用户名: 密码: 验证码:
东亚季风区8.2ka BP气候突变记录及其精细解剖
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球气候正在经历着一次以变暖为主要特征的显著变化,温度的升高和冰川的消融将增大极端气候事件出现的概率和强度,对自然生态系统和人类社会生活造成巨大的负面影响。而人类活动对温室效应贡献的证实,更增加了人类对温室效应的忧虑。虽然对温室效应的气候触发机制已有一定了解,但气候变暖与气候突变事件之间的作用机制尚不明了而这对于未来气候突变的预测尤为重要。
     8.2ka BP事件作为距人类社会最近的一次最为显著的急速降温事件,发生于早全新世末次冰期结束之后气候不断转暖的一个时期,与现代气候不断变暖的背景极为类似。因此其可为现代气候背景下的气候突变预测提供重要依据,同时还将有助于对其可能导致的后果进行评估。因此,较其它气候突变事件而言,8.2ka BP气候突变事件的研究具有不可替代的现实意义。此外,由于其突变幅度和突变速率均较全新世其它突变事件更为强烈,对8.2ka BP事件在不同地域的突变幅度、突变速率、发生年代、持续时间及其它行为特征的深入研究,不但可为气候突变的行为研究提供不可或缺的直接证据;而且可为其触发机制的研究奠定重要基础。
     本文在长江中游清江和尚洞HS-4石笋δ18O约16a分辨率的前期研究基础之上,提高其8.2ka BP时段的取样分辨率(~6a),通过该分辨率δ18O记录中获得的更为显著的气候异常记录,确定235.7~231.7cm段为HS-4石笋8.2ka BP事件的分析时段。利用牛津大学地球科学系英国Nu公司产多接收电感耦合等离子体质谱仪(MC-ICPMS)对HS-4石笋237.2~228.4cm段重新进行加密U-Th同位素定年,并结合相对年层计数,获得了HS-4石笋该段精确的年代序列。
     对石笋的235.7~231.7cm段,利用Photoshop和Image J软件进行年生长速率和季节分辨率灰度的分析;利用英国牛津大学地球科学系美国New Wave公司产MicroMill微区取样仪和美国热电公司产Delta V Advantage司位素质谱仪与Kiel Ⅳ固体碳酸盐预处理联机装置进行了季节分辨率(~40μm)的δ18O、δ13C同位素分析;利用英国牛津大学地球科学系日本电子光学株式会社(JEOL)产JXA8800R型电子探针仪进行了步长为10μm的Mg/Ca原位面扫描分析;利用中国地质大学(武汉)地质过程与矿产资源国家重点实验室美国安捷伦公司产Agilent7500型等离子体质谱仪(ICPMS)与Coherent公司产GeoLasPro型激光烧蚀系统联用设备进行了步长为~4μm的Mg/Ca、Sr/Ca和Ba/Ca原位线扫面分析。
     在获得的HS-4石笋多代用指标季节分辨率8.2ka BP事件记录突变特征的基础之上,结合其不同指标的气候意义,对东亚季风区8.2ka BP事件记录的年际及季节性变化进行了精细表征;并根据HS-4石笋δ18O季节分辨率8.2ka BP i记录与同期格林兰冰芯δ18O间的高相似度,尝试对8.2ka BP事件的触发机制进行了探讨。获得的主要结论如下:
     (1)利用季节分辨率多代用指标获得了东亚季风区可靠的8.2ka BP事件记录。HS-4石笋8.2ka BP时段,季节分辨率δ18O、δ13C指标均出现高值异常,升高幅皮分别达到了2.5‰和3.5%o;石笋年生长速率和季节分辨率灰度则出现了低值异常,其中生长速率的最低值仅为事件前峰值的1/9;季节分辨率的Mg/Ca、Sr/Ca和Ba/Ca比亦出现高值异常,其中以Mg/Ca比异常最为显著,其相对平均增幅达到了40%;说明HS-4石笋中的多项指标均清晰地记录了8.2ka BP事件。
     (2)利用多代用指标,而非单一代用指标,对东亚季风区在8.2ka BP事件发生期间气候的年际及季节性变化进行了可靠的解译。HS-4石笋在8.2ka BP事件发生期,各项指标所指示的气候意义相互吻合:δ18O值的偏正指示东亚夏季风减弱;Mg/Ca、Sr/Ca和Ba/Ca比值的升高指示长江中游降水减少,同时东亚风尘活动增强;生长速率和年层灰度降低,以及δ13C的偏正指示长江中游气温降低。即多气候代用指标共同指向气候转为干、冷;并均记录在中心事件发生阶段出现了两次极度干、冷期,持续时间为14±2a;而事件发生期间气候的季节性较事件发生前、后阶段有所减弱。
     (3)获得了8.2ka BP事件在东亚季风区分辨率到年的突变行为特征及模式。综合HS-4石笋多指标记录,可获得8.2ka BP事件在东亚季风区的变化模式及突变特征:8.2ka BP整体及中心事件的持续时间分别为152±2a和70±2a;自整体事件进入中心事件用了47±1a,自中心事件步出整体事件用了35±3a;入整体事件的突变时间(3a±1a)是出整体事件时间(6±1a)的1/2,而其相对突变速率(6±2%/a)是出整体事件(3±1%/a)的2倍,说明气候向干冷转化的突变更为显著;入、出中心事件的平均突变时间和相对突变速率分别为9±5a和5%/a,说明入、出中心事件的突变时间比入、出整体事件的时间要长;事件发生期间,气候的年际及10a际的变化呈现出明显的双峰/双谷结构。
     (4)东亚季风区HS-4石笋和格林兰冰芯δ18O记录在8.2ka BP期间所表现出的高相似度的同步变化,为8.2ka BP气候触发机制的解译提供了新的证据。和在定年误差范围内,HS-4石笋δ18O(东亚夏季风强度指标)与格林兰冰芯δ18O记录(温度指标)在8.2ka BP事件期间的所有波峰和波谷均可一一对应,说明东亚季风区的气候可快速响应北大西洋气候变化。这种响应的高相似度指示,导致东亚季风区气候突变异常的原因,应主要为年际尺度气候变化的贡献。因此,两地气候在突变事件发生时所表现出的遥相关,应更多地受控于大气环流,而非洋流过程。
     本项研究工作证明,长江中游清江和尚洞具有可靠年代的HS-4石笋中的多气候代用指标,均清晰地记录了8.2ka BP气候异常事件,各指标所指示的气候意义相互吻合,共同指向事件期间长江中游地区气候趋向干冷。这种非单一指标对事件的综合分析,增加了事件解译的可信度;同时U-Th同位素绝对定年与相对年层计数的结合,以及季节及年际分辨率代用指标的提取,使得对事件持续时间、突变行为的分析得以精度到年。这种具有可靠年代的多指标季节分辨率的分析,为东亚季风区对8.2ka BP事件的响应提供了坚实的证据,为8.2ka BP事件触发机制的深入探讨提供了难得的高分辨率记录。
The global climate is getting warmer with temperature increasing and ice melting, which would increase the possibility and the intensity of the extreme weather and would lead to huge negative impact on the nature ecosystem and the society. The human being's attribution to the greenhouse effect has been proved, which worries the mankind more. Although the mechanism of the greenhouse has been explored, the link between the global warming and the abrupt climate change is still not well-understood, which is very important to predicate the future abrupt climate changes. As the8.2ka BP cold event is the most prominent abrupt cooling anomaly during the Holocene, occupying when the climate got warming gradually after the Last Glacial which is similar to today's, it could provide important evidence for future abrupt climate predication under similar climate backgrounds and is helpful for estimating its impact on human being. Therefore, compared with other abrupt climate changes, there is a great realistic significance to research the8.2ka BP event. In addition, as the abrupt amplitude and transmission rate of the8.2ka BP event is much clearer than other abrupt climate changes, the deep research on its characteristics, such as abrupt amplitude, transmission rate, timing, duration, from different locations could not only provide indispensable direct evidences, but also establish important foundation for its mechanism research. According to the previous δ18O analysis with a resolution of-16a of stalagmite HS-4, collected from Heshang Cave, Qingjiang valley, the middle reaches of the Yangtze River, more clearer single of δ18O anomaly during the8.2ka BP period was caught by higher resolution (-6a) sampling and the analysis section of HS-4covering the8.2ka BP event record was confirmed (235.7~231.7cm). The chronology of the section from depth237.2-228.4cm of stalagmite HS-4was established by the combination of layer counting and U-Th technique with dense sampling carried on MC-ICPMS produced by Nu instrument at Earth Science Department of Oxford University.
     Then focusing on the section from depth235.7~231.7cm of HS-4, annual growth rate and seasonal grey scale were obtained by using the softwares of Photoshop and Image J. Seasonal δ18O and δ18C samples were obtained by micro-milling at a pace of~40μm on a MicroMill device produced by American New Wave Research and a Thermo Delta V advantage isotope ratio mass spectrometer fitted with a Kiel carbonate device IV at the department of earth sciences of Oxford University. Mg/Ca plotting with a pace of10μm was achieved by a JEOL JXA8800R Electron Microprobe at Material Science Department of Oxford University. In-situ Mg/Ca, Sr/Ca, Ba/Ca analysis with a internal of4μm was conducted on Agilent7500ICP-MS fitted with GeoLasPro UV optical systems produced by Coherent.
     Based on the seasonal multi-proxies analysis of stalagmite HS-4on the8.2ka BP event, combined with their interpretations, the seasonal and annual variations of the8.2ka BP event in East Asia area have been analyzed in detail. And the high similarity between the δ18O records from stalagmite HS-4and from Greenland ice cores during8.2ka BP period provides a new evidence for the mechanism exploration.
     (1) Reliable8.2ka BP event records in East Asian monsoon area ware achieved by seasonal multi-proxies. During8.2ka BP period, HS-4δ18O、δ13C values increased by2.5‰and3.5‰respectively. The annual growth rate and grey scale vaules decreased greatly, especially for the growth rate, as the lowest value during8.2ka BP period decreased by9times compared with the peak value before the event. The Mg/Ca, Sr/Ca and Ba/Ca vaules increased as well, and the most anomaly is from Mg/Ca with a average increase by40%. All the proxies indicate that the8.2ka BP event is recorded clearly by stalagmite HS-4.
     (2) The climate variation in East Asian monsoon area at yearly and seasonal scale during8.2ka BP period was achieved by multi-proxies instead of a single proxy. During the8.2ka BP period, the interpretation from all the proxies match each well with the increase of δ18O indicating the weakening of the East Asian summer monsoon, the increase of Mg/Ca, Sr/Ca and Ba/Ca vaules demonstrating the decrease of the rainfall around the middle reaches of Yangtze River and the strengthening of the wind and dust transferring; the decrease of the growth rate and grey scale vaules with increase of the δ13C vaule suggesting the decrease of the temperature along the middle reaches of Yangtze River. Therefore, all the proxies interpreted that the climate during8.2ka BP period became cold and dry with two extreme conditions lasting for14±2a and the seasonality became weaker compared to the period out of the event.
     (3) The precise abrupt behavior of the8.2ka BP event in East Asian monsoon area was achieved. Combine all the multi-proxies' analysis of HS-4, the8.2ka BP event's abrupt model could be obtained. The whole and the central event duration of the event are152±2a and70±2a respectively with a cold and dry condition accompanied with weak EASM. It takes47±1a and35±3a for entering into and stepping out of the central event respectively. The abrupt change happened at the beginning of the whole event is shorter than it happened at the end of the whole event by1/2times and the shift rate at the beginning of the whole event is higher than it at the ending of the whole event by2times, which indicate that the shift to cold and dry conditions is more striking. Both the abrupt changes at the beginning and at the end of the central event occupied in9±5a with an relative abrupt shift rate of5%/a, that means the abrupt changes for the central event is a bit longer than it for the whole event. A double-peak/plunge structure could be observed during the central8.2ka BP event at seasonal, yearly and decade scales clearly.
     (4) The synchronous high similarity between the δ18O records from the HS-4in East Asian monsoon area and those from Greenland ice cores provide a new evidence for the interpretation of the8.2ka BP event mechanism. Within dating errors, the δ18O records from stalagmite HS-4, an indicator of the EASM intensity and the δ18O records from Greenland ice cores, an indicator of the temperature, are comparable with each δ18O peak corresponding with another δ18O valley, which suggests that the climate in EAM area could respond to the climate change around North Atlantic area quickly. The highly similarity between the two proxies from the East Asian area and from the North Atlantic area indicate that abrupt anomaly happened in EAM areas was mainly caused by inter-annual scale climate changes. Therefore, the climate teleconnection between the two locations is influenced by the atmospheric circulation, instead of the ocean circulation.
     This research demonstrates the8.2ka BP event is clearly recorded by multi-proxies of HS-4, a well-dated stalagmite. The climate conditions during8.2ka BP interpreted from all those multi-proxies of HS-4match each well and all of them suggest the climate turning cold and dry during the event. The multi-proxies analysis not only just by one indicator, give a much stronger evidence than other8.2ka BP event records. Furthermore, the U-Th isotope absolute dating combined with relative layer counting results with multi-proxies analysis on seasonal and annual resolution, make it possible to obtain the event's yearly and seasonal abrupt change behaviours. The methods based on seasonal multi-proxies with a reliable chronology sequence provide a solid evidence for the EAM area responding to the8.2ka BP event and a critical record for deep understanding the mechanism of the8.2ka BP event.
引文
[1]邵学梅,黄枚.20世纪80年代以来中国的气候变暖及其对自然区域界线的影响.中国科学(D辑),2002,32(4):17-326.
    [2]王奉安.全球气候变化的影响及后果:阈值突变和极端天气气候事件——访中国工程院院士、国家气候中心研究员丁一汇.环境保护与循环经济,2010,(11):9-11.
    [3]Rahmstorf S. A Semi-Empirical Approach to Projecting Future Sea-Level Rise. Science,2007, 315:368-370.
    [4]丁一汇,任国玉,赵宗慈等.中国气候变化的检测及预估.沙漠与绿洲气象,2007,1(1):1-10.
    [5]衣育红,王绍武.80年代全球气候突然变暖,科学通报,1992,(6):528-531.
    [6]中国气象局国家气候中心.气候系统监测诊断年报(2010年).北京:气象出版社,2010.
    [7]陈宜瑜.对开展全球变化区域适应研究的几点看法.地球科学进展,2004,19(4):495-499.
    [8]Busby J W. Climate Change and National Security. New York:Council on Foreign Relations Press,2007:1-40.
    [9]吴文祥,胡莹,周扬.气候突变与古文明衰落.古地理学报,2009,11(4):455-463.
    [10]Weiss H and Bradley R S. What Drives Societal Collapse? Science,291:609-610.
    [11]Hodell D A, Kanfoush S L, Shemesh A, et al. Abrupt Cooling of Antarctic Surface Waters and Sea Ice Expansion in the South Atlantic Sector of the Southern Ocean at 5000cal yr B.P. Quaternary Research,2001,56(2):191-198.
    [12]Clark P U, Pisias N G, Stacker T F, et al. The role of the thermohaline circulation in abrupt climate change. Nature,2002,415:863-969.
    [13]Overpeck J T and Cole J E. Abrupt change in Earth's climate system. Annual Review of Environment and Resources,2006,31:1-31.
    [14]Definition of Abrupt Climate Change. Abrupt climate change:inevitable surprises. Committee on Abrupt Climate Change, National Research Council. Washington, D.C.: National Academy Press.2002.
    [15]Alley B. R., Marotzke J, Nordhaus D. W., et al. Abrupt Climate Change. Science,2003, 299(5615):2005-2010.
    [16]Forster P, Ramaswamy V, Artaxo P, et al. Changes in Atmospheric Constituents and in Radiative Forcing. In:Climate Change 2007:The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon S D, Qin M, Manning Z, et al. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
    [17]Vaughan D G and Arthern R. Why is it hard to predict the future of ice sheets? Science,2007, 315:1503-1504.
    [18]Alley B. R. Ice-core evidence of abrupt climate changes. Proceedings of the National Academy of Sciences,2000,97(4):1331-1334.
    [19]Masson-Delmotte M, Jouzel J, Landais A, Stievenard M, Johnsen SJ, White JWC, Werner M, Sveinbjornsdottir A, Fuhrer K. GRIP Deuterium Excess Reveals Rapid and Orbital-Scale Changes in Greenland Moisture Origin. Science,2005,309:118-121.
    [20]Hemming S R. Heinrich events:Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Reviews of geophysics,2004,42:RG1005.
    [21]Bond G, Broecker W, Johnsen S, et al. Correlations between climate records from North Atlantic sediments and Greenland ice. Nature,1993,365:143-147.
    [22]Jansen E, Overpeck J, Briffa KR, et al. Palaeoclimate. In:Climate Change 2007:The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon S D, Qin M, Manning Z, et al. (eds.)]. Cambridge University Press,2007. Cambridge, United Kingdom and New York, NY, USA.
    [23]Rial J A, Pielke Sr. R A, Beniston M, et al. Nonlinearities, Feedbacks and Critical Thresholds within the Earth's Climate System. Climatic Change,2004,65:11-38.
    [24]Bond G, Showers W, Cheseby M, et al. A Pervasive Millennial-Scale Cycle in North Atlantic Holocene and Glacial Climates. Science,1997,278(5341):1257-1266.
    [25]Wang Y J, Cheng H, Edwards R L, et al. The Holocene Asian Monsoon:links to solar changes and North Atlantic climate. Science,2005,308:854-857.
    [26]Anderws T J, Smith M L, Preston R, et al.Spatial and temporal patterns of iceberg rafting (IRD) along the East Greenland margin, ca.68°N, over the last 14 cal. ka. Journal of Quaternary Science,1997,12(1):1-13.
    [27]Bianchi G G& McCave N I. Holocene periodicity in North Atlantic climate and deep-ocean flow south of Iceland. Nature,1999,397(11):515-517.
    [28]Bond G C, Showers W, Elliot M, et al.1999,The North Atlantic's!-2 kyr climate rhythm: relation to Heinrich events, Dansgaard Oecchger cycles and the Little Ice Age in Clark P U, Webb R S, Keigwin L D des. Mechanisms of global Climate Change at Millennial time Scales. Geophysical Monography,1999,112,35-58.
    [29]Moros M, Emeis K, Risebrobakken B, et al. Sea surface temperatures and ice rafting in the Holocene North Atlantic:climate influences on northern Europe and Greenland. Quaternary Science Reviews,2004,23(20-22):2113-2126.
    [30]Moros M, Andrews J T, Eberl D D, et al. Holocene history of drift ice in the northern North Atlantic:Evidence for different spatial and temporal modes Paleoceanography,2006, 21:PA201.
    [31]王绍武.全新世北大两洋冷事件:年代学和气候影响.第四纪研究,2009,29(6):1146-1153.
    [32]Broecker S W, Peteet D, Rind D. Does the ocean-atmosphere have more than one stable mode of operation? Nature,1985,315:21-25.
    [33]Stocker T F. Past and future reorganisations in the climate system. Quaternary Science Reviews,2000,19:301-319.
    [34]Broecker S W. The great ocean conveyor. Oceanography,1991,4(2):79-89.
    [35]Wiersma A.P.and Renssen H. Model-data comparison for the 8.2 ka BP event:confirmation of a forcing mechanism by catastrophic drainage of Laurentide Lakes. Quaternary Science Reviews,2006,25:63-88.
    [36]Denton G H and Karlen W. Holocene climatic variations-their pattern and possible cause. Quatuary. Research.,1973,21:155-205.
    [37]Alley R B, Mayewski P A, Sowers T, et al. Holocene climatic instability-a prominent, widespread event 8200 yr ago. Geology,1997,25:483-486.
    [38]Thomas E R, Wolff E W, Mulvaney R, et al. The 8.2 kyr event from Greenland ice cores. Quaternary Science Reviews,2007,26:70-81.
    [39]Alley R B and Agustsdottir A M. The 8 k event:cause and consequences of a major Holocene abrupt climate change. Quaternary Science Reviews,2005,24:1123-1149.
    [40]Wang N L, Yao T D, Thompson L G, et al. Evidence for cold event s in t he early Holocene from the Guliya ice core, Tibetan Plateau, China. Chinese Science Bulletin,2002,47 (17): 1422-1427.
    [41]Ellison C R W, Chapman M R, Hall I R. Surface and deep ocean interactions during the cold climate event 8200 years ago. Science,2006,312:1929-1932.
    [42]Kleiven H F, Kissel C, Laj C, et al. Reduced North Atlantic deep water coeval with the glacial Lake Agassiz freshwater outburst. Science,2008,319:60-64.
    [43]Wang R L, Scarpitta S C, Zhang S C, et al. Later Pleistocene/Holocene climate conditions of Qinghai-Xizang Plateau (Tibet) based on carbon and oxygen stable isotopes of Zabuye Lake sediments. Earth and Planetary Science Letters,2002,203:461-477.
    [44]Jin Z D, Wu J, Cao J, et al. Holocene chemical weathering and climatic oscillations in north China:evidence from lacustrine sediments. Boreas,2004,33:260-266.
    [45]Holmgren K, Lee-Thorp J A, Cooper G R J, et al. Persistent millennial-scale climatic variability over the past 25,000 years in Southern Africa. Quaternary Science Reviews,2003, 22(21-22):2311-2326.
    [46]Lachniet M S, Asmerom Y, Burns S J, et al. Tropical response to the 8200 yr B.P. cold event? Speleothem isotopes indicate a weakened early Holocene monsoon in Costa Rica. Geology, 2004,32:957-960.
    [47]Fleitmann D, Burns S J, Mangini A, et al. Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quaternary Science Reviews,2007, 26:170-188.
    [48]Hu C Y, Henderson G M, Huang J H, et al. Quantification of Holocene Asian monsoon rainfall from spatially separated cave records. Earth and Planetary Science Letters,2008a, 266:221-232.
    [49]Cheng H, Fleitmann D, Edwards R L et al. Timing and structure of the 8.2 kyr B.P. event inferred from δ18O records of stalagmites from China, Oman, and Brazil. Geology,2009; 37(11):1007-1010.
    [50]Boch R, Spotl C, Kramers J. High-resolution isotope records of early Holocene rapid climate change from two coeval stalagmites of Katerloch Cave, Austria. Quaternary Science Reviews, 2009,28:2527-2538.
    [51]Barber D C, Dyke A, Hillaire-Marcel C, et al.. Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes. Nature,1999,400:344-348.
    [52]Bond G C, Kromer B, Beer J, Muscheler R, et al.. Persistent solar influence on North Atlantic climate during the Holocene. Science,2001,294:2130-2133.
    [53]O'Brien S R, Mayewski P A, Meeker L D et al. Complexity of Holocene climate as reconstructed from a Greenland ice core. Science,1995,270,1962-1964.
    [54]Van Geel B, Raspopov M O, Renssen H, et al. The role of solar forcing upon climate change. Quaternary Science Reviews,1999,18:331-338.
    [55]Stirling C H, Lee D-C, Christensen J N, et al. High-precision in situ 238U-234U-230Th isotopic analysis using laser ablation multiple-collector ICPMS. Geochimica et Cosmochimica Acta, 2000,64 (21):3737-3750.
    [56]Gabler H E. Applications of magnetic sector ICP-MS in geochemistry. Journal of Geochemical. Exploration,2002,75:1-15.
    [57]Spotl C and Mattey D. Stable isotope microsampling of speleothems for palaeoenvironmental studies:A comparison of microdrill, micromill and laser ablation techniques. Chemical Geology,2006,235:48-58
    [58]Rohling E J and Palike H. Centennial-scale climate cooling with a sudden cold event around 8,200 years ago. Nature,2005,434:975-979.
    [59]Johnsen S J, Claussen H B, Dansgaard W, et al. Irregular glacial interstadials recorded in a new Greenland ice core. Nature,1992,359:311-313.
    [60]Johnsen S J, Dahl-Jensen D, Gundestrup N, et al.. Oxygen isotope and palaeotemperature records from six Greenland ice-core stations:Camp Century, Dye-3, GRIP; GISP2, Renland and North GRIP. Journal of Quaternary Science,2001,16:299-307.
    [61]Kobashi T, Severinghaus J P, Brook E J, et al. Precise timing and characterization of abrupt climate change 8200 years ago from air trapped in polar ice. Quaternary Science Reviews, 2007,26:1212-1222.
    [62]Blunier T, Chappellaz J, Schwander J, et al. Variations in atmospheric methane concentrations during the Holocene epoch. Nature,1995,374:46-49.
    [63]Muscheler R., Beer J, Vonmoos M. Causes and timing of the 8200 yr BP event inferred from the comparison of the GRIP 10Be and the tree ring δ14C record. Quaternary Science Reviews, 2004,23:2101-2111.
    [64]Dahl S O and Nesje A. Holocene glacier fluctuations at Hardangerjokulen, central-southern Norway:a high-resolution composite chronology from lacustrine and terrestrial deposits. The Holocene,1994,4:269-277.
    [65]Seierstad J, Nesje A, Dahl S O, et al. Holocene glacier fluctuations of Grovabreen and Holocene snow-avalanche activity reconstructed from lake sediments in Groningstolsvatnet, western Norway. The Holocene,2002,12:211-222.
    [66]Nesje A and Dahl S O. The Greenland 8200 cal yr BP event detected in loss-on ignition profiles in Norwegian lacustrine sediment sequences. Journal of Quaternary Science,2001, 16:155-166.
    [67]Nesje A, Bjune A E, Bakke J, et al. Holocene palaeoclimate reconstructions at Vanndalsvatnet, western Norway, with particular reference to the 8200 cal. yr BP event. The Holocene,2006,16(5):717-729.
    [68]Hald M and Korsun S. The 8200 cal. yr BP event reflected in the Arctic fjord, Van Mijenfjorden, Svalbard. The Holocene,2008,18(6):981-990.
    [69]Seppa H and Birks H J B. July mean temperature and annual precipitation trends during the Holocene in the Fennoscandian tree-line area:pollen-based climate reconstructions. The Holocene,2001,11:527-539.
    [70]Korhola A, Weckstrom J, Holmstrom L, et al. A quantitative Holocene climatic record from diatoms in northern Fennoscandia. Quaternary Research,2000,54:284-294.
    [71]Sarmaja-Korjonen K and Seppa H. Abrupt and consistent response of aquatic and terrestrial ecosystems to the 8200 cal. Yr cold event:a lacustrine record from Lake Arapisto, Finland. The Holocene,2007,17(4):457-467.
    [72]Wagner F, Aaby B, Visscher H. Rapid atmospheric CO2 changes associated with the 8,200-years-B.P. cooling event. Proceedings of the National Academy of Sciences,2002,99(19): 12011-12014.
    [73]Rosen P, Segerstrom U, Eriksson L, et al. Holocene climatic change reconstructed from diatoms,chironomids, pollen and near-infrared spectroscopy at an alpine lake (Sjuodjljaure) in northern Sweden. The Holocene,2001,11:551-562.
    [74]Kofler W, Krapf V, Oberhuber W, et al. Vegetation responses to the 8200 cal. BP cold event and to long-term climatic changes in the Eastern Alps:possible influence of solar activity and North Atlantic freshwater pulses. The Holocene,2005,15(6):779-788.
    [75]Rousseau D D, Preece R, Limondin-Lozouet N. British late glacial and Holocene climatic history reconstructed from land snail assemblages. Geology,1998,26:651-654.
    [76]Garnett E R, Andrews J E, Preece R C, et al.Climatic change recorded by stable isotopes and trace elements in a British Holocene tufa. Journal of Quaternary Science,2004,19:251-262.
    [77]Spurk M, Leuschner H H, Baillie, et al. Depositional frequency of German subfossil oaks:climatically and non-climatically induced fluctuations in the Holocene. The Holocene, 2002,12:707-715.
    [78]Tinner W and Lotter A F. Central European vegetation response to abrupt climate change at 8.2 ka. Geology,2001,29:551-554.
    [79]Prasad S, Brauer A, Rein B, et al. Rapid climate change during the early Holocene in western Europe and Greenland. The Holocene,2006,16(2):153-158.
    [80]Kerschner H, Hertl A, Gross G, et al. Surface exposure dating of moraines in the Kromer valley (Silvretta Mountains, Austria)-evidence for glacial response to the 8.2 ka event in the Eastern Alps? The Holocene,2006,16(1):7-15.
    [81]Magny M, Begeot C, Guiot J, et al. Reconstruction and palaeoclimatic interpretation of mid-Holocene vegetation and lake-level changes at Saint-Jorioz, Lake Annecy, French Pre-Alps. The Holocene,2003,13:265-275.
    [82]Naughton F, Bourillet J, Goni M F S, et al. Long-term and millennial-scale climate variability in northwestern France during the last 8850 years. The Holocene,2007,17(7):939-953.
    [83]Blarquez O, Carcaillet C, Bremond L, et al. BlarquezTrees in the subalpine belt since 11 700 cal. BP:origin, expansion and alteration of the modern forest. The Holocene 2010,20(1): 139-146.
    [84]Davis B A S and Stevenson A C. The 8.2 ka event and Early-Mid Holocene forests, fires and flooding in the Central Ebro Desert, NE Spain. Quaternary Science Reviews,2007,26(13-14): 1695-1712.
    [85]Gonzalez-Samperiz P, Utrilla P, Mazo C, et al. B. Patterns of human occupation during the early Holocene in the Central Ebro Basin (NE Spain) in response to the 8.2 ka climatic event. Quaternary Research,2009,71(2):121-132.
    [86]Pross J, Kotthoff U, Miiller U C, et al. Massive perturbation in terrestrial ecosystems of the Eastern Mediterranean region associated with the 8.2 kyr B.P. climatic event. Geology,2009, 37(10):887-890.
    [87]Seppa H and Poska A. Holocene annual mean temperature changes in Estonia and their relationship to solar insolation and atmospheric circulation patterns. Quaternary Research, 2004,61(1):22-31.
    [88]Veski S, Seppa H, Ojala A E K.Cold event at 8200 yr B.P. recorded in annually laminated lake sediments in eastern Europe. Geology,2004,32(8):.681-684.
    [89]Yu Z and Eicher U. Abrupt climate oscillations during the last deglaciation in central North America. Science,1998,282:2235-2238.
    [90]Kurek J, Cwynar L C, Spear R W. The 8200 cal yr BP cooling event in eastern North America and the utility of midge analysis for Holocene temperature reconstructions. Quaternary Science Reviews,2004,23:627-639.
    [91]Shuman B, Bartlein P, Logar N, et al. Parallel climate and vegetation responses to the early Holocene collapse of the Laurentide Ice Sheet. Quaternary Science Reviews,2002,21:1793-1805.
    [92]Kneller M and Peteet D. Late-glacial to early Holocene climate changes from a central Appalachian pollen and macrofossil record. Quaternary Research,1999,51:133-147.
    [93]Dean W E and Schwalb A. Holocene environmental and climatic change in the Northern Great Plains as recorded in the geochemistry of sediments in Pickerel Lake, South Dakota. Quaternary International,2000,67:5-20.
    [94]Spooner I, Douglas M S V, Terrusi L. Multiproxy evidence of an early Holocene (8.2 kyr) climate oscillation in central Nova Scotia, Canada. Journal of Quaternary Science,2002,17: 639-645.
    [95]Fisher D A, Koerner R M, Reeh N. Holocene climatic records from Agassiz Ice Cap, Ellesmere Island, NWT, Canada. The Holocene,1995,5:19-24.
    [96]Dyke A S, Hooper J, Savelle J M. A history of sea ice in the Canadian Arctic Archipelago based on postglacial remains of the bowhead whale (Balaena mysticetus). Arctic,1996,49: 235-255.
    [97]Seppa, H, Cwynar L C, MacDonald G M. Post-glacial vegetation reconstruction and a possible 8200 cal yr BP event from the low arctic of continental Nunavut, Canada. Journal of Quaternary Science,2003,18:621-629.
    [98]Hughen K A, Overpeck J T, Peterson L C, et al.Rapid climate changes in the tropical Atlantic region during the last deglaciation. Nature,1996,380:51-54.
    [99]Hughen K A, Overpeck J T, Lehman S J et al. Deglacial changes in ocean circulation froman extended radiocarbon calibration. Nature,1998a,391:65-68.
    [100]Hughen K A, Overpeck J T, Lehman S J, et al. A new 14C calibration data set for the last deglaciation. Radiocarbon,1998b,39:483-494.
    [101]Haug G H, Hughen K A, Sigman D M, et al. Southward migration of the intertropical convergence zone through the Holocene. Science,2001,293:1304-1308.
    [102]Berrio J C, Hooghiemstra H, Marchant R, et al. Lateglacial and Holocene history of the dry forest area in the south Colombian Cauca Valley. Journal of Quaternary Science,2002,17: 667-682.
    [103]Metcalfe S E. Holocene environmental change in the Zacapu Basin, Mexico:a diatom-based record. The Holocene,1995,5:196-208.
    [104]Gasse F and Van Campo E. Abrupt postglacial climate events in West Asia and North-Africa monsoon domains. Earth and Planetary Science Letters,1994,12:435-456.
    [105]Gasse F. Hydrological changes in the African tropics since the Last Glacial Maximum. Quaternary Science Reviews,2000,19:189-211.
    [106]Stager J C and Mayewski, P A. Abrupt early to mid-Holocene climatic transition registered at the equator and the poles. Science,1997,276:1834-1836.
    [107]Lamb H F and van der Kaars S. Vegetational response to holocene climatic change:pollen and palaeolimnological data from the Middle Atlas, Morocco. The Holocene,1995,5:400-408.
    [108]Gasse F, Tehet R, Durand A, et al. The arid humid transition in the Sahara and the Sahel during the last deglaciation. Nature,1990,346:141-146.
    [109]Thompson L G, Mosley-Thompson E, Davis M E, et al. Kilimanjaro ice core records: evidence of Holocene climate change in tropical Africa. Science,2002,298:589-593.
    [110]Powers L A, Johnson T C, Werne J P, et al. Large temperature variability in the southern African tropics since the Last Glacial Maximum. Geophysical Research Letters.2005,32: L08706.
    [111]Jung S J A, Davies G R, Ganssen G M, et al. Synchronous Holocene sea surface temperature and rainfall variations in the Asian monsoon system. Quaternary Science Reviews,2004,23: 2207-2218.
    [112]Smith J M, Lee-Thorp J A, Sealy J C. Stable carbon and oxygen isotopic evidence for late Pleistocene to middle Holocene climatic fluctuations in the interior of southern Africa. Journal of Quaternary Science,2002,17:683-695.
    [113]Liu C L, Wang M, Jiao P, et al. Holocene yellow silt layers and the paleoclimate event of 8200 a BP in Lop Nur, Xinjiang, NW China. Acta Geologica Sinica,2003,77:514-518.
    [114]Lister G S, Kelts K, Chen K, et al. Lake Qinghai, China:closed-basin lake levels and the oxygen isotope record for ostracoda since the last Pleistocene. Palaeogeography, Palaeoclimatology, Palaeoecology,1991,84:141-162.
    [115]Ji J F, Shen J, Balsam W et al. Asian monsoon oscillations in the northeastern Qinghai-Tibet Plateau since the late glacial as interpreted from visible reflectance of Qinghai Lake sediments. Earth and Planetary Science Letters,2005,233:61-70.
    [116]Chen F H, Zhu Y, Li J J, et al. Abrupt Holocene changes of the Asian monsoon at millennialand centennial-scales:evidence from lake sediment document in Minqin Basin, NW China. Chinese Science Bulletin,2001,46:1942-1947.
    [117]Jin Z D, Wu Y, Zhang X, et al. Role of late glacial to mid-Holocene climate in catchment weathering in the Central Tibetan Plateau. Quaternary Research,2005,63:161-170.
    [118]金章东,沈吉,王苏民等.早全新世降温事件的湖泊沉积证据.高校地质学报,2003,9:11-18.
    [119]Wu J L, Shen J, Wang S, et al. Characteristics of an early Holocene climate and environment from lake sediments in Ebi Nur region, NW China. Science in China (series D),2005,48: 258-265.
    [120]van Campo E and Gasse F. Pollen-and diatom-inferred climatic and hydrological changes in Sumxi Co (Western Tibet) since 13,000 yr BP. Quaternary Research,1993,39:300-313.
    [121]Guo Z T, Petit-Maire N, Kropelin S. Holocene nonorbital climatic events in present-day arid areas of northern Africa and China. Global and Planetary Change,2000,26:97-103.
    [122]Yu S Y, Zhu C, Wang F. Radiocarbon constraints on the Holocene flood deposits of the Ning-Zhen Mountains, Lower Yangtze River area of China. Journal of Quaternary Science, 2003,18:521-525.
    [123]Thompson L G. Ice core evidence for climate change in the tropics:implications for our future. Quaternary Science Reviews,2000,19:19-5.
    [124]Hong Y T, Hong B, Lin Q H, et al. Correlation between Indian Ocean summer monsoon and North Atlantic climate during the Holocene. Earth and Planetary Science Letters,2003,211: 371-380.
    [125]王华,洪业汤,朱咏煊,等.红原泥炭腐殖化度记录的全新世气候变化.地质地球化学,2003,31(2):51-56.
    [126]Wunnemann B,Mischke S, Chen F. A Holocene sedimentary record from Bosten Lake, China. Palaeogeography, Palaeoclimatology, Palaeoecology,2006,234:223-238.
    [127]Shen J, Wang Y, Liu X-Q, et al. A 16 ka climate record deduced from δ13C and C/N ratio in Qinghai Lake sediments, Northeastern Tibetan Plateau. Chinese Journal of Oceanology and Limnology,2006,24(2):103-110.
    [128]Wu Y-H, Wang S-M, Hou X-H. Chronology of Holocene lacustrine sediments in Co Ngoin, central Tibetan Plateau. Science in China Series D:Earth Sciences,2006,49(9):991-1001.
    [129]Herzschuh U, Winter K, Wunnemann B, et al. A general cooling trend on the central Tibetan Plateau throughout the Holocene recorded by the Lake Zigetang pollen spectra. Quaternary International,2006,154-155:113-121.
    [130]Wu Y-H, Lucke A, Wunnemann B. Holocene climate change in the Central Tibetan Plateau inferred by lacustrine sediment geochemical records. Science in China Series D:Earth Sciences,2007,50(10):1548-1555.
    [131]Mischke S and Zhang C. Holocene cold events on the Tibetan Plateau, Global and Planetary Change,2010,72:155-163.
    [132]Xiao J-Y, Lu H-B, Zhou W-J, et al. Evolution of vegetation and climate since the last glacial maximum recorded at Dahu peat site, South China. Science in China Series D:Earth Sciences,2007,50(8):1209-1217.
    [133]Zheng Y-H, Zhou W-J, Xie S-C, et al. A comparative study of n-alkane biomarker and pollen records:an example from southern China. Chinese Science Bulletin,2009,54(6): 1065-1072.
    [134]Xue J-B, Zhong W, Zheng Y-M, et al. A new high-resolution Late Glacial-Holocene climatic record from eastern Nanling Mountains in South China. Chinese Geographical Science,2009,19(3):274-282.
    [135]Wunnemann B, Hartmann K, Janssen M, et al. Responses of Chinese desert lakes to climate instability during the past 45,000 years. Developments in Quateranary Sciences,2007,9: 11-24.
    [136]Yu X-F, Zhou W-J, Lars G. F, et al. High-resolution peat records for Holocene monsoon history in the eastern Tibetan Plateau. Science in China:Series D Earth Sciences,2006, 49(6):615-621.
    [137]Hong B, Liu C-Q, Lin Q-H, et al. Temperature evolution from the δ18O record of Hani peat, Northeast China, in the last 14000 years. Science in China Series D:Earth Sciences,2009, 52(7):952-964.
    [138]Ma C-M, Zhu C, Zheng C-G, et al. Climate changes in East China since the Late-glacial inferred from high-resolution mountain peat humifica-tion records.. Science in China Series D:Earth Sciences,2009,52(1):118-131.
    [139]Zhu C, Chen X, Zhang G-S, et al. Spore-pollen-climate factor transfer function and paleoenvironment reconstruction in Dajiuhu, Shennongjia, Central China. Chinese Science Bulletin,2008,53(Supp. I):42-49.
    [140]Zheng Y, Kissel C, Zheng H-B, et al. Sedimentation on the inner shelf of the East China Sea: Magnetic properties,diagenesis and paleoclimate implications. Marine Geology,2010,268: 34-42.
    [141]Ge Q, Chu F-Y, Xue Z, et al. Paleoenvironmental records from the northern South China Sea since the Last Glacial Maximum. Acta Oceanologica Sinica.2010,29(3):46-62.
    [142]Jin Z D,Yu J M, Chen H X, et al. The influence and chronological uncertainties of the 8.2 ka cooling event on continental climate records in China. The Holocene,2007,17(7):1041-1050.
    [143]Gupta A K, Anderson D M, Overpeck J T. Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature,2003,421:354-357.
    [144]Staubwasser M, Sirocko F, Grootes P M, et al. South Asian monsoon climate change and radiocarbon in the Arabian Sea during early and middle Holocene. Paleoceanography,2002, 17:1063.
    [145]Fleitmann D, Burns S J, Mudelsee M, et al. Holocene forcing of the Indian monsoon recorded in a stalagmite from Southern Oman. Science,2003,300:1737-1739.
    [146]Gagan M K, Ayliffe L K, Scott-Gagan H, et al. Coral reconstruction of abrupt tropical cooling 8,000 years ago. Geochimica et Cosmochimica Acta,2002,66 (15A (Suppl.1)): A255.
    [147]Wick L, Lemcke G, Sturm M. Evidence of Lateglacial and Holocene climatic change and human impact in eastern Anatolia:high-resolution pollen, charcoal, isotopic and geochemical records from the laminated sediments of Lake Van, Turkey. The Holocene, 2003,13(5):665-675.
    [148]Weninger B, Alram-Stern E, Bauer E, et al. Climate forcing due to the 8200 cal yr BP event observed at Early Neolithic sites in the eastern Mediterranean. Quaternary Research,2006, 66:401-420.
    [149]Tan M, Baker A, Genty D, et al. Applications of stalagmite laminae to paleoclimate reconstructions:comparison with dendrochronology/climatology. Quaternary Science Reviews,2006,25(17-18):2103-2117.
    [150]Henderson G M. Caving in to new chronologies. Science,2006,313:620-622.
    [151]Brecker W S. Radio carbon measurement and annual rings in cave formations. Nature,1960, 185:93-94.
    [152]Edwards R L, Chen J H, Wasserburg G J.238U-234U-230Th-232Th systematics and the precise measurement of time over the past 500,000 years. Earth and Planetary Science Letters,1986, 81:175-192.
    [153]Edwards R L, Chen J H, Ku T L, et al. Precise timing of the last interglacial period from mass spectrometric analysis of 230Th in corals. Science,1987,236:1547-1553.
    [154]Luo X, Rehkabmper M, Lee D C, et al. High precision 230Th/232Th and 234U/238U measurements using energy-filtered ICP magnetic sector multiple collector mass spectrometry. International Journal of Mass Spectrometry and Ion Processes,1997,171: 105-117.
    [155]Goldstein S J and Stirling C H. Technique for Measuring Uranium 2series Nuclides:1992-2002. In:Bourdon B, Henderson G M, Lundstrom C C, et al. eds. Review in Mineralogy and Geochemistry (Volume 52):Uranium-series Geochemistry. Washington:the Mineralogical Society of America,2003,50-51.
    [156]Fairchild I J, Smith C L, Baker A, et al. Modification and preservation of environmental signals in speleothems. Earth-Science Reviews,2006a,75:105-153.
    [157]潘根兴,曹建华.表层带岩溶作用:以土壤为媒介的地球表层生态系统过程——以桂林峰丛洼地岩溶系统为例.中国岩溶,1999,18(4):287-296
    [158]谭明,潘根兴,王先锋等.石笋与环境——石笋纹层形成的环境机理初探.中国岩溶,1999,18(3):197-205
    [159]van Beynen P E, Ford D C, Schwarcz H P. Seasonal variability in organic substances in surface and cave waters at Marengo Cave, Indiana. Hydrological Processes,2000,14:1177-1197
    [160]van Beynen P E, Schwarcz H P, Ford D C et al. Organic substances in cave drip waters: Studies from Marengo Cave, Indiana. Canada Journal of Earth Science,2002,39:279-284.
    [161]班凤梅,潘根兴,王新中.北京石花洞石笋微层层面有机物质的形成时间及机理初探.第四纪研究,2005,25(2):265-268.
    [162]Hoffmann D L, Spotl C, Mangini A. Micromill and in situ laser ablation sampling techniques for high spatial resolution MC-ICPMS U-Th dating of carbonates. Chemical Geology,2009,259:253-261.
    [163]Cosford J, Qing H, Eglington B, et al. East Asian monsoon variability since the Mid-Holocene recorded in a high-resolution,absolute-dated aragonite speleothem from eastern China. Earth and Planetary Science Letters,2008,275:296-307.
    [164]Johnson K R, Hu C, Belshaw N S, et al. Seasonal trace-element and stable isotope variations in a Chinese speleothem:the potential for high resolution paleomonsoon reconstruction. Earth and Planetary Science Letters,2006,244,394-407.
    [165]Treble P C, Chappell J, Gagan M K, et al. In situ measurement of seasonal δ18O variations and analysis of isotopic trends in a modern speleothem from southwest Australia. Earth and Planetary Science Letters,2005,233:17-32.
    [166]Huang Y M, Fairchild I J, Borsato A, et al. Seasonal variations in Sr, Mg and P in modern speleothems (Grotta di Ernesto, Italy), Chemical Geology,2001,175(3-4):429-448.
    [167]Finch A A, Shaw P A, Weedon G P, et al. Trace element variation in speleothem aragonite: potential for palaeoenvironmental reconstruction, Earth and Planetary Science Letters,2001, 186:255-267.
    [168]Finch A A. Shaw P A, Holmgren K, et al. Corroborated rainfall records from aragonitic stalagmites. Earth and Planetary Science Letters,2003,215(1-2):265-273.
    [169]Treble P C, Schmitt A K, Edwards R L, et al. High resolution Secondary Ionisation Mass Spectrometry (SIMS) δ18O analyses of Hulu Cave speleothem at the time of Heinrich Event 1, Chemical Geology,2007,238:197-212.
    [170]Smith C L, Fairchild I J, Spotl C, et al. Chronology building using objective identification of annual signals in trace element profiles of stalagmites, Quaternary Geochronology,2009, 4(1):11-21.
    [171]Allison V. C. The antiquity of the deposit in Jacob's Cavern. Anthropological Papers of The American Museum of Natural History,1926,19:297-335.
    [172]谭明.石笋微层气候学的几个重要问题.第四纪研究.2005,25(2):164-169.
    [173]Baker A, Smith C L, Catherine Jex et al. Annually laminated speleothems:a review. International Journal of Speleology,2008,37 (3):193-206.
    [174]Broecker W S, Olson E A, Orr P C. Radiocarbon measurement and annual rings in cave formations. Nature,1960,185:93-94.
    [175]Orr P C. Excavations in Moaning Cave. Santa Barbara Museum of Natural History Bulletin, 1952,1:19.
    [176]Shopov Y Y, Dermendjiev V, Buykliev G. Investigation on the variations of the climate and solar activity by a new method-llmza of cave flowstone from Bulgaria. Proceedings of the 10th International Congress of Speleology,1989:95-97.
    [177]Genty D. Les speleothemes du tunnel de Godarville (Belgique)-un exemple exceptionnel de concretionnement moderne-interet pour l'etude de la cinetique de la precipitation de la calcite et de sa relation avec les variations d'environnement. Speleochronos,1992,4:3-29.
    [178]Genty D. Mise en evidence d'alternances saisonnieres dans la structure interne des stalagmites.Interet pour la reconstitution des paleoenvironnements continentaux, Comptes Rendus Academie des Sciences Paris, Serie II,1993,317:1229-1236.
    [179]Railsback L B, Brook G A, Chen J, et al.Environmental control on the petrology of a late Holocene speleothem from Botswana with annual layer of aragonite and calcite. Journal of Sedimentary Research,1994,64:147-155.
    [180]Roberts M S, Smart P L, Baker A. Annual trace element variations in a Holocene Speleothem. Earth and Planetary Science Letters,1998,154:237-246.
    [181]Lauritzen S E, Ford D C, Schwarz H P. Humic substances in a speleothem matrix. Proceedings of the 9th International Congress of Speleology,1986,77-79.
    [182]White W B and Brennan E S. Luminescence of speleothems due to fulvic acid and other activators. Proceedings of the 10th International Congress of Speleology,1989,212-214.
    [183]Baker A, Smart P L, Edwards R L, et al. Annual growth banding in a cave stalagmite. Nature, 1993,364:518-520.
    [184]Proctor C J, Baker A, Barnes W L, et al. A thousand year speleothem proxy record of North Atlantic climate from Scotland. Climate Dynamics,2000,16:815-820.
    [185]Proctor C J, Baker A and Barnes W L. A three thousand year record of N Atlantic climate. Climate Dynamics,2002,19:449-454.
    [186]Baker A, Proctor C J, Barnes W L, et al. Variations in stalagmite luminescence laminae structure at Poole's Cavern, England, AD1910 to AD 1996:calibration of a palaeoprecipitation proxy. The Holocene,1999a,9:683-688.
    [187]Ribes A C, Lundberg J, Waldron D J, et al. Photoluminescence imaging of speleothem microbanding with a high-resolution confocal scanning laser macroscope. Quaternary International,2000,68:253-259.
    [188]Genty D, Baker A, Barnes W.L.Comparison of annual luminescent and visible laminae in stalagmites. Comptes Rendus Academie des Sciences Paris, Series II,1997a,325:193-200.
    [189]Shopov Y Y, Ford D C, Schwarz H P. Luminescent microbanding in speleothems-high-resolution chronology and paleoclimate. Geology,1994,22:407-410.
    [190]李彬,袁道先,林玉石.桂林盘龙洞石笋发光性特征及其古环境记录的初步研究.地球学报,1997,18(04).400-405.
    [191]Tan M, Qin X G, Shen L M, et al. Bioptical microcycles of laminated speleothems from China and their chronological significance. Chinese Science Bulletin,1999,44:1604-1607.
    [192]Mounier S, Braucher R, Benaim J Y. Differentiation of organic matter's properties of the Rio Negro basin by crossflow ultra-filtration and UV spectrofluorescence. Water Research, 1999,33:2363-2373.
    [193]Coble P G. Characterization of marine and terrestrial DOM in seawater using excitation emission matrix spectroscopy. Marine Chemistry,1996,51:325-346.
    [194]Baker A. Fluorescence excitation-emission matrix characterisation of some sewage impacted rivers. Environmental Science and Technology,2001,35:948-953.
    [195]Hudson N J, Baker A, Reynolds D. Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters-a review. Rivers Research,2007,23:631-649.
    [196]Del Vecchio R and Blough N V.Photobleaching of chromophoric dissolved organic matter in natural waters:kinetics and modelling. Marine Chemistry,2002,78:231-253.
    [197]Baker A and Spencer R G M. Characterization of dissolved organic matter from source to sea using fluorescence and absorbance spectroscopy. Science of the Total Environment, 2004,333:217-232.
    [198]Polyak V J and Asmerom Y. Late Holocene climate and cultural changes in the Southwestern United States, Science,2001,294:148-151.
    [199]Bertaux J, Sondag F, Santos R, et al. Paleoclimatic record of speleothems in a tropical region: study of laminated sequences from a Holocene stalagmite in Central-West Brazil. Quaternary International,2002,89:3-16.
    [200]Soubies F, Seidel A, Mangin A. A fifty-year climatic signal in three Holocene stalagmite records from Mato Grosso, Brazil. Quaternary Science Reviews,2005,135:115-129.
    [201]Genty D and Massault M. Bomb 14C recorded in laminated speleothems-part 1:dead carbon proportion calculation, Radiocarbon,1997,39:33-48.
    [202]Genty D and Quinif Y. Annually laminated sequences in the internal structure of some Belgian stalagmites-importance for paleoclimatology. Journal of Sedimentary Research, 1996,66:275-288.
    [203]Frisia S, Borsato A, Fairchild I J, et al. Calcite fabrics, growth mechanisms, and environments of formation in speleothems from the Italian Alps and Southwestern Ireland. Journal of Sedimentary Research,2000,70:1183-1186.
    [204]Tan M, Liu T, Qin X, et al. Microbanding of stalagmite and its significance. PAGES News, 1997,5:6-7.
    [205]Paulsen D E, Li H C, Ku T L. Climate variability in central China over the last 1270 years revealed by high-resolution stalagmite records. Quaternary Science Reviews,2003,22:691-701.
    [206]Zhang P Z, Cheng H, Edwards R L, et al. A test of climate, sun, and culture relationships from an 1810-year Chinese cave record, Science,2008,322(5903):940-942.
    [207]Cai Y, Tan L C, Cheng H. The variation of summer monsoon precipitation in central China since the last deglaciation. Earth and Planetary Science Letters,2010,291(1-4):21-31.
    [208]Yadava MG, Ramesh R, Pant G.B.Past monsoon rainfall variations in peninsular India recorded in a 331-year-old speleothems. The Holocene,2004,14:517-524.
    [209]Burns S J, Fleitmann D, Mudelsee M, et al. A 780-year annuallyresolved record of Indian Ocean monsoon variation in a speleothem from south Oman. Journal of Geophysical Research,2002,107(D20):4434.
    [210]Asrat A, Baker A, Mohammed M U, et al. A high-resolution multi-proxy stalagmite record from Mechara, Southeastern Ethiopia:palaeohydrological implications for speleothem palaeoclimate reconstruction. Journal of Quaternary Science,2007,22(1):53-63.
    [211]Baker A, Asrat A, Fairchild I J, et al. Analysis of the climate signal contained within δ18O and growth rate parameters in two Ethiopian stalagmites. Geochimica et Cosmochimica Acta,2007,71:2975-2988.
    [212]Rasbury M and Aharon P. ENSO-controlled rainfall variability records archived in tropical stalagmites from the mid-ocean island of Niue, South Pacific. Geochemistry, Geophysics, Geosystems,2006,7:Art. No. Q07010.
    [213]Onac B P Crystallography of speleothems. In:Hill, C.A., Forti, P., (Eds.). Cave minerals of the world,2nd ed., NSS, Huntsville, Alabama,1997,230-236.
    [214]Spotl C, Fairchild I J, Tooth A F. Cave air control on dripwater geochemistry, Obir Caves (Austria):implications for speleothem deposition in dynamically ventilated caves. Geochimica et Cosmochimica Acta,2005,69:2451-2468.
    [215]Jex C, Claridge E, Baker A et al. Hyperspectral imaging of speleothems. Quaternary International,2007,187:5-14.
    [216]Denniston R F, Gonzalez L A, Asmerom Y, et al. Speleothem evidence for changes in Indian summer monsoon precipitation over the last similar to 2300 years. Quaternary Research,2000,53:196-202.
    [217]Frisia S, Borsato A, Fairchild I J, et al. Aragonite-calcite relationships in speleothems (Grotte de Clamouse, France):Environment, fabrics, and carbonate geochemistry. Journal of Sedimentary Research,2002,72:687-699.
    [218]Fairchild I J, Frisia S, Borsato A, et al. Speleothems,2007. In:Geochemical Sediments and Landscapes. RGS-IBG book series. Blackwells, Oxford, UK. ISBN 1405121595.
    [219]Borsato A., Frisia S., Fairchild I.J., et al. Trace element distribution in annual stalagmite laminae mapped by micrometer-resolution X-ray fluorescence:Implications for incorporation of environmentally significant species. Geochimica et Cosmochimica Acta, 2007,71:1494-1512.
    [220]Linge H, Lauritzen S E, Baker A, et al. Luminescent growth banding and stable isotope stratigraphy in a stalagmite from Northern Norway:preliminary results for the period AD1734 to 955 BC. Proceedings of the 13th International Congress of Speleology.2001.
    [221]Dreybrodt W. Processes in Karst Systems. Springer-Verlag,1988:288, Berlin.
    [222]Frisia S, Borsato A, Preto N, et al. Late Holocene annual growth in three Alpine stalagmites records the influence of solar activity and the North Atlantic Oscillation on winter climate. Earth and Planetary Science Letters,2003,216:411-424.
    [223]Tan M, Liu T S., Hou J, et al. Cyclic rapid warming on centennnial-scale revealed by a 2650-year stalagmite record of warm season temperature. Geophysical Research Letters, 2003,30:191-194.
    [224]Niggeman S, Mangini A, Richter D, et al. A paleoclimate record of the last 17,600 years in stalagmites from B7 cave, Sauerland, Germany. Quaternary Science reviews,2003,22(5-7): 555-567.
    [225]Kaufmann G. Stalagmite growth and palaeo-climate:the numerical perspective. Earth and Planetary Science Letters,2003,214:251-266.
    [226]Banner J L, Guilfoyle A, James E W, et al. Seasonal Variations in Modern Speleothem Calcite Growth in Central Texas, U.S.A. Journal of Sedimentary Research; 2007,77(8): 615-622.
    [227]Zhao J X, Xia Q K, Collerson K D. Timing and duration of the Last Interglacial inferred from high resolution U-series chronology of stalagmite growth in Southern Hemisphere. Earth and Planetary Science Letters,2001,184:635-644.
    [228]吴江滢,邵晓华,孔兴功等.盛冰期太阳活动在南京石笋年层序列中的印迹.科学通报,2006,51(4):431-434.
    [229]邵晓华,汪永进,孔兴功等.南京葫芦洞石笋生长速率及其气候意义讨论.地理科学,2003,23(3):304-309.
    [230]孔兴功,汪永进,吴江滢等.末次盛冰期连续3 ka南京降水记录中ENSO周期.科学通报,2003,48(3):277-281.
    [231]邱庆伦,吴江滢,李明霞等.中全新世持续近600年的湖北神农架石笋年纹层.第四纪研究,2006,2006,26(5):835-842.
    [232]刘浴辉,胡超涌,黄俊华等.长江中游石笋年层厚度作为东亚夏季风强度代用指标的研究.第四纪研究,2005,25(2):228-233.
    [233]Baldini J U L, McDermott F, Baker A, et al. biomass effects on stalagmite growth and isotope ratios:A 20th century analogue from Wiltshire, England. Earth and Planetary science Letters,2005,240:486-494.
    [234]王新中,班凤梅,潘根兴.洞穴滴水地球化学的空间和时间变化及其控制因素—以北京石花洞为例.第四纪研究,2005,25(2):258-264.
    [235]朱健,班凤梅,蔡炳贵.北京石花洞降水至滴水下渗时间示踪观测.第四纪研究,2008,28(3):509-510.
    [236]Harmon R S, Schwarcz H P, Gascoyne M H, et al. Paleoclimate information from speleothems:the present as a guide to the past. In:Sasowsky, I.D.& Mylroie, J. (eds.) Studies of Cave Sediments. Physical and Chemical Records of Palaeoclimate,2004, Kluwer Academic, New York, pp.199-226.
    [237]McDermott F. Palaeo-climate reconstruction from stable isotope variations in speleothems:a review. Quaternary Science Reviews,2004,23:901-918.
    [238]Leutscher M. and Jeannin P Y. Temperature distribution in karst systems:the role of air and water fluxes. Terra Nova,2004,16,344-350.
    [239]O'Neill J R, Clayton R N, Mayeda T K. Oxygen isotope fractionation in divalent metal carbonates. Journal of Chemical Physics,1969,51:5547-5558.
    [240]Gascoyne M. Palaeoclimate determination from cave calcite deposits. Quaternary Science Reviews,1992,11:609-632.
    [241]Genty D, Blamart D, Ouahdi R, et al. Precise dating of Dansgaard-Oeschger climate oscillations in western Europe from stalagmite data. Nature,2003,421 (20):833-838.
    [242]Mangini A, Spot C, Verdes P. Reconstruction of temperature in the Central Alps during the past 2000 yr from a δ18O stalagmite record. Earth and Planetary Science Letters,2005,235: 741-751.
    [243]Vollweiler N, Scholz D, Muhlinghaus C, et al. A precisely dated climate record for the last 9 kyr from three high alpine stalagmites, Spannagel Cave, Austria. Geophysical Research Letters,2006,33:L20703
    [244]Mangini A, Verdes P, Spotl C, et al. Persistent influence of the North Atlantic hydrography on central European winter temperature during the last 9000 years. Geophysical Research Letters,2007,34:L02704.
    [245]Sundqvist H S, Holmgren K, Lauritzen S E, et al. Stable isotope variations in stalagmites from northwestern Sweden document climate and environmental changes during the early Holocene. The Holocene,2007,17(2):259-267.
    [246]Lachniet M S, Burns S, Piperno D R, et al. A 1500-year El Nino/Southern Oscillation and rainfall history for the Isthmus of Panama from speleothem calcite. Journal of Geophysical Research,2004,109:D20117
    [247]Fleitmann D, Bums S J, Neff U, et al. Palaeoclimatic interpretation of high-resolution oxygen isotope profiles derived from annually laminated speleothems from Southern Oman. Quaternary Science Reviews,2004,23(7-8):935-945.
    [248]Cruz Jr F W, Burns S J, Karmann I, et al. Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil, Nature,2005,434 (3):63-66.
    [249]Sinha A, Cannariato K G, Stott L D, et al. A 900-year (600 to 1500 A.D.) record of the Indian summer monsoon precipitation from the core monsoon zone of India, Geophysical Research. Letters,2007,34:L16707.
    [250]van Beynen P E, Asmerom Y, Polyak Y, et al. Variable intensity of teleconnections during the late Holocene in subtropical North America from an isotopic study of speleothem from Florida. Geophysical Research Letters,2007,34:L18703.
    [251]Yuan D, Cheng H, Edwards R L, et al. Timing, Duration, and Transitions of the Last Interglacial Asian Monsoon. Science,2004,304:575-578.
    [252]Wang Y,Cheng H, Edwards R L, et al. A High-Resolution Absolute-Dated Late Pleistocene Monsoon Record from Hulu Cave, China. Science,2001,294:2345-2348.
    [253]Wang Y, Cheng H, Edwards R L, et al. Millennial-and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature,2008,451:1090-1093.
    [254]Dong J, Wang Y, Cheng H, et al. A high-resolution stalagmite record of the Holocene East Asian monsoon from Mt Shennongjia, central China. The Holocene,2010,20(2):257-264.
    [255]Zhou H, Zhao J, Feng Y, et al. Distinct climate change synchronous with Heinrich event one, recorded by stable oxygen and carbon isotopic compositions in stalagmites from China. Quaternary Research,2008,69(2):306-315.
    [256]Zhou H, Zhao J, Qing W, et al. Speleothem-derived Asian summer monsoon variations in Central China,54-46 ka. Journal of Quaternary Science,2011, doi:10.1002/jqs.1506.
    [257]Maher B A. Holocene variability of the East Asian summer monsoon from Chinese cave records:are-assessment. The Holocene,2008,18,861-866.
    [258]Dayem K E, Molnar P, Battisti D S, et al. Lessons learned from oxygen isotopes in modern precipitation applied to interpretation of speleothem records of paleoclimate from eastern Asia. Earth and Planetary Science Letters,2010,295:219-230.
    [259]Pausata F S R, Battisti D S, Nisancioglu K H, et al. Chinese stalagmite δ18O controlled by changes in the Indian monsoon during a simulated Heinrich event. Nature Geoscicence, 2011, doi:10.1038/ngeo1169.
    [260]谭明,南素兰.中国季风区降水氧同位素年际变化的“环流效应”初探.第四纪研究,2010,30(3):620-622.
    [261]谭明.信风驱动的中国季风区石笋δ18O与大尺度温度场负耦合——从年代际变率到岁差周期的环流效应.第四纪研究,2011,31(6):1-11.
    [262]Hendy C H. The isotopic geochemistry of speleothems — I. The calculation of the effect of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators. Geochimica et Cosmochimica Acta,1971,35: 807-824.
    [263]Cerling T E. The stable isotopic composition of soil carbonate and its relationship to climate. Earth and Planetary Science Letters,1984,71,229-240.
    [264]Dorale J A, Gonzalez L A, Reagan M K, et al. A high-resolution record of Holocene climate change in speleothem calcite from Coldwater cave, Northeast Iowa. Science,1992,258: 1626-1630.
    [265]Baker A, Ito E, Smart P L, et al. Elevated and variable values of 13C in speleothems in a British cave system. Chemical Geology,1997b,136,263-270.
    [266]Verheyden S, Keppens E, Fairchild I J, et al. Mg, Sr and Sr isotope geochemistry of a Belgian Holocene speleothem:implications for paleoclimate reconstructions. Chemical Geology,2000,169 (1-2):131-144.
    [267]Bar-Matthews M, Avner A and Kaufman A, et al. The Eastern Mediterranean paleoclimate as a reflection of regional events:Soreq cave, Israel. Earth and Planetary Science Letters, 1999,166:85-95.
    [268]Genty D, Baker A, Vokal B. Intra-and inter-annual growth rate of modern stalagmites. Chemical Geology,2001b,176:191-212.
    [269]Coplen T B, Winograd I J, Jurate M, et al.500,000-Year Stable Carbon Isotopic Record from Devils Hole, Nevada, Science,1994,263(5145):361-365.
    [270]李红春,袁道先.北京石花洞石笋500年来的δ13C记录与古气候变化及大气CO2浓度变化的关系.中国岩溶,1997,16(4):285-295.
    [271]Denniston R F, Gonzalez L A, Baker R G, et al. Speleothem evidence for Holocene fluctuations of the prairie-forest c cot one, north-central USA. The Holoence,1999,9:671-676.
    [272]覃嘉铭 李红春.桂林全新世石笋高分辨率δ13C记录及其古生态意义.第四纪研究,2000,20(4):351-358.
    [273]Frappier A, Sahagian D, Gonzalez L A, et al. El Nino events recorded by stalagmite carbon isotopes. Science,2002,298(18):565.
    [274]孔兴功,汪永进,吴江滢等.南京葫芦洞石笋δ13C对冰期气候的复杂响应与诊断.中国科学(D辑),2005,35(11):1047-1052.
    [275]Genty D, Blamart D, Ghaleb B, et al. Timing and dynamics of the last deglaciation from European and North African 81 C stalagmite profiles-comparison with Chinese and South Hemisphere stalagmites. Quaternary Science Reviews,2006,25(17-18):2118-2142.
    [276]罗维均,王世杰,刘秀明.洞穴现代沉积物δ13C值的生物量效应及机理探讨:以贵州4个洞穴为例.地球化学,2007,36(4):44-350.
    [277]Springer G S, Rowe H D, Hardt B, et al. Solar forcing of Holocene droughts in a stalagmite record from West Virginia in east-central North America. Geophysical Research Letters, 2008,35:L17703.
    [278]张美良,朱晓燕,林玉石等.桂林洞八滴水及现代碳酸钙(CaCO3)沉积的碳同位素记录及其环境意义.地球学报,2009,30(5):634-642.
    [279]Fleitmann D, Cheng H, Badertscