论文通过分析pH值、反应温度、Fe2+投加量、H202初始投加量、反应后生成铁泥量等影响因素,比较了均相Fenton技术与非均相类Fenton技术应用于红霉素废水处理的优劣,实验结果显示,SCS非均相类Fenton技术在红霉素水溶液处理方面,具有明显优势:COD为500ug/L的红霉素溶液,当反应温度为25±1℃,H202初始浓度为9.8mmol/L, FeS04初始投加浓度为3.6mmol/L,初始浓度为3.0±1.0时,均相Fenton反应40min时COD的去除率、脱色率可达70.8%和93.8%。但是,红霉素废水通过一次均相Fenton处理COD无法降到100以下,需要进行二次、甚至三次芬顿处理,且反应生成的铁泥量较大;SCS非均相类Fenton催化系统pH值为5时,COD去除率达70%以上,系统依然具有较高去除率,随着SCS投加量的增加,非均相类芬顿催化系统的催化效果越好,ERY降解率越高,第五次反复利用SCS,COD的去除率仍然可达65%左右,所以SCS具有较好的稳定性,因此避免了传统Fenton系统中铁离子对环境的二次污染,减少了铁泥的排放。
     论文研发制备了上流式多相氧化塔,并采用数值模拟的方式对反应器的液固体系的流动、传递和混合过程进行探讨,优化上流式多相氧化塔,使其适合于SCS类Fenton催化系统,为设备的结构设计、装置放大、优化操作以及性能预测等方面提供一定的理论指导。分析结果包括:液速为0.7m/s,系统初始固含率为9%时,整个动态过程虽然存在部分颗粒团聚现象,但整体反应器内颗粒分布较为均匀,这正体现反应器内颗粒流化状态良好;整个流域三维速度矢量图,可看到整个反应器内液相达到较好的湍流状态,有效增强流场中颗粒间的相互作用,提高固液相间的传质效果。同时,在上流式多相反应塔内仍然会保持较高的碰撞几率,防止SCS颗粒结垢。反应器内布水口出水流速可保证达到1.0m/s以上。
     论文采用SCS类Fenton系统处理红霉素水溶液,应用紫外光谱、红外光谱、高效液相、高效液相-质谱联用、1H-核磁共振波谱和13C-核磁共振波谱等现代测试仪器,系统研究了红霉素水溶液在SCS催化类Fenton系统处理过程中红霉素结构的变化,探讨分析了中间产物结构及其变化。并结合光谱、波谱分析结果,探讨了酸性溶液中红霉素的水解动力学过程,得出结论如下:酸性条件下,红霉素降解接近一阶动力学,通过氢离子浓度与酸催化系数对数图的分析,可知反应级数a及酸催化系数kA分别为0.90和27.1。论证了SCS类Fenton系统处理红霉素废水的优良性能。
Erythromycin was a typical macrolide antibacterial drug. Its production will produce large amount of wastewater, which was higher concentration of organic compounds, complex composition, taste and weak biodegradability. Advanced oxidation process (AOP) refers to a set of chemical oxidation procedures designed for non-biodegradable toxic organic substances treatment. Fenton technology has been extensively studied as one of the destruction of various recalcitrant organic pollutants in water. Heterogeneous Fenton-like systems using iron supported catalysts have been developed. Based on the heterogeneous class of Fenton catalyst for up-flow heterogeneous oxidation tower of treatment of Erythromycin Wastewater, the load type Fenton catalyst, heterogeneous Fenton technology in the macrolide antibiotic wastewater treatment and its mechanism, for our country supported Fenton catalysts and heterogeneous Fenton technology development to provide a technical and theoretical basis.
     A new synthesis iron oxide coated sand catalyst was synthesized by oil bath evaporation method. The physicochemical characteristics of the SCS were evaluated by various techniques such as SEM/EDAX, XRD, FTER and surface analyzer. Particle size is about100nm; specific surface area is3.1347m2/g; surface iron oxide crystalline is hematite.
     The investigation an attempt was made to degrade Erythromycin in the effluent by homogeneous and heterogeneous Fenton-like oxidation process. The effect of pH, temperature, Fe2+dosage and H2O2dosage were investigated in terms of the COD conversion. At pH3.0,25±1℃,9.8mmol/L of H2O2dosage, and3.6mmol/L of FeSO4dosage, a70.8%COD reduction has been achieved in Fenton system. However, it requires a strong acid condition and large amounts of iron oxide sludge was yield. SCS Fenton-like system has a wider pH range. At pH5.0, a70%COD reduction has been zchieved. SCS exhibited a higher activity and stability. SCS was coupled with heterogeneous Fenton-like system to resolve the continuously reuse problem.
     The up-flow heterogeneous oxidation reactor was researched and developed, and the fluid configuration was simulated with the mechanical model of multi-phase fluid in the outer circulation fluidized-bed heterogeneous Fenton-like reactor. The result of numerical simulation proves that the solid phase catalyst can be so well fluidized in the up-flow heterogeneous oxidation reactor that the solid rate of all the fluid fields is approximately equal and there is little dead area to retain the solid phase catalyst.
     The degradation of Erythromycin in aqueous solution was confirmed using UV, FT-IR, HDLC, LC-MS and NMR spectroscopy. The kinetic constants for the oxidation of Erythromycin in effluent were determined. The effectiveness of heterocatalytic oxidation was over homogeneous Fenton oxidation process.
引文
1 Richardson BJ, Lam PK, Martin M. Emerging chemicals of concern:pharmaceuticals and personal care products (PPCPs) in Asia, with particular reference to Southern China. Marine Pollution Bulletin,2005,50(9):913-920.
    2 Przemyslaw Kardas, Scott Devine,Amanda Gofembesky, et al. A systematic review and meta-analysis of misuse of antibiotic therapies in the community. International Journal of Antimicrobial Agents,2005,26:106-113.
    3 Halling-S(?)rensen B, Nors Nielsen S, Lanzky PF, et al. Occurrence, fate and effects of pharmaceutical substances in the environment-a review. Chemosphere, 1998,36(2):357-393.
    4 Sarmah AK, Meyer MT, Boxall AB. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere,2006,65(5):725-759.
    5 Stuart B. Levy. The challenge of antibiotic resistance. Scientific American,1998,278:46-53.
    6 Meyer MT, Bumgarner JE, Varns JL, et al. Use of radioimmunoassay as a screen for antibiotics in confined animal feeding operations and confirmation by liquid chromatography/masss spectrometry. The Science of the Total Environment. 2000,248(2-3):181-187.
    7 Lindsey ME, Meyer TM, Thruman EM. Analysis of trace levels of sulfonamide and tetracycline antimicrobials in groundwater and surface water using solid-phase extraction and liquid chromatography/mass spectrometry. Analytical Chemistry, 2001,73(19):4640-4646.
    8 Xu WH, Zhang G, Zou SC, et al. Determination of selected antibiotics in the Victoria Harbour and the Pearl River, South China using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. Environmental Pollution,2007,145(3):672-679.
    9 A Gulkowska, Yuhe He, MK So, et al. The occurrence of selected antibiotics in Hong Kong coastal waters. Marine Pollution Bulletin,2007,54(8):1287-1293.
    10 Dana Kolpin, Edward Furlong, Michael Meyer, et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams,1999-2000:a national reconnaissance. Environmental Science and Technology,2002,36(6):1202-1211.
    11 KG Karthikeyan, Michael T Meyer. Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA. Science of the Total Environment,2006,361:196-207.
    12 John V. Holm, Kirsten. Rugge, Poul L. Bjerg, et al. Occurrence and distribution of pharmaceutical organic compounds in the groundwater downgradient of a landfill(Grindsted, Denmark). Environmental Science and Technology, 1995,29(5):1415-1420.
    13 C. Hartig, T. Storm, M. Jekel. Detection and identification of sulphonamide drugs in municipal waste water by liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Journal of Chromatography A,1999,854(1-2):163-173.
    14 Eckel WP, Ross B, Isensee RK. Pentobarbital found in ground water. Ground Water, 1993,31(5):801-804.
    15 Thomas Heberer, Ingrid M. Verstraeten, Michael T. Meyer, et al. Occurrence and fate of Pharmaceuticals during bank filtration-preliminary results from investigations in germany and the United States. Water Research and Water Technology,2011:154-167.
    16 EM Thurman, KA Hostetler. Analysis of tetracycline and sulfamethazine antibiotics in ground water and animal-feedlot wastewater by high performance liquid chromatography/mass spectrometry using positive-ion electrospray. Conference proceedings:effects of animal feeding operations on water resources and the environment, Fort Collins, CO, USA,1999. http://water.usgs.gov/owq/AFO/proceedings/afo/proceedings.html.
    17 Michael T. Meyer, JE Bumgarner, JV Daughtridge, et al. Occurrence of antibiotics in liquid waste at confined animal feeding operations and in surface and ground water,1999. http://water.usgs.gov/owq/AFO/proceedings/afo/proceedings.html.
    18 M. Silivia Diaz-Cruz, Damia Barcelo. LC/MS2 trace analysis of antimicrobials in water, sediment and soil. TrAC Trends in Analytical Chemistry,2005,24(7);645-657.
    19 Gobel A, Thomsen A, McArdell CS, et al. Occurrence and sorption behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment. Environmental Science and Technology,2005,39(11):3981-3989.
    20 Kim SC, Carlson K. Temporal and spatial trends in the occurrence of human and veterinary antibiotics in aqueous and river sediment matrices. Environmental Science and Technology,2007,41(1):50-57.
    21 Rosie Coyne, Maura Hiney, Brendan O'Connor, et al. Concentration and persistence of oxytetracycline in sediments under a marine salmon farm. Aquaculture, 1994,123(1-2):31-42.
    22 CG Daughton, TA Ternes. Pharmaceuiticals and personal care products in the
    environment:agents of subtle change? Environmental Health Perspectives, 1999,107(6):907-938.
    23 Kummerer K, Henninger A. Promoting resistance by the emission of antibiotics from hospitals and households into effluent. Clinical Microbiology and Infection,2003,9(12):1203-1214.
    24 JC Chee-Sanford, RI Aminov,IJ Krapac, et al. Occurrence and diversity of tetracycline resistance genes in lagoons and groundwater underlying two swine production facilities. Applied and Environmental Microbiology,2001,67:1494-1502.
    25 Ashton D, Hilton M, Thomas KV. Investigating the environmental transport of human Pharmaceuticals to streams in the United Kingdom. Science of The Total Environment,2004,333(1-3):167-184.
    26 Hernando MD, Mezcua M, Fernandez-Alba AR, et al. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta,2006,69(2):334-342.
    27 Roman Hirsch, Thomas Ternes, Klaus Haberer, et al. Occurrence of antibiotics in the aquatic environment. The Science of the Total Environment,1999,225:109-118.
    28 Christa S. McArdell, Eva Molnar, Marc J-F Suter, et al. Occurrence and fate of macrolide antibiotics in wastewater treatment plants and in the Glatt Valley watershed, Switzerland. Environmental Science and Technology,2003,37(24):5479-5486.
    29 Eva M Golet, Irene Xifra, Hansruedi Siegrist, et al. Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil. Environmental Science and Technology,2003,37(15):3243-3249.
    30 Giger Walter, Alder Alfredo C, Golet Eva M, et al. Occurrence and fate of antibiotics as trace contaminants in wastewaters, sewage sludges, and surface waters. Chimia International Journal for Chemistry,2003,57(9):485-491.
    31 A Gulkowska, HW Leung, MK So, et al. Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen, China. Water Research, 2008,42:395-403.
    32 Costanzo SD, Murby J, Bates J. Ecosystem response to antibiotics entering the aquatic environment. Marine Pollution Bulletin,2005,51(1-4):218-223.
    33 Heather K Allen, Justin Donato, Helena Huimi Wang, et al. Call of the wild:antibiotic resistance genes in natural environments. Nature Reviews Microbiology,2010,8:251-259.
    34 Roberto Andreozzi, Vincenzo Caprio, Claudia Ciniglia, et al. Antibiotics in the environment:occurrence in Italian STPs, fate and preliminary assessment on algal Toxicity of amoxicillin. Environmental Science and Technology,2004,38(24):6832-6838.
    35 Karl Fent, Anna A Weston, Daniel Caminada. Ecotoxicology of human pharmaceuticals. Aquatic Toxicology,2006,76(2):122-159.
    36 Gagne F, Blaise C, Andre C. Occurrence of pharmaceutical products in a municipal effluent and toxicity to rainbow trout (Oncorhynchus mykiss) hepatocytes. Ecotoxicology and Environment al Safety,2006,64(3):329-336.
    37 Luciana Migliore, Cinzia Civitareale, Gianfranco Brambilla, et al. Toxicity of several important agricultural antibiotics to Artemia. Water Research,1997,31(7):1801-1806.
    38 Roberto Rosal, Antonio Rodriguez, Jose Antonio Perdigon-Melon, et al. Occurrence of emerging pollutants in urban wasterwater and their removal through biological treatment followed by ozonation. Water Research,2010,44(2):578-588.
    39 Peng X, Wang Z, Kuang W, et al. A preliminary study on the occurrence and behavior of sulfonamides, ofloxacin and chloramphenicol antimicrobials in wastewaters of two sewage treatment plants in Guangzhou, China. The Science of the Total Environment,2006,371 (1-3):314-322.
    40 Spongberg AL, Witter JD. Pharmaceutical compounds in the wasterwater process stream in Northwest Ohio. The Science of the Total Environment,2008,397(1-3):148-157.
    41 Xiu-Sheng Miao, Jian-Jun Yang, Chris D Metcalfe. Carbamazepine and its metabolites in wastewater and in biosolids in a municipal wastewater treatment plant. Environmental Science and Techology,2005,39(19):7469-7475.
    42 Pin Gao, Yunjie Ding, Hui Li, et al. Occurrence of Pharmaceuticals in a municipal wastewater treatment plant:Mass balance and removal process. Chemosphere,2012,88:17-24.
    43 Mordechai LK. Is.OH the active Fenton intermediate in the oxidation of ethanol? Journal of Inorganic Biochemistry,2000,78:255-257.
    44 Prousek J. Fenton Reaction After a Century. Chemicke Listy,1995,89(1):11-21.
    45 Angela Yu-Chen Lin, Cheng-Fang Lin, Jia-Ming Chiou, et al. O3 and O3/H2O2 treatment of sulfonamide and macrolide antibiotics in wastewater. Journal of Hazardous Materials,2009,171:452-458.
    46 David B Wunder, Valerie A Bosscher, Rhiana C Cok, et al. Sorption of antibiotics to biofilm. Science Direct,2011,45:2270-2280.
    47 Maria Hijosa-Valsero, Guido Fink, Michael P Schlusener, et al. Removal of antibiotics from urban wastewater by constructed wetland optimization. Chemosphere,2011,83:713-719.
    48 Feuerstein W, Gilbert E, Eberle, SH. Modellversuche zur Oxidation aromatischer Verbindungen mittels Wasserstoffperoxid in der Abwasserbehandlung. Vom Wasser,1981,56:35-54.
    49 Rupert Bauer, Hubert Fallmann. The photo-Fenton oxidation—A cheap and efficient wastewater treatment method. Research on Chemical Intermediates,1997,23 (4):341-354.
    50 Joseph J Pignatello, Di Liu, Patrick Huston. Evidence for an additional oxidant in the Photoassisted Fenton reaction. Environmental Science and Technology,l 999,33(11):1832-1839.
    51 F Javier Benitez, Jesus Beltran-Heredia, Juan L Acero, et al. Oxidation of several chlorophenolic derivatives by UV irradiation and hydroxyl radicals. Journal of Chemical Technology and Biotechnology,2001,76(3):312-320.
    52 E Chamarro, A Marco, S Esplugas.Use of Fenton reagent to improve organic chemical biodegradability. Water Research,2001,35(4):1047-1051.
    53 E Oliveros, O Legrini, M Hohl, et al. Large scale development of a light-enhanced Fenton reaction by optimal experimental design. Water Science and Technology,1997,35 (4):223-230.
    54 C Walling. Intermediates in the reaction of Fenton type reagents. Accounts of Chemical Research,1998,31(4):155-158.
    55 Stefan H Bossmann, Esther Oliveros, Sabine Gob, et al. New evidence against hydroxyl radicals as reactive intermediates in the thermal and photochemically enhanced Fenton reactions. The Journal of Physical Chemistry:A,1998,102(28):5542-5550.
    56 Miguel Rios-Enriquez, Nabil Shahin, Carmen Duran-de-Bazua, et al. Optimization of the heterogeneous Fenton-oxidation of the model pollutant 2,4-xylidine using the optimal experimental design methodology. Solar Energy,2004,77:491-501.
    57 Nihar R, Mohantyirvine W Wei. Oxidation of 2,4-dinitrotoluene using Fenton's reagent: reaction mechanisms and their practical applications, Hazardous Waste and Hazardous Materials,1993,10(2):171-183.
    58 Jinpo Li, Zhihui Ai, Lizhi Zhang. Design of a neutral electro-Fenton system with Fe,Fe2O3/ACF composite cathode for wastewater treatment. Jounal of Hazardous Materials,2009,164:18-25.
    59 J Herney Ramirez, Filipa M Duarte, FG Martins, et al. Modelling of the synthetic dye Orange Ⅱ degradation using Fenton's reagent:From batch to continuous reactor operation. Chemical Engineering Journal,2009,148:394-404.
    60 S Karthikeyan, A Titus, A Gnanamani, et al. Treatment of textile wastewater by homogeneous and heterogeneous Fenton oxidation processes. Desalination,2011,281:438-445.
    61 Jingchun Yan, Heqing Tang, Zhifen lin, et al. Efficient degradation of orgnic pollutants with ferrous hydroxide colloids as heterogeneous Fenton-like activator of hydrogen peroxide. Chemosphere,2012,87:111-117.
    62 Fe-(3+)或Fe-(2+)均相催化H_2O_2生成羟基自由基的规律.环境科学.2006(02).
    63 Fe(Ⅲ,Ⅱ)/H_2O_2体系中Fe(Ⅲ)水解特征的对比.环境科学学报.2003(02).
    64 Fenton反应中水解Fe(Ⅲ)的形态分布特征研究.环境科学学报.2002(05).
    65 Fenton法中拓宽pH范围的方法.现代化工.2008(03).
    66 Fenton试剂氧化苯酚过程中Fe(Ⅱ)浓度的变化.环境工程学报.2008(08).
    67 Richard J Watts, Michael K Foget, Sung-Ho Kong, et al.Hydrogen peroside decomposition in model subsurface systems. Journal of Hazardous Materials,1999,69(2):229-243.
    68 Yao-Hui Huang, Hsiao-Ting Su, Li-Way Lin. Removal of citrate and hypophosphite binary components using Fenton, photo-Fenton and electro-Fenton processes. Journal of Environmental Sciences,2009,21(1):35-40.
    69非均相Fenton反应技术研究进展.环境污染治理技术与设备.2005(07).
    70 Fe-(3+)或Fe-(2+)均相催化H_20_2生成羟基自由基的规律.环境科学.2006(02).
    71 Fe(Ⅲ,Ⅱ)/H_2O_2体系中Fe(Ⅲ)水解特征的对比.环境科学学报.2003(02).
    72 Fenton反应中水解Fe(Ⅲ)的形态分布特征研究.环境科学学报.2002(05).
    73 Fenton法中拓宽pH范围的方法.现代化工.2008(03).
    74(光)电-Fenton法降解有毒有机污染物的研究进展.化学与生物工程.2009(12).
    75 JA Camarero, RH Kimura, YH Woo, Research Progress of Fenton and Photo-Fenton Heterogeneous Catalysts Degradation Organic Pollutants. Journal of Analytical Science,2007,23:355-360.
    76 Y Segura, F Martinez, JA Melero, et al. Enhancement of the advanced Fenton process (FeO/H2O2) by ultrasound for the mineralization of phenol. Applied Catalysis B: Environmental,2012,113-114:100-106.
    77 Ruixiong Huang, Zhanqiang Fang, Xiaomin Yan, et al. Heterogeneous sono-Fenton catalytic degradation of bisphenol A by Fe3O4 magnetic nanoparticles under neutral condition. Chemical Engineering Jounal,2012,197:242-249.
    78 F Lucking, H Koser, M Jank, et al. Iron powder, graphite and activated carbon as catalysts for the oxidation of 4-chlorophenolwith hydrogen peroxide, Water Research,1998,32(9):2607-2614.
    79 Roberto Andreozzi, Antonio D'Apuzzo, Raffaele Marotta. Oxidation of aromatic substrates in water/goethite slurry by means of hydrogen peroxide, Water Research,2002,36(19):4691-4698.
    80 Lu MC, Chen JN, Huang HH. Role of goethite dissolution in the oxidation of 2-chlorophenol with hydrogen peroxide. Chemosphere,2002,46(1):131-136.
    81 Richard J Watts, Matthew D Udell, Sungho Kong, et al. Leung, Fenton-like soil remediation catalysed by naturally occurring ironminerals. Environmental Engineering Science,1999,16(1):93-103.
    82 N Al-Hayek, M Dore. Oxydation des phenols parle peroxyde d'hydrogene en milieu aqueux en presence de fer supporte sur alumine en Oxidation of phenols in water by hydrogen peroxide on alumine supported iron. Water Research,1990,24(8):973-982.
    83 Gabriele Centi, Siglinda Perathoner, Teresa Torre, et al. Catalytic wet oxidation with H2O2 of carboxilic acids on homogeneous and heterogeneuos Fenton-type catalyst. Catalysis Today,2000,55(1-2):61-69.
    84 K Fajerwerg, H Debellefontaine. Wet oxidation of phenol by hydrogen peroxide using heterogeneous catalysis Fe-ZSM-5:a promising catalyst. Applied Catalysis B: Environmental,1996,10(4):L229-L235.
    85 Rafael Gonzalez-Olmos, Maria J Martin, Anett Georgi, et al. Fe-zeolites as heterogeneous catalysts in solar Fenton-like reactions at neutral pH. Applied Catalysis B: Environmental,2012,125:51-58.
    86 Rey-May Liou, Shin-Hsiung Chen, Mu-Ya Hung, et al. Catalytic oxidation of pentachlorophenol in contaminated soil suspensions by Fe3+-resin/H2O2 Chemosphere,2004,55(9):1271-1280.
    87 Mark M Benjamin, Ronald S Sletten, Robert P Bailey, et al. Sorption and filtration of metals using iron-oxide-coated sand. Water Research,1996,30(11).2609-2620.
    88 J Barrault, C Bouchoule, J-M Tatibouet, et al. Catalytic wet peroxide oxidation over mixed (AL-Fe) pillared clays. Studies in Surface Science and Catalysis,2000,130:794-754.
    89 Jiyun Feng, Xijun Hu, Po Lock Yue, et al. Discoloration and mineral-ization of Reactive Red HE-3B by heterogeneous photo-Fenton reaction. Water Research,2003,37(15):3776-3784.
    90 Shanshan Chou, Chihpin Huang. Application of a supported iron oxyhydroxide cat-alyst in oxidation of benzoic acid by hydrogen peroxide. Chemosphere,1999,38(12):2719-2731.
    91 Richard L Valentine, HC Ann Wang. Iron oxide surface catalyzed oxidation of quinolone by hydrogen peroxide. Journal of Environmental Engineering,1998,124(1):31-38.
    92 Sihoon Lee, Jooyub Oh, Yoonchang Park. Degradation of phenol with Fenton-like treatment by using heterogeneous catalyst (modified iron oxide) and hydrogen peroxide. Bulletin of the Korean Chemical Society,2006,27(4):489-494.
    93 Moura FC, Araujo MH, Costa R, et al. Efficient use of Fe metal as an electron transfer agent in a heterogeneous Fenton system based on FeO/Fe3O4 composites. Chemosphere,2005,60(8):1118-1123.
    94 Long Mingce, Lin Jinqing, Xu Qingqing. Progress in studies on heterogeneous Fenton reaction technology. Techniques and equipment for environmental pollution control,2005,6:14-18.
    95 Iara R Guimaraesa, Luiz CA Oliveiraa, Paulo F Queiroz, et al. Modified goethites as catalyst for oxidation of quinoline:Evidence of heterogeneous Fenton process. Applied Catalysis A:General,2008,347(1):89-93.
    96 LCA Oliveira, M Goncalves, MC Guerreiro, et al. A new catalyst material based on niobia/iron oxide composite on the oxidation of organic contaminants in water via heterogeneous Fenton mechanisms. Applied Catalysis A:General,2007,316(1):117-124.
    97 RCC Costa, MFF Lelis, LCA Oliveira, et al. Novel active heterogeneous Fenton system based on Fe3-xMxO4 (Fe, Co, Mn, Ni):The role of M2+ species on the reactivity towards H2O2 reactions. Jorunal of Hazard Materterials,2006,129(1-3):171-178.
    98 Wei Luo, Lihua Zhu, Nan Wang, et al. Efficient Removal of Organic Pollutants with Magnetic Nanoscaled BiFeO3 as a Reusable Heterogeneous Fenton-Like Catalyst. Environmental Science and Technology,2010,44(5):1786-1791.
    99 Liqin Guo, Feng Chen, Xiangqun Fan, et al. S-doped alpha-Fe(2)O(3) as a highly active heterogeneous Fenton-like catalyst towards the degradation of acid orange 7 and phenol. Applied Catalysis B:Environmental,2010,96(1-2):162-168.
    100 Shijian Yang, Hongping He, Daqing Wu, et al. Decolorization of methylene blue by heterogeneous Fenton reaction using Fe(3-x)Ti(x)O(4) (0<=x<=0.78) at neutral pH values. Applied Catalysis B:Environmental,2009,89(3-4):527-535.
    101 Iara R. Guimaraesa, Amanda Girotoa, Luiz C.A. Oliveira, et al. Synthesis and thermal treatment of cu-doped goethite:Oxidation of quinoline through heterogeneous Fenton process. Applied Catalysis B:Environmental,2009,91(3-4):581-586.
    102 Shijian Yang, Hongping He, Daqing Wu, et al. Degradation of Methylene Blue by Heterogeneous Fenton Reaction Using Titanomagnetite at Neutral pH Values:Process and Affecting Factors. Industrial and Engineering Chemistry Research,2009,48(22):9915-9921.
    103 Jingheng Deng, Jingyuan Jiang, Yuanyuan Zhang, et al. FeVO(4) as a highly active heterogeneous Fenton-like catalyst towards the degradation of Orange Ⅱ. Applied Catalysis B:Environmental,2008,84(3-4):468-473.
    104 Zhou T, Li Y, Ji J, et al. Oxidation of 4-chlorophenol in a heterogeneous zero valent iron/H2O2 Fenton-like system:Kinetic, pathway and effect factors. Separation and Purification Technology,2008,62(3):551-558.
    105 EG Garrido-Ramirez, BKG Theng, ML Mora. Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions-A review. Applied Clay Science,2010,47:182-192..
    106 Bai Cuiping, Gong Wenqi, Feng Dexin, et al. Natural graphite tailings as heterogeneous Fenton catalyst for the decolorization of rhodamine B. Chemical Engineering Journal,2012,197:306-313.
    107 Ramirez JH, Costa CA, Madeira LM, et al. Fenton-like oxidation of Orange Ⅱ solutions using heterogeneous catalysts based on saponite clay. Applied Catalysis B: nvironmental,2007,71 (1-2):44-56.
    108 Feng JY, Hu XJ, Yue PL. Effect of initial solution pH on the degradation of Orange Ⅱ using clay-based Fe nanocomposites as heterogeneous photo-Fenton catalyst. Water Research,2006,40(4):641-646.
    109 Djamel Tabet, Mohamed Saidi, Mohamed Houari, et al. Fe-pillared clay as a Fenton-type heterogeneous catalyst for cinnamic acid degradation. Journal of Environmental Management,2006,80(4):342-346.
    110 Thi Dung Nguyen, Ngoc Hoa Phan, Manh Huy Do, et al. Magnetic Fe(2)MO(4) (M:Fe, Mn) activated carbons:fabrication, characterization and heterogeneous Fenton oxidation of methyl orange. Journal of Hazardous Materials,2011,185(2-3):653-661.
    111 M.A. Fontecha-Camaraa, M.A. Alvarez-Merinoa, F. Carrasco-Marin, et al. Heterogeneous and homogeneous Fenton processes using activated carbon for the removal of the herbicide amitrole from water. Applied Catalysis B: Environmental,2011,101 (3-4):425-430.
    112 Sergio Navalon, Mercedes Alvaro, Hermeneglido Garcia. Heterogeneous Fenton catalysts based on clays, silicas and zeolites. Applied Catalysis B: Environmental,2010,99(1-2):1-26.
    113 Hacgyu Lim, Jinwoo Lee, Sunmi Jin, et al. Highly active heterogeneous Fenton catalyst using iron oxide nanoparticles immobilized in alumina coated mesoporous silica. Chemical Communication,2006,(4):463-465.
    114 Martinez F, Calleja G, Melero JA, Molina R. Iron species incorporated over different silica supports for the heterogeneous photo-Fenton oxidation of phenol. Applied Catalysis B:Environmental,2007,70(1-4SI):452-460.
    115 Qiu Liao, Jing Sun, Lian Gao. Degradation of phenol by heterogeneous Fenton reaction using multi-walled carbon nanotube supported Fe(2)O(3) Catalysts. Colloids and Surfaces A:Physicochemical and engineering Aspects,2009,345(1-3):95-100.
    116 JH Ramirez, F.J. Maldonado-Hodarb, A.F. Perez-Cadenas, et al. Azo-dye Orange Ⅱ degradation by heterogeneous Fenton-like reaction using carbon-Fe catalysts. Applied Catalysis B; Environmental,2007,75(3-4):312-323.
    117 Dantas TLP, VP Mendonca, HJ Jose, et al. Treatment of textile wastewater by heterogeneous Fentonprocess using a new composite Fe2O3/carbon. Chemical Engineering Journal,2006,118(1-2):77-82.
    118 EV Parkhomchuk, MP Vanina, S Preis. The activation of heterogeneous Fenton-type catalyst Fe-MFI. Catalysis Communications,2008,9(3):381-385.
    119 Hrvoje Kusic, Natalija Koprivanac, Iva Selanec. Fe-exchanged zeolite as the effective heterogeneous Fenton-type catalyst for the organic pollutant minimization:UV irradiation assistance. Chemosphere,2006,65(1):65-73.
    120 EV Kuznetsova, EN Savinov, LA Vostrikova, et al. Heterogeneous catalysis in the Fenton-type system FeZSM-5/H2O2. Applied Catalysis B:Environmental,2004,51 (3):165-170.
    121 Yuanyuan Zhang, Chun He, Virender K Sharma, et al. A coupling process of membrane separation and heterogeneous Fenton-like catalytic oxidation for treatment of zcid orange II-containing wastewater. Separation and Purification Technology,2011,80:45-51.
    122 Haiou Huang, Kellogg Schwab, Joseph G Jacangelo. Pretreatment for low pressure membranes in water treatment:a review, Environmental Science and Technology,2009,43(9):3011-3019.
    123 Maxime Remy, Virginie Potier, Hardy Temmink, et al. Why low powdered activated carbon addition reduces membrane fouling in MBRs. Water Research,2010,44(3):861-867.
    124 Lo Shang-Lien, Chen T-Y. Adsorption of Se(Ⅳ) and Se(Ⅵ) on an iron-coated from water. Chemosphere,1997,35(5):919-930(12).
    125 Lin Cheng-Fang, Lo Shang-Lien, Jeng Hung-Te, et al, Adsorption of heavy metals by the iron-coated filter medium. Chinese Institute of Civil and Hydraulic Engineering,1994, 6(1):101-110.
    126 Lo Shang-Lien, Jeng Hung-Te, Lai Chin-Hsing. Characteristics and adsorption properties of iron-coated sand. Water Research,1997,35(7):63-70.
    127 Huang J G, Liu J C. Enhanced removal of As(V) from water with iron-coated spent catalyst. Seperation Science Technology,1997,32(4):1557-1603.
    128高乃云.氧化铁涂层砂变性滤料除砷性能研究.上海环境科学,2001,9(2):417-419.
    129黄自力.涂铁石英砂的制备及其对砷的研究.污染防治技术,2003,4(3):13-16.
    130 Garrison Sposito. The Surface Chemistry of Soils. Oxford University Press, New York, 1984.
    131 K Hanna, T Kone, G Medjahdi. Synthesis of the mixed oxides of iron and quartz and their catalytic activities for the Fenton-like oxidation. Catalysis Communications,2008,9:955-959.
    132 M Kitis, SS Kaplan. Advanced oxidation of natural orgnic matter using hydrogen peroxide and iron-coated pumice partices. Chemosphere,2007,68(10):1846-1853.
    133 Brian M Pecson, Loic Decrey, Tamar Kohn. Photoinactivation of virus on iron-oxide coated sand:Enhancing inactivation in sunlit waters. Water Research,2012,46(6):1763-1770.
    134 N Boujeben, J Bouzid, Z Elouear, et al. Phosphorus removal from aqueous solution using iron coated natura and engineered sorbents. Journal of Hazardous Materials,2008,151(1):103-110.
    135 Ternes TA, Joss A, Siegrist H. Scrutinizing pharmacerticals and personal care products in wastewater treatment. Environmental Science and Technology,2004,38(20):392A-399A.
    136 Batt AL, Aga DS. Simultaneous analysis of multiple classes of antibiotics by ion trap LC/MS/MS for assessing surface water and groundwater contamination. Analysis Chemistry,2005,77(9):2940-2947.
    137 Hartig C, Ernst M, Jekel M. Membrane filtration of two sulphonamides in tertiary effluents and subsequent adsorption on activated carbon. Water Research.,2001,35(16):3998-4003.
    138 Martin J Hilton, Kevin V Thomas. Determination of selected human pharma-ceutical compounds in effluent and surface water samples by high-performance liquid chromatography-electrospray tandem mass spectrometry. Journal of Chromatogr A,2003,1015(1-2):129-141.
    139 Dana Kolpin, Edward Furlong, Michael Meyer, et al. Pharmaceuticals, hormones and other organic wastewater contaminants in U.S. streams,1999-2000:a national reconnaissance. Environmental Science and Technology,2002,36:1202-1211.
    140 Miao XS, Bishay F, Chen M, et al. Occurrence of antimicrobials in the final effluents of wastewater treatment plants in Canada. Environmental Science and Technology,2004,38(13):3533-3541.
    141 Jay E Renew, Ching-Hua Huang. Simultaneous determination of fluoroquino-lone, sulfonamide, and trimethoprim antibiotics in wastewater using tandem solid phase extraction and liquid chromatography-electrospray mass spectrometry. Journal of Chromatography A,2004,1042(1-2):113-121.
    142 Yang S, Carlson KH. Solid-phase extraction-high-performance liquid chromatography-ion trap mass spectrometry for analysis of trace concentrations of macrolide antibiotics in natural and waste water matrices. Journal of Chromatography A,2004,1038(1-2):141-155.
    143 Golet EM, Alder AC, Giger W. Environmental exposure and risk assessment of fluoroquinolone antibacterial agents in wastewater and river water of the Glatt valley watershed, Switzerland. Environmental Science and Technology,2002,36(17):3645-3651.
    144 Richard H Lindberg, Patrik Wennberg, Magnus I Johansson, et al. Screening of human antibiotic substances and determination of weekly mass flows in five sewage treatment plants in Sweden. Environmental Science and Technology,2005,39(10):3421-3429.
    145 Ternes TA. Ruckstande von Arzneimitteln, Diagnostika und Antiseptika in Abwasser, Flussen und Grundwasser:Habilitation Thesis, Johannes Gutenberg Universitat Mainz.2000.
    146 Marta Carballa, Francisco Omil, Juan M Lema, et al. Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Research,2004,38(12):2918-2926.
    147 Perez S, Eichhorn P, Aga DS. Evaluating the biodegradability of sulfamethazine, sulfamethoxazole, sulfathiazole, and trimethoprim at different stages of sewage treatment. Environmental Toxicology and Chemistry,2005,24(6):1361-1367.
    148 Koichi Kobayakawa, Chotaro Sato, Yuichi Sato, et al. Continuous-flow Photoreactor Packed with Titanium Dioxzide Immobilized on Large Siliea Gel Beads to Decompose Oxalic Acid in Excess Water. Journal of Photochemistry and Photobiology A: Chemistry,1998,18:65-69.
    149 Einage H,Futamura S, Ibusuki T. Complete Oxidation of Benzene in Gas Phase by Platinized Titania Photocatalyst. Environmental Science and Technology,2001,35(9):1880-1884.
    150 Hoffmann, Michael R, Peill, et al. Chemical and Physical Characterization of a TiO2-coated Fiber Optic Cable Reactor. Environmental Science and Technology,1996,30:2806-2812.
    151 Kayano Sunada, Yoshihiko Kikuchi, Kazuhito Hashimoto,et al. Bactericidal and Detoxification Effects of TiO2 Thin Film Photocatalysts. Environmental Science and Technology,1998,32(5):726-728.
    152 Matthews W R. Photooxidative Degradation of Coloured Organics in Water Using Supported Catalysts TiO2 on Sand. Water Research,1991,25(10):1169-1176.
    153 Sixto Malato, Julian Blanco, Diego C. Alarcon, et al. Photocatalytic Decontamination and Disinfection of Water with Solar Collectors. Catalysis Today,2007,122(1-2):137-149.
    154 I B S Will, J E F Moraes, A C S C Teixeira, et al. Photo-Fenton Degradation of Wastewater Containing Or ganic Compounds in Solar Reactors. Separation and Purification Technology,2004,34(1-3):51-57.
    155 Nikolaki MD, Philippopoulos CJ. Photochemical Degradation of 1,3-dichloro-2-propanol Aqueous Solutions. Journal of Hazardous Material,2007,146(3):674-679.
    156 Maria de los Milagros Ballari, Rodolfo Brandi, Orlando Alfano, et al. Mass Transfer Limitations in Photocatalytic Reactors Employing Titanium Dioxide Suspensions I. Concentration Profiles in the Bulk. Chemical Engineering Journal,2008,136(1):50-65.
    157 Tryba B. Immobilization of TiO2 and Fe-C-TiO2 Photocatalysts on the Cotton Material for Application in A Flow Photocatalytic Reactor for Decomposition of Phenol in Water. Journal of Hazardous Materials,2008,151(2-3):623-627.
    158 T Kanki, S Hamasaki, N Sano, et al.Water Purification in a Fluidized Bed Photocatalytic Reactor Using TiO2-coated Ceramic Particles. Chemical Engineering Journal,2005,108:155-160.
    159 D K Lee, S C Kima, IC Chob, et al. Photocatalytic Oxidation of Microcystin-LR in a Fluidized Bed Reactor Having TiO2-coated Activated Carbon. Separation and Purification Technology,2004,34:59-66.
    160 CL Hsueh, YH Huang, CY Chen. Novel Activated Alumina-supported Iron Oxide-composite as a Heterogeneous Catalyst for Photooxidative Degradation of Reactive Black 5. Journal of Hazardous Materials,2006,B 129:228-233.
    161 W Nam, J Kim, G. Han. Photocatalytic Oxidation of Methyl Orange in a Three-phase Fluidized Bed Reactor. Chemospher,2002,47:1019-1024.
    162 Y Jin, JX Zhu, ZQ Yu. Novel Configurations and Variants, Chapter 16, In:Circulating Fluidized Bed, eds. J R Grace, A A Avidan, and T M Knowlton, Blackie Academic and Professionalal, UK.1997:525-567.
    163金涌,祝京旭,汪展文等.流态化工程原理.清华大学出版社.2001:497-499.
    164王双飞,陈楠,陈国宁.上流式多相氧化塔处理难生化降解废水的方法.中国,发明专利,ZL 200910113967.X,2010年11月10日.
    165金丹.塔式曝气池内气液两相流动数值模拟及参数影响的研究.哈尔滨工业大学硕士学位论文.2006.
    166吴锦坤.鼓泡流化床流动特性的直接数值模拟.浙江大学.硕士学位论文.2006.
    167田凤国.内循环流化床气固流动数值模拟与实验研究.上海交通大学博士学位论文.2007.
    168曹长青.气-液-固三相流化床流动特性的实验研究与数值模拟.天津大学博士学位论文.2005.
    169王琦.气液固三相外循环流化床流动特性的研究.河北工业大学硕士学位论文.2006.
    170张晓东.鼓泡塔与内循环气升式反应器内气-液两相流的数值模拟.北京化工大学硕士学位论文.2006.
    171盖志杰.内循环流化床的数值模拟及实验验证.哈尔滨工业大学硕士学位论文.2006.
    172梁翼平.多相外循环流化床上升管内流动特性的模拟及实验研究.河北工业大学硕士学位论文.2007.
    173黄鑫,倪晋仁,李敏,等.新型结构内循环生物流化床的流体力学特性试验及数值模拟.环境污染与防治,2006,2(28):90-92.
    174 X Zhang, G Ahmadi. Eulerian-Lagrangian Simulations of Liquid-Gas-Solid Flows in Three-phase Slurry Reactors. Chemical Engineering Science,2005,60:5089-5104.
    175 RS Oey, RF Mudde, LM Portela, et al. Simulation of a Slurry Airlift Using a Two-fluid Model. Chemical Engineering Science,2001,56:673-681.
    176 FE Cruz, R Steward, T Pugsley. Modelling CFB Riser Hydrodynamics Using FLUENT, Circulating Fluidized Bed Technology, Ⅶ, John R.Grace, Jesse(J.-X.)Zhu and Hugo de Lasa,Eds.,Ontario, Canada.2002:435-442.
    177 H Arastoopour. Numerical Simulation and Experimental Analysis of Gas/Solid Flow Systems:1999 Fluor-Daniel Plenary Lecture. Powder Technology,2001,119:59-67.
    178 Mordechai L Kremer. Mechanism of the Fenton reaction. Evidence for a new intermediate. Physical Chemistry Chemical Physics.1999,15(1):3595-3607.
    179 Isao Yamazaki, Lawrence H Piette. EPR spin trapping study on the oxidizing species formed in the reaction of the ferrous ion with hydrogen peroxide. Journal of the American Chemical Society.1991,113(20):7588-7593
    180夏敏,贾丽,季怡萍.液相色谱-质谱法同时检测畜禽肉中5种大环内酯抗生素.分析测试学报,2004,3(1):217-219.
    181 Sokol J, Matisova E, Dudrikova E, et al. Determination of tylosin in milk by HPLC using SPE. Toxicology Letters,1996,88(1):95-96.
    182 Horie M, Saito K, Ishii R, et al. Simultaneous determination of five macrolideantibiotics in meat by high-performance liquid chromatography. Journal of Chromatography A, 1998,812(1):295-302.
    183 Edder P, Coppex L, Cominoli A, et al. Analysis of erythromycin and oleandomycin residues in food by high-performance liquid chromatography with fluorometric detection. Food Additives and Contaminants,2002,19(3):232-240.
    184 PratsC, FranceschR, ArboixM, et al 1 Determinationof tylosin residues in different animal tissues by high performance liquid-chromatography. Journal of Chromatography B,2001,766(1):57-65.
    185 Juhel-Gaugain M, Anger B. Laurentie M. Multiresidue chromatographic method for the determination of macrolide residues inmuscle by high-performance liquid chromatography with UV detection. Journal of AOAC International,1999,82(5):1046-1053.
    186 Moran JW, Turner JM, Coleman MR. Determination of tilmicosin in bovineandporcine sera by liquid chromatography. Journal of AOAC International,1997,80(6):1183-1189.
    187 Stobba-WileyCM, ChangJP, ElsburyDT, et all Determinationof tilmicosin residues in chicken, cattle, swine, and sheep tissues by liquid chromatography. Jounral of AOAC International,2000,83(4):837-846.
    188 Jong-hwanL, Beom-su J. Determinationof roxithromycin residues in the floundermuscle with electrospray liquid chromatography-mass spectrometry. Journal of Chromatography B:2000,746(2):219-225.
    189 Masakazu H, Harumi T, Kazuo T. Determination of macrolideantibiotics in meat and fish by liquid chromatography-electrospray mass spectrometry. Analytical Chimica Acta, 2003,492(1-2):187-197.
    190 M Dubois, D Fluchard, E Sior, et al. Identification and quantification of five macrolide antibiotics in several tissues, eggs and milk by liquid chromatography-electrospray tandem mass spectrometry. Journal of Chromatography B,2001,753(2):189-202.
    191丛丛.负载氧化铁石英砂芬顿-流化床体系降解甲基橙的研究:[博士论文],华南理工大学,2011.
    192 Khemarath O. Multi-metal equilibrium sorption and transport modeling for copper chromium and arsenic in an iron oxide-coated sand synthetic groundwater system. PhD thesis, Oregon state university. Oregon,2001,46-47.
    193李珍,李玲琴,曾永年,等.西宁的黄土研究.青海地质,1996:1-10.
    194 Z Shi, GM Xu, J Deng. Adsorptive removal of Sb from aqueous solution using iron-oxide coated sand. Water Environment Reseach,2009,1:639-644.
    195 MB Kasiri, H Aleboyeh, A Aleboyeh. Degradation of acid Blue 74 using Fe-ZSM zeolite as a heterogeneous photo-Fenton catalyst. Applied Catalysis B:Environmental,2008, 84:9-15.
    196张少峰.三相循环流化床蒸发器防除垢和强化沸腾传热的研究.天津大学博士学位论文,2000.
    197李洲,秦峰,古雪蔷.红霉素萃取新工艺研究Ⅰ.中性络合萃取体系研究.中国抗生素杂质,2000,25(3):167-171.
    198 Yong-Hak Kim, Thomas M, Heinze, et al. A kinetic study on the degradation of erythromycin A in aqueous solution. International Journal of Pharmaceutics, 2004,271:63-76.
    199 Nakagawa Y, Itai S, Yoshida T, et al. Physicochemical properties and stability in the acedic solution of a new macrolide antibiotic, clarithromycin, in comparison with erythromycin. Chemical and Pharmaceutical Bulltin,1992,40:725-728.
    200 Volmer DA, Hui JPM. Study of erythromycin A decomposition products in aqueous solution by solid-phase microextraction/liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry,1998,12:123-129.
    201 Atkins PJ, Herbert TO, Jones NB. Kinetic studies on the decomposition of erythromycin A in aqueous acid and neutral buffers. International Journal of Pharmaceutics,1986, 30:199-207.
    202 Alam P, Buxton PC, Parkinson JA, et al. Structural studies on erythromycin A enol ether: full assignments of the 1H and 13C NMR spectra. Journal of the Chemical Society, Perkin Transactions 2,1995,2:1163-1167.
    203 Cachet Th, Roets E, Hoogmartens J, et al. Decomposition kinetics of erythromycin A in acidic aqueous solutions. International Journal of Pharmaceutics,1989,55:59-65.
    204 Kibwage IO, Busson R, Janssen G, et al. Translactonization in erythromycin. Journal of Organic Chemistry,1987a,52:990-996.
    205 Kibwage IO, Janssen G, Busson R, ea al. Identification of novel erythromycin derivatives in mother liquor concentrates of Streptomyces erythraeus. Jorunal of Antibiotics,1987b,40:1-6.
    206 Cachet Th, Roets E, Hoogmartens J, et al. Separation of novel derivatives from commercial erythromycin samples by thin-layer chromatography. Journal of Chromatography,1987,403:343-349.
    207 Cachet Th, Van den Mooter G, Hauchecorne R, et al. Decomposition kinetics of erythromycin A in zcid aqueous solutions. International Journal of Pharmaceutics,1989,55:59-65.
    208 Yong-Hak Kim, Thomas M Heinze, Richard Beger, et al. A kinetic sudy on the degradation of erythromycin A in aqueous solution. International Journal of Pharmaoeutics,2004,271:63-76.
    209 Atkins PJ, Herbert TO, Jones NB. Kinetic studies on the decomposition of erythromycin A in aqueous acid and neutral buffers. International Journal of Pharmaceuitics,1986,30:199-207.
    210 Lazarevski T, Radobolja G, Djokic S. Erythromycin VI:kinetics of acid-catalyzed hydrolysis of erythromycin oxime and erythromycylamine. Journal Pharmaceutical Sciences,1978,67:1031-1033.
    211 Marzo A, Dal Bo L. Chromatography as an analytical tool for selected antibiotic classes:a reappraisal addressed to pharmacockinetic applications. Journal of Chromatography A,1998,812:17-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700