用户名: 密码: 验证码:
秸秆发酵制取生化腐殖酸过程中的理化特性及微生物学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国的秸秆资源十分丰富,常规方法是将秸秆发酵作为有机肥,利用秸秆发酵制取生化腐殖酸,既可减少环境污染,又可得到高附加值的生化腐殖酸产品,从而提高秸秆资源化利用率。本研究探讨了稻草段+尿素、稻草粉+尿素、稻草段+牛粪、稻草粉+牛粪四种处理在发酵过程中的理化性质、秸秆组分化、腐殖质形成和微生物类群特征,取得了以下结果。
     发酵过程中,4种处理的理化性质发生了系列变化。堆料颜色逐渐由黄色或黄棕色转化成棕黑色;发酵最高温度达74℃,高温阶段(≥55℃)持续了25d;发酵料pH呈现出先降低再升高的趋势,发酵结束后物料pH为7.92-8.08。
     各处理中温和高温微生物数量细菌>放线菌>真菌。发酵结束后,中温细菌数量介于1.10×109~1.32×109cfu·g-1,中温放线菌数量介于1.10×106~1.22×106cfu·g-1;中温真菌数量介于4.33×103~5.64×103cfu·g-1之间。各处理的高温细菌数量介于2.99×108~4.6×108cfu·g-1,高温放线菌数量介于7.81×105~8.21×105cfu·g-1。而发酵初期,物料中未能检测到高温真菌;至第30d,各处理高温真菌数量达到最高,介于1.25×104~1.52×104cfu·g-1,至发酵结束(60d),高温真菌数量介于2.47×103~5.00×103cfu·g-1。
     不同处理的纤维素、半纤维素和木质素含量随发酵时间延长而降低。其中,纤维素含量由初始值29.61%-31.99%降至1.24~1.96%,半纤维素含量从初期的24.16%~27.74%降至后期的5.97%-6.42%。木质素含量略有减少,由初始的25.28%~25.93%降低至24.76%-25.11%。
     水溶性组分含量表现为先增加后降低,由初期4.3%~9.8%增加至17.5%-18.1%,随后降至9.8%-10.9%。发酵料的C/N由初始的31.7~32.8下降至13.9-14.7。腐殖质含量由初始的55.6g·kg-1~81.3g·kg-1增加到117.3g·kg-1~125.8g·kg-1。富里酸含量由初期的38.2g·kg-1~41.3g·kg-1降低至29.9g·kg-1~33.4g·kg-1,而胡敏酸含量由12.7g.kg-1~34.4g·kg-1增加至81.3g·kg-1~85.8g·kg-1,发酵料的H/F由0.31-0.83增加到2.49-2.70。
     对4个处理的腐熟期样品细菌群落进行了DGGE-PCR分析,结果表明,处理Ⅰ和Ⅱ的条带数为22,处理Ⅲ和Ⅳ的条带数为20;对DGGE图谱进行多样性指数分析,结果显示,处理Ⅰ和Ⅱ细菌丰度和多样性指数高于处理Ⅲ和Ⅳ。对DGGE条带克隆测序,结果表明,样品中的细菌主要有苍白杆菌属(Ochrobactrum sp.)、不动杆菌属(Acinetobacter sp.).假单胞菌属(Pseudomonas sp.).未可培养屈挠杆菌科(UnculturedFlexibacteraceae bacterium),其余为未培养菌(Uncultured bacterium)。这些菌属于γ变形菌门(γ-proteobacteria),α变形菌门(α-proteobacteria)和拟杆菌门(Bacteroidetes)。
     采用454焦磷酸测序对添加尿素和牛粪的两种秸秆发酵样品(处理Ⅰ对应S1;处理Ⅳ对应S2)的细菌类群进行了分析,结果表明,在门、纲、目、科、属的分类水平上,两个样品的细菌群落结构和优势菌群不同。主要集中在变形杆菌门(Proteobacteria)和拟杆菌门(Bacteroidetes);S1和S2的变形杆菌门类群比例分别为31.62%和35.81%,拟杆菌门比例分别占27.41%和35.29%。此外,S1中厚壁菌门(Firmicutes)占18.15%,unclassified Bacteria占8.80%,柔膜菌门(Tenericutes)占7.28%,其他门占6.74%;而在S2中,厚壁菌门(Firmicutes)占3.43%,unclassified Bacteria数量占9.63%,浮霉菌门(Planctomycetes)占7.06%,其他门的细菌占8.78%。
     在属的分类水平,在≥1%比例上,S1中有17个属,S2有13个属。样品S1主要有假单胞菌属(Pseudomonas)、无胆甾原体属(Acholeplasma)、Alkaliflexus、Sulfurimonas、 Petrimonas、Serprns、Tissierella、Sedimentibacter、密螺旋体属(Treponema)、纤维杆菌属(Fibrobacter)、Sphingopyxis、Saccharofermentans、梭菌属(Clostridium)、螺旋体属(Spirochaeta)、脱硫单胞菌属(Desulfuromonas)、Luteimonas、Pusillimonas,S2中主要有Acholeplasma、Alkaliflexus、Sphingopyxis、Devosia、Methylobacillus、Steroidobacter、 Aequorivita、Arenibacter、Rhodopirellula、Vitellibacter、Lysobacter、Crocinitomix、 Blastopirellua。在≥1%比例上,仅Acholeplasma、 Alkaliflexus、Sphingopyxis三个属为两个样品共有的类群。在两处理样品中,top10的OTUs中没有共同的单元,说明发酵料添加牛粪和尿素对细菌类群影响大,导致优势类群完全不同。
     本研究结果表明,应用不同外加氮源,秸秆发酵形成生化腐殖酸过程中,尽管发酵温度等参数、秸秆降解率、腐解物中的腐殖质含量及其组分不存在显著差异,但微生物类群显著不同,且添加尿素的秸秆发酵物料细菌类群多样性高于添加牛粪的处理,说明在不同环境中,参与腐殖酸形成与转化的微生物群落呈现多样化。
Straw is one of the richest renewable agricultural resource in China, and are usually used as organic fertilizer after fermentation. In the recent years, the straw has been used to produce the biochemical humic acid by fermentation, and which can reduce environmental pollution, and improve the straw resource utilization, and product had high added-value. In this paper, four treatments, i.e. straw section+urea (treatment I), straw powder+urea (treatment II), straw section+cow dung (treatment III), straw powder+cow dung (treatment IV), were used to ferment and produce biochemical humic acid, and the physical and chemical properties, degradation of straw component, humus formation and the microbial community was studied during the fermentation process, and the results were as follows.
     During the fermentation, the physical and chemical property of4treatments was studied. The results showed that the color of compost material changed from yellow or yellow brown into dark brown gradually; The maximum fermentation temperature reached to74℃, and the high temperature stage (≥55℃) was sustained for25d; The pH value of fermentation material decreased at the beginning of fermentation, and then followed by rising, and the final pH value was7.92-8.08at the end of fermentation.
     The mesophilic and thermophilic microbial quantities in defferent compost materials were as the seriation:bacteria>actinomycete>fungi. At late fermentation stage, the quantity of mesophilic bacteria was between1.10×109~1.32×109cfu·g-1; and the quantity of mesophilic actinomycetes was between1.10×106~1.22×106cfu·g-1; the amount of mesophilic fungi was4.33×103~5.64×103cfu·g-1.The amount of thermophilic bacteria was between2.99×108~4.6×108cfu·g-1; the amount of thermophilic actinomycete was7.81×105~8.21×105cfu·g-1. At the early fermentation stage, there was no fungus in the compost straw detected. On the30th day, fungi quantity reached the highest, and was1.25×104~1.52×104cfu·g-1, and the quantity was2.47×103~5.00×103cfu·g-1when fermentation finished.
     The cellulose, hemicellulose, and lignin content of different treatment materials decreased with the extension of fermentation time. The cellulose content decreased from29.61%~31.99%at beginning to1.24~1.96%in the end; and the hemicellulose content varied from24.16%~27.74%at early to5.97%~6.42%in the end; the lignin content reduced slightly, and changed from25.28%~25.93%at early to24.76%~25.11%.
     Water-soluble component content of compost material increased at first and then decreased, and the value increased from4.3%~9.8%to17.5%~18.1%, and decreased to9.8%~10.9%. The C/N ratio of compost matter decreased from31.7~32.8to13.9~14.7; and humus content increased from55.6g·kg-1~81.3g·kg-1to117.3g·kg-1~125.8g·kg-1; humic acid content increased from12.7g·kg-1~34.4g·kg-1to81.3g·kg-1~85.8g·kg-1; however, the fulvic acid content decreased from38.2g·kg-1~41.3g·kg-1to29.9g·kg-1~33.4g·kg-1; the H/F ratio increased from0.31~0.83to2.49~2.70.
     The DGGE bands were cloned and sequenced; the results revealed that the dominant bacteria were Ochrobactrum sp., Acinetobacter sp., Pseudomonas sp., and uncultured Flexibacteraceae bacterium; the others belonged to uncultured bacterium. These bacteria mainly belong to γ-proteobacteria, α-proteobacteria and bacteroidetes at the classification level of phylum.
     In late fermentation stage, the microbial community in compost matter of the straw section+urea (treatment I corresponds to S1) and straw section+cow-dungs (treatment Ⅲ corresponds to S2) was analyzed using the454pyrosequencing method. The results suggested that the bacterial groups were very different at the classification level of phylum, class, order, and family and genus. At the level of phylum, the predominant bacteria groups of the two samples mainly belonged to Proteobacteria and Bacteroidetes. The ratio of Proteobacteria in sample S1and S2was31.62%and35.81%, and the ratio of Bacteroidetes in S1and S2was27.41%and35.29%. Furthermore, the proportion of bacteria belong to Firmicutes, unclassified Bacteria, Tenericutes in S1was18.15%,8.80%and7.28%; but the proportion of bacteria belong to Firmicutes, unclassified Bacteria and Planctomycetes in S2was3.43%,9.63%and7.06%.
     Analysis of454pyrosequencing suggested that there were no common bacteria groups existed in the top10OTUs in S1and S2, which revealed that, adding cow manure and urea into straw, the bacteria groups involved in the fermentation were influenced heavily, and the dominant bacteria groups were completely different.
     The results indicated that, when applying the different nitrogen source (cow dung and urea) in the straw, though the fermentation parameters such as fermentation temperature etc., degradation rate of straw, decomposing and the humus content and humic acid components had not significant differences, the microbial groups were quite different, and the bacteria diversity index of fermentation materials adding urea was higher than that adding cow manure during the processing of fermentation. The results revealed that the microbial communities participating in humic acid formation and transformation were diverse in different environments.
引文
[1]中华人民共和国统计局.国际统计年鉴[M].北京:中国统计出版社,2001
    [2]毕于运,王亚静,高春雨.中国主要秸秆资源数量及其区域分布[J].农机化研究,2010,(3):1-7
    [3]曹国良,张小曳,郑方成,等.中国大陆秸秆露天焚烧的量的估算[J].资源科学,2006,28(1):9-13.
    [4]陈新锋.对我国农村焚烧秸秆污染及其治理的经济学分析兼论农业现代化过程中农业生产要素的工业替代[J].中国农村经济,2001,(2):47-52.
    [5]毕于运,王亚静,高春雨.我国秸秆焚烧的现状危害与禁烧管理对策[J].安徽农业科学,2009,37(27):1318-1318.
    [6]农业部科技教育司,《全国农作物秸秆资源调查与评价报告》,2012.12.17,http://www.chom.gov.cn/article/class14/201101/7118.html
    [7]边炳鑫,赵由才.农业固体废物的处理与综合利用[M].北京:化学工业出版社,2005
    [8]黄忠乾,龙章富,彭卫红,等.农作物秸秆资源的综合利用.资源开发与市场[J],1999,15(1):32-34
    [9]高培基,刘洁等.天然纤维素在生物降解过程中超分子结构的变化关—氢键断裂在纤维素降解中作用的探讨[J].自然科学进展.1998,8:1
    [10]Wang S L, Chen L G,Chen C S, Chen L F. Cellulase and xylanase production Aspergillus sp.G-393[J].Appl Biochem Biotechnol,1994,44:231-242
    [11]郑大锋,邱学青,楼宏铭.木质素的结构及化学改性进展[J].精细化工,2005,22(4):249-252
    [12]蒋挺大.木质素[M].北京:化学工业出版社,2001
    [13]Hiroshi Ooshima, Douglas S.Burns, Alvin O.Converse. Adsorption of cellulase from Trichoderma reesei on cellulose and lignacious residue in wood pretreated by dilute sulfuric acid with explosive decompression[J].Biotechnology and Bioengineering,1990,36(5):446-452
    [14]Sjostrom E. Wood Chemistry, Fundamentals and Applications[M],2nd ed New York/London:Academic Press,1993
    [15]许凤,钟新春,孙润仓,詹怀宇.秸杆中半纤维素的结构及分离新方法综述[J].林产化学与工业,2005,25增刊:179-182
    [16]SUN R C, LAWTHER J M, BANKS W B. Isolation and characterization of hemicellulose B and cellulose from pressure refined wheat straw[J]. Industrial Crops and Products 1998,(2-3):121-128.
    [17]王连棋,王祯丽,黄华波.白腐菌在秸秆堆肥化中的应用[J].石河子大学学报(自然科学版),2003,7(2):161-164.
    [18]Piccolo A. The supramolecular structure of humic substances:A novel understanding of humus chemistry and implications in soil science[J]. Advances in Agronomy,2002,75:57-134.
    [19]黄得扬,陆文静,土洪涛.有机固体废物堆肥化处理的微生物学机理研究[J].环境污染治理技术与设备,2004,5(1):12-18.
    [20]赵由才.生活垃圾资源化原理与技术[M].北京:化学工业出版社,2002,140.
    [21]Ryckeboer J, Mergaert J, Coosemans J, et al.Microbiological aspects of biowastes during composting in a monitored compost bin[J] Journal of Applied Microbiology,2003,94,127-137.
    [22]王旭东,于天富,陈多仁,等.玉米秸秆腐解过程物质组成及胡敏酸的动态变化.Ⅰ物质组成的动态变化[J].干旱地区农业研究,2001,19(3):78-81.
    [23]Golueke C G. Principles of biological resource recovery[J].Biocycle,1981,22:36-40.
    [24]Jiminez E I, Garcia V P. Determination of maturity indices for city refuse composts[J].Agric Ecosys Environ,1992,38:331-343.
    [25]Kasper Jr V, Derr D A. Sludge composting and utilization:An Economic Analysis of the Camden sludge composting facility[J].Final Reprt to USEPA, NJDEP. CCMUA [M].Rutogers State Univ.,New Brunswick, N J,1981.
    [26]魏源送,李永强,樊耀波等.不同通风方式对污泥堆肥的影响[J].环境科学,2001,22(3):54-59.
    [27]李国媛.秸秆腐熟菌剂的细菌种群分析及其腐熟过程的动态过程研究[D].[硕士学位论文]中国农业科学院.2007.
    [28]Song N, Cai HY, Yan ZS, Jiang HL. Cellulose degradation by one mesophilic strain Caulobacter sp. FMC1 under both aerobic and anaerobic conditions[J]. Bioresource Technology,2013 (131):281-287.
    [29]姜佰文等.秸秆常温快速腐熟生物菌剂的筛选[J].东北农业大学学报.2009,40(5):46-49.
    [30]黄玉兰等.一株耐低温纤维素酶高产菌株的筛选、鉴定和产酶的初步试验[J].微生物学通报.2010,37(5):637-644.
    [31]Fujimoto N, Kosaka T, Nakao T, Yamada M. Bacillus licheniformis Bearing a High Cellulose-Degrading Activity, which was Isolated as a Heat-Resistant and Micro-Aerophilic Microorganism from Bovine Rumen[J]. Open Biotechnology Journal,2011,5:7-13
    [32]何永梅.介绍几种秸秆腐熟菌剂[J].科学种养.2009.5.
    [33]戴芳,曾光明,袁兴中,吴小红,时进钢.生物表面活性剂在农业废物好氧堆肥中的应用[J].环境科学,2005,26(4):181-185.
    [34]王伟,曾光明,黄国和,钟华,傅海燕.生物表面活性剂在土壤修复及堆肥中应用现状展望[J].环境科学与技术,2005,28(6):99-101.
    [35]曾光明,黄国和,袁兴中,等.堆肥环境生物与控制[M].北京:科学出版社,2006,1-21.
    [36]牛俊玲,李国学,崔宗均,王伟东,刘建斌.堆肥中高效降解纤维素林丹复合菌系的构建及功能[J].环 境科学,2005,26(4):186-190.
    [37]Tan K H. Humic matter in soil and the environment:principles and controversies[M]. New York: Marcel Dekker,2003.
    [38]曾宪成,成绍鑫.腐植酸的主要类别[J].腐植酸(2):4-10.
    [39]曾宪成.腐植酸从哪里来,到哪里去[J].腐植酸,2012,2:1-10.
    [40]彭亚会,马献发等.腐植酸与EM原露配合使用在奶牛生产中应用效果研究[J],腐植酸,2005,(3):32-36.
    [41]成绍鑫.腐植酸类物质概论[M].化学工业出版社,2007.
    [42]黄士忠.农林牧废弃物资源饲料化的新途径.农业环境保护[J],1993,2(5):233-235.
    [43]徐达,周青.农业废物的环境生态效应与资源化利用[J].中国农学通报,2006,22(6):14-417.
    [44]张承龙.农业废物资源化利用技术现状及其前景[J].中国资源综合利用,2002,2:14-16.
    [45]THOMSEN M, LASSEN P, DOBEL S, et al. Characterisation of humic materials of different origin:A multivariate approach for quantifying the latent properties of dissolved organic matter[J]. Chemosphere,2002,49:1327-1337.
    [46]CHA I X, SH IMAOKA T, Q IANG G, et al. Characterization of humic and fulvic acids extracted from landfill by elemental composition,13C CP/MAS NMR andTMAH-Py-GC/MS[J]. Waste Management, 2008,28:896-903.
    [47]GEYERA W, HEM ID IA F, BRUGGEMANNA A H, et al. Investigation of soil humic substances from different environments using TG-FTIR and multivariate data analysis[J]. Thermochimica Acta,2000,361,139-146.
    [48]MAO J D, TREMBLAYL, GAGN, J P, et al. Humic acids from particulate organic matter in the Saguenay Fjord and the St. Lawrence Estuary investigated by advanced solid-state NMR[J]. Geochimica et Cosmochimica Acta,2007,71:5483-5499.
    [49]FONG S S, MOHAMED M. Chemical characterization of humic substances occurring in the peats of Sarawak[J]. Organic Geochemistry,2007,38:967-976.
    [50]LU X Q, HANNA J V, JOHNSONW D. Source indicators of humic substances:an elemental composition, solid state 13C CP/MAS NMR and Py-GC/MS study[J].App 1 Geochem,2000,15:1019-1033.
    [51]黄红丽.木质素降解微生物特性及其对农业废物堆肥腐殖化的影响研究[D].[博士学位论文]湖南大学.2009.
    [52]张奇春,王光火.施用化肥对土壤腐殖质结构特征的影响[J].土壤学报,2006,43(4):617-623.
    [53]李学垣.土壤化学.北京:高等教育出版社[M],2001,46-47.
    [54]黄红丽.木质素降解微生物特性及其对农业废物堆肥腐殖化的影响研究[D].湖南大学,2009.
    [55]Buffle J., Greter F.L., Haerdi W.:Measurement of complexation properties of humic and fulvic acids in natural waters with lead and copperion-selective electrodes[J]. Anal. Chem.1977,49:216-222.
    [56]Busnot A, Busnot F, LeQuerlerJ F, et al. Characterization of humic substances extracted from different sediments of the lower Normand region [J]. Thermochimica Acta,1995,254:319-330.
    [57]朱京涛,高宝珍,朱通顺.不同来源黄腐酸性质、性能的研究[J].腐植酸,1993,3:23-24.
    [58]Saiz-Jimenez C. The Chemical Structure of humic substances:recent advances[M]. In:Piccolo A(Ed),Humic Substances in Terrestrial Ecosystems. Elsevier, Amsterdam.1996,1-44.
    [59]Taha F. Marhaba, Ishvinder H. Kochar. Rapid prediction of disinfection formation potential by fluorescence[J]. Environ Engg and Policy,2000,2:29-36.
    [60]边文骅.腐植酸形成的微生物学机理研究概况[J].腐植酸.2001.2:1-4.
    [61]边文骅,董敬华,彭立凤,边志敏.腐殖酸发酵形成黄腐酸的周期及其规律的研究[J].河北师范大学学报(自然科学版),1996,20(3):78-79.
    [62]赵亚玲.黄腐酸(FA)发酵生产及分离提取的研究[D].[硕士学位论文]西北大学.2004.
    [63]刘陶,宋鹏,杨赛,陈五岭.甜高粱秸秆汁发酵生化黄腐酸液肥工艺条件的研究[J].西北大学学报(自然科学版).2006,36(6):929-931.
    [64]Auldry C. P., Ahmed O.H., Nik Muhamad A. M., Nasir H.M.,Jiwan M. Production of potassium and calcium hydroxide, compost and humic acid from sago (Metroxylon sagu) waste[J]. American Journal of Environmental Sciences.2009,5(5):664-668.
    [65]张雪英,周顺桂,周立祥,等.堆肥处理对污泥腐殖物质形态及其重金属分配的影响[J].生态学杂志,2004,23(1):30-33.
    [66]李吉进,郝晋珉,邹国元,等.高温堆肥碳氮循环及腐殖质变化特征研究[J].生态环境,2004,3:332-334.
    [67]李国学,张福锁.固体废弃物堆肥化与有机复合肥生产[M].北京:化学工业出版社,2000.
    [68]Canarutto S, Petruzzelli G, lubrano L, et al. How composting affects heavy metal content[J]. BioCycle, 1991,32:48-50.
    [69]Garcia C, Hernandez T, Costa F. Characterization of humic acids from uncomposted and composted sewage sludge by degradative and nondegradative techniques[J]. Bioresource Technology,1992, 41(1):53-57.
    [70]Fuentes M, Baigorri R, Gonzalez-gaitano G, et al. The complementary use of 1H NMR,13C NMR, FTIR and size exclusion chromatography to investigate the principal structural changes associated with composting of organic materials with diverse origin[J]. Organic Geochemistry, 2007,38(12):2012-2023.
    [71]Grasso D, Chin Y P, Weber W J. Structural and behavioral characteristics of a commercial humic acid and natural dissolved aquatic organic matter[J]. Chemosphere,1990,21(10-11):1181-1197.
    [72]Hsu J, Lo S. Chemical and spectroscopic analysis of organic matter transformations during composting of pig manure[J]. Environmental Pollution,1999,104:189-196.
    [73]鲍艳宇,颜丽,娄翼来,等.鸡粪堆肥过程中各种碳有机化合物及腐熟度指标的变化[J].农业环境科学学报,2005(4):820-824.
    [74]Tuomela M. Vikman M, Hatakka A. et al. Biodegradation of lignin in a compost environment:a review[J]. Bioresource Technology,2000,72:169-183.
    [75]Garcia-mina J M. Stability, solubility and maximum metal binding capacity in metal-humic complexes involving humic substances extracted from peat and organic compost[J]. Organic Geoc hemistry,2006, 37(12):1960-1972.
    [76]Huang G F, Wu Q T, Wong J W, et al. Transformation of organic matter during co-composting of pig manure with sawdust [J]. Bioresource Technology,2006,97(15):1834-1842.
    [77]Stenson A.C., A.G. Marshall, W.T. Copper:Exact masses and chemical formulas of individual suwannee river fulvic acids from ultrahigh resolution ESI FT-ICR mass spectra[J]. Anal.Chem. 2003,75:1275-1284.
    [78]Veeken A, Nierop K, de Wilde V, et al. Characterisation of NaOH-extracted humic acids during composting of a biowaste[J]. Bioresource Technology,2000,72(1):33-41.
    [79]Zhang M. and Z. He:Long-term changes in organic carbon and nutrients of an ultisol under rice cropping in southeast China[J]. Geoderma,2004,118:167-179.
    [80]Arancon N.Q., Edwards C.A., Bierman P., Welch C., Metzger J.D.:Influences of vermicomposts on field strawberries:1. Effects on growth and yields[J]. Bioresource Techn.2004,93:145-153.
    [81]贺婧,钟艳霞,颜丽.不同来源腐殖酸对土壤酶活性的影响[J].中国农学通报,2009,25(24):258-261.
    [82]贺婧,颜丽.不同来源腐殖酸对土壤生化反应强度的影响[J].土壤通报,2008,39(2):456-458.
    [83]马献发,彭亚会,袁磊.腐植酸在改善生态环境中的应用[J].腐植酸,2006,1:20-23.
    [84]Trevisan S, Francioso O, Quaggiotti S, et al. Humic substances biological activity at the plant-soil interface:From environmental aspects to molecular factors[J]. Plant signaling & behavior,2010,5(6): 635-643.
    [85]Carletti P, Masi A, Spolaore B, Polverino De LauretoP, De Zorzi M, et al. Protein Expression Changes in Maize Roots in Response to Humic Substances. JChem Ecol 2008; 34:804-18.
    [86]Nardi S, Pizzeghello D, Remiero F, Rascio N. Chemical and biochemical properties of humic substances isolated from forest soils and plant growth. Soil Sci SocAm J 2000; 64:639-45.
    [87]Nardi S, Muscolo A, Vaccaro S, Baiano S, Spaccini R,Piccolo A. Relationship between molecular characteristics of soil humic fractions and glycolytic pathway and krebs cycle in maize seedlings. Soil Biol Biochem,2007,39:38-46.
    [88]Aminifard M H, Aroiee H, Azizi M, et al. Effect of Humic Acid on Antioxidant Activities and Fruit Quality of Hot Pepper (Capsicum annuum L.)[J]. Journal of Herbs, Spices & Medicinal Plants,2012, 18(4):360-369.
    [89]El-Mohamedy R S R, Ahmed M A. Effect of biofertilizers and humic Acid on control of dry root rot disease and improvement yield quality of mandarin (Citrus reticulate Blanco)[J]. Research Journal of Agriculture and Biological Sciences,2009,5(2):127-137.
    [90]Asli S, Neumann P M. Rhizosphere humic acid interacts with root cell walls to reduce hydraulic conductivity and plant development[J]. Plant and soil,2010,336(1):313-322.
    [91]Cimrin K M, Yilmaz I. Humic acid applications to lettuce do not improve yield but do improve phosphorus availability [J]. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science,2005, 55(1):58-63.
    [92]Salman S R, Abou-Hussein S D, Abdel-Mawgoud A M R, et al. Fruit yield and quality of watermelon as affected by hybrids and humic acid application[J]. Journal of Applied Sciences Research,2005,1(1): 51-58.
    [93]Rakshit S, Uchimiya M, Sposito G. Iron (III) bioreduction in soil in the presence of added humic substances[J]. Soil Science Society of America Journal,2009,73(1):65-71.
    [94]Humic substances:structures, models and functions[M]. Royal Society of Chemistry,2001.
    [95]Silva M E F, de Lemos L T, Nunes O C, et al. Correlation Between Humic-Like Substances and Heavy Metals in Composts[M]//Functions of Natural Organic Matter in Changing Environment. Springer Netherlands,2013:511-516.
    [96]Giannis A, Gidarakos E, Skouta A. Application of sodium dodecyl sulfate and humic acid as surfactants on electrokinetic remediation of cadmium-contaminated soil[J]. Desalination,2007,211(1): 249-260.
    [97]Clemente R, Bernal M P. Fractionation of heavy metals and distribution of organic carbon in two contaminated soils amended with humic acids[J]. Chemosphere,2006,64 (8):1264-1273.
    [98]Li Y, Yue Q, Gao B. Adsorption kinetics and desorption of Cu (Ⅱ) and Zn (Ⅱ) from aqueous solution onto humic acid[J]. Journal of hazardous materials,2010,178(1):455-461.
    [99]O'Dell R, Silk W, Green P, et al. Compost amendment of Cu-Zn minespoil reduces toxic bioavailable heavy metal concentrations and promotesestablishment and biomass production of Bromus carinatus (Hook and Arn.) [J]. Environmental Pollution,2007,148 (1):115-124.
    [100]Vetvicka V, Baigorri R, Zamarreno A M, et al. Glucan and humic acid:Synergistic effects on the immune system[J]. Journal of Medicinal Food,2010,13(4):863-869.
    [101]Andersson C, Abrahamson A, Brunstrom B, et al. Impact of humic substances on EROD activity in gill and liver of three-spined sticklebacks (Gasterosteus aculeatus)[J]. Chemosphere,2010,81(2): 156-160.
    [102]Joone G K, Dekker J, van Rensburg C E J. Investigation of the immunostimulatory properties of oxihumate[J]. Zeitschrift fur Naturforschung C-Journal of Biosciences,2003,58(3-4):263-267.
    [103]章家恩,蔡燕飞,高爱霞,等.土壤微生物多样性实验研究方法概述①[J].土壤(Soils),2004,36(4):346-350.
    [104]McCarthy C M, Murray L. Viability and metabolic features of bacteria indigenous to a contaminated deep aquifer. Microbial Ecol,1996,32:305-321.
    [105]White D C, Pinkart H C, Ringelberg D B. Biomass measurements:biochemical approaches[J]. Manual of environmental microbiology. ASM Press, Washington, DC,1997:91-101.
    [106]Stefanowicz A. The Biolog plates technique as a tool in ecological studies of microbial communities[J]. Polish Journal of Environmental Studies,2006,15(5):669.
    [107]Bochner B R. Sleuthing out bacterial identities. Nature,1989,339:157-158.
    [108]Winding A, Hendriksen NJ. Biolog substrate utilization assay for metabolic fingerprint of soil bacteria:incubation effects. In:Insam H, Rangger A. eds. Microbial communities:Functional versus structural approaches.Heidelberg:Springer,1997,192-205.
    [109]Preston-Mafham J, Boddy L, Randerson P F. Analysis of microbial community functional diversity using sole-carbon-source utilisation profiles-a critique[J]. FEMS Microbiology Ecology,2006, 42(1):1-14.
    [110]Haack S K, Garchow H, Klug M J, et al. Analysis of factors affecting the accuracy, reproducibility, and interpretation of microbial community carbon source utilization patterns[J]. Applied and Environmental Microbiology,1995,61(4):1458-1468.
    [111]Vestal J R, White D C. Lipid analysis in microbial ecology:Quantitative approaches to the study of microbial communities. Bioscience,1989,39:535-541.
    [112]White D C, Bobbie R J, Herron J S, et al. Biochemical measurements of microbial mass and activity from environmental samples[J]. Native aquatic bacteria:enumeration, activity, and ecology, ASTM STP,1979,695:69-81.
    [113]Ponder F, Tadros M. Phospholipid fatty acids in forest soil four years after organic matter removal and soil compaction[J]. Applied Soil Ecology,2002,19(2):173-182.
    [114]Xue D, Yao H Y, Ge D Y, et al. Soil microbial community structure in diverse land use systems:A comparative study using Biolog, DGGE, and PLFA analyses[J]. Pedosphere,2008,18(5):653-663.
    [115]Chinalia F A, Killham K S.2,4-Dichlorophenoxyacetic acid (2,4-D) biodegradation in river sediments of Northeast-Scotland and its effect on the microbial communities (PLFA and DGGE)[J]. Chemosphere,2006,64(10):1675-1683.
    [116]Murata T, Kanao-Koshikawa M, Takamatsu T. Effects of Pb, Cu, Sb, In and Ag contamination on the proliferation of soil bacterial colonies, soil dehydrogenase activity, and phospholipid fatty acid profiles of soil microbial communities[J]. Water, Air, & Soil Pollution,2005,164(1):103-118.
    [117]Moore-Kucera J, Dick R P. PLFA profiling of microbial community structure and seasonal shifts in soils of a Douglas-fir chronosequence[J]. Microbial Ecology,2008,55(3):500-511.
    [118]Dickens H E, Anderson J M. Manipulation of soil microbial community structure in bog and forest soils using chloroform fumigation[J]. Soil Biology and Biochemistry,1999,31(14):2049-2058.
    [119]Bodelier P L E, Roslev P, Henckel T, et al. Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots[J]. Nature,2000,403(6768):421-424.
    [120]Polymenakou P N, Bertilsson S, Tselepides A, et al. Links between geographic location, environmental factors, and microbial community composition in sediments of the Eastern Mediterranean Sea[J]. Microbial ecology,2005,49(3):367-378.
    [121]Sundh I, Nilsson M, Borga P. Variation in microbial community structure in two boreal peatlands as determined by analysis of phospholipid Fatty Acid profiles[J]. Applied and Environmental Microbiology,1997,63(4):1476-1482.
    [122]Sakamoto K, Iijima T, Higuchi R. Use of specific phospholipid fatty acids for identifying and quantifying the external hyphae of the arbuscular mycorrhizal fungus Gigaspora rosea [J]. Soil Biology and Biochemistry,2004,36(11):1827-1834.
    [123]Muyzer G, Smalla K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology[J]. Antonie van Leeuwenhoek,1998,73(1): 127-141.
    [124]Yan Q Y, Yu Y H, Feng W S, et al. Genetic diversity of plankton community as depicted by PCR-DGGE fingerprinting and its relation to morphological composition and environmental factors in Lake Donghu[J]. Microbial ecology,2007,54(2):290-297.
    [125]Anderson S A, Northcote P T, Page M J. Spatial and temporal variability of the bacterial community in different chemotypes of the New Zealand marine sponge Mycale hentscheli[J]. FEMS microbiology ecology,2010,72(3):328-342.
    [126]Jaziri K, Casellas M, Dagot C. Comparing the effects of three pre-treatment disintegration techniques on aerobic sludge digestion:biodegradability enhancement and microbial community monitoring by PCR-DGGE[J]. Environmental technology,2012,33(12):1435-1444.
    [127]Lu S, Xu X, Zhou G, et al. Effect of starter cultures on microbial ecosystem and biogenic amines in fermented sausage[J]. Food Control,2010,21(4):444-449.
    [128]Dong X, Reddy G B. Soil bacterial communities in constructed wetlands treated with swine wastewater using PCR-DGGE technique[J]. Bioresource technology,2010,101(4):1175-1182.
    [129]Ishii K, Fukui M, Takii S. Microbial succession during a composting process as evaluated by denaturing gradient gel electrophoresis analysis[J]. Journal of Applied Microbiology,2001,89(5): 768-777.
    [130]Margulies M, Egholm M, Altman W E, et al. Genome sequencing in microfabricated high-density picolitre reactors[J]. Nature,2005,437(7057):376-380.
    [131]Harkins T, Jarvie T. Metagenomics analysis using the Genome SequencerTM FLX system[J]. Nature Methods,2007,4(6).
    [132]Rothberg J M, Leamon J H. The development and impact of 454 sequencing[J]. Nature biotechnology, 2008,26(10):1117-1124.
    [133]Roesch L F W, Fulthorpe R R, Riva A, et al. Pyrosequencing enumerates and contrasts soil microbial diversity[J]. The ISME Journal,2007,1(4):283-290.
    [134]Palenik B, Ren Q, Tai V, et al. Coastal Synechococcus metagenome reveals major roles for horizontal gene transfer and plasmids in population diversity[J]. Environmental microbiology,2008,11(2): 349-359.
    [135]Sanapareddy N, Hamp T J, Gonzalez L C, et al. Molecular diversity of a North Carolina wastewater treatment plant as revealed by pyrosequencing[J]. Applied and environmental microbiology,2009, 75(6):1688-1696.
    [136]Zehr J P, Bench S R, Carter B J, et al. Globally distributed uncultivated oceanic N2-fixing cyanobacteria lack oxygenic photosystem Ⅱ[J]. Science,2008,322(5904):1110-1112.
    [137]Turnbaugh P J, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins[J]. Nature,2008,457(7228):480-484.
    [138]Smalla K, Cresswell N, Mendonca-Hagler L C, et al. Rapid DNA extraction protocol from soil for polymerase chain reaction-mediated amplification[J]. Journal of Applied Microbiology,1993,74(1): 78-85.
    [139]张于光,李迪强,王慧敏,等.用于分子生态学研究的土壤微生物DNA提取方法[J].应用生态学报,16(5):956-960.
    [140]Ishii K, Fukui M, Takii S. Microbial succession during a composting process as evaluated by denaturing gradient gel electrophoresis analysis[J]. Journal of Applied Microbiology,2001,89(5): 768-777.
    [141]王伟东,王小芬,朴哲,等.堆肥化过程中微生物群落的动态[J].环境科学,2007,28(11):2591-2597.
    [142]Cahyani V R, Matsuya K, Asakawa S, et al. Succession and phylogenetic composition of bacterial communities responsible for the composting process of rice straw estimated by PCR-DGGE analysis[J]. Soil science and plant nutrition,2003,49(4):619-630.
    [143]Karadag D, Ozkaya B, Olmez E, et al. Profiling of bacterial community in a full-scale aerobic composting plant[J]. International Biodeterioration & Biodegradation,2013,77:85-90.
    [144]Tian W, Sun Q, Xu D, et al. Succession of bacterial communities during composting process as detected by 16S rRNA clone libraries analysis[J]. International Biodeterioration & Biodegradation, 2013,78:58-66.
    [145]Partanen P, Hultman J, Paulin L, et al. Bacterial diversity at different stages of the composting process[J]. BMC microbiology,2010,10(1):94.
    [146]虞泳,曾光明,陈耀宁,等.农业废物好氧堆肥中氨氧化细菌的群落结构[J].环境科学,2011,32(10):3067-3072.
    [147]Cahyani V R, Matsuya K, Asakawa S, et al. Succession and phylogenetic profile of eukaryotic communities in the composting process of rice straw estimated by PCR-DGGE analysis[J]. Biology and fertility of soils,2004,40(5):334-344.
    [148]Chang Y, Hudson H J. The fungi of wheat straw compost:Ⅰ. Ecological studies[J]. Transactions of the British Mycological Society,1967,50(4):649-666.
    [149]李自刚.农业有机固体废弃物堆肥过程中微生物多样性与物质转化关系研究[D].南京农业大学,2006.
    [150]郁红艳.农业废物堆肥化中木质素的降解及其微生物特性研究[D].湖南大学博士学位论文,2007.
    [151]黄红丽.木质素降解微生物特性及其对农业废物堆肥腐殖化的影响研究[D].湖南大学,2009.
    [152]沈萍,陈向东.微生物学实验[M].高等教育出版社,2007.
    [153]Keller P. Methods to evaluate maturity of compost[J]. Compost Science,1961,2(7):20-26.
    [154]Mondini C, Dell'Abate M T, Leita L, et al. An integrated chemical, thermal, and microbiological approach to compost stability evaluation[J]. Journal of environmental quality,2003,32(6):2379-2386.
    [155]Bernal M P, Navarro A F, Sanchez-Monedero M A, et al. Influence of sewage sludge compost stability and maturity on carbon and nitrogen mineralization in soil[J]. Soil Biology and Biochemistry, 1998,30(3):305-313.
    [156]曾光明.堆肥环境生物与控制[M].科学出版社,2006.
    [157]Deportes I, Benoit-Guyod J L, Zmirou D. Hazard to man and the environment posed by the use of urban waste compost:a review[J]. Science of the Total Environment,1995,172(2):197-222.
    [158]GB7959-87,中华人民共和国标准.粪便无害化标准[S].
    [159]Cardenas-Gonzalez B, Ergas S J, Switzenbaum M S. Characterization of compost biofiltration media[J]. Journal of the Air & Waste Management Association,1999,49(7):784-793.
    [160]Madigan M T. Brock Biology of Microorganisms,11th Ed. International Microbiology,2005,8: 149-152.
    [161]MacGregor S T, Miller F C, Psarianos K M, et al. Composting process control based on interaction between microbial heat output and temperature [J]. Applied and Environmental Microbiology,1981, 41(6):1321-1330.
    [162]郁红艳,曾光明,胡天觉,等.真菌降解木质素研究进展及在好氧堆肥中的研究展望[J].中国生物工程杂志,2003,23(10):57-61.
    [163]王玉万,徐文玉.木质纤维素固体基质发酵物中半纤维素、纤维素和木质素的定量分析程序[J].1987,14(2):81-83.
    [164]郁红艳,曾光明,胡天觉,等.真菌降解木质素研究进展及在好氧堆肥中的研究展望[J].中国生物工程杂志,2003,23(10):57-61.
    [165]Genevini P, Adani F, Veeken A H M, et al. Qualitative modifications of humic acid-like and core-humic acid-like during high-rate composting of pig faeces amended with wheat straw[J]. Soil science and plant nutrition,2002,48(2):143-150.
    [166]Maia C M B F, Piccolo A, Mangrich A S. Molecular size distribution of compost-derived humates as a function of concentration and different counterions[J]. Chemosphere,2008,73(8):1162-1166.
    [167]Mondini C, Dell'Abate M T, Leita L, et al. An integrated chemical, thermal, and microbiological approach to compost stability evaluation[J]. Journal of environmental quality,2003,32(6):2379-2386.
    [168]唐景春,周启星,张冠辉.不同来源生物质废弃物高温堆肥过程的物理化学及微生物性质研究[J].环境科学,2007,28(5):1158-1164.
    [169]Howeler M, Ghiorse W C, Walker L P. A quantitative analysis of DNA extraction and purification from compost[J]. Journal of microbiological methods,2003,54(1):37-45.
    [171]Acinas S G, Marcelino L A, Klepac-Ceraj V, et al. Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons[J]. Journal of Bacteriology,2004,186(9):2629-2635.
    [172]Woese C R. Bacterial evolution[J]. Microbiological reviews,1987,51(2):221.
    [173]Lane D J, Pace B, Olsen G J, et al. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses[J]. Proceedings of the National Academy of Sciences,1985,82(20):6955-6959.
    [174]LANE D J.16S/23S rRNA sequencing[J]. Nucleic acid techniques in bacterial systematics,1991: 115-175.
    [175]Korbie D J, Mattick J S. Touchdown PCR for increased specificity and sensitivity in PCR amplification[J]. Nature Protocols,2008,3(9):1452-1456.
    [176]GroBkopf R, Janssen P H, Liesack W. Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval[J]. Applied and Environmental Microbiology,1998,64(3):960-969.
    [177]Radojkovic D, Kusic J. Silver staining of denaturing gradient gel electrophoresis gels[J]. Clinical chemistry,2000,46(6):883-884.
    [178]Luo H F, Qi H Y, Zhang H X. Assessment of the bacterial diversity in fenvalerate-treated soil[J]. World Journal of Microbiology and Biotechnology,2004,20(5):509-515.
    [179]Smalla K, Cresswell N, Mendonca-Hagler L C, et al. Rapid DNA extraction protocol from soil for polymerase chain reaction-mediated amplification[J]. Journal of Applied Microbiology,1993,74(1): 78-85.
    [180]Bhromsiri C, Bhromsiri A. Isolation, screening of growth-promoting activities and diversity of Rhizobacteria from Vetiver Grass and Rice plants[J]. Thail J Agric Sci,2010,43:217-230.
    [181]Chi F, Shen S H, Cheng H P, et al. Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology[J]. Applied and Environmental Microbiology,2005,71(11):7271-7278.
    [182]Neilson J W, Jordan F L, Maier R M. Analysis of artifacts suggests DGGE should not be used for quantitative diversity analysis[J]. Journal of microbiological methods,2013,92(3):256-263.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700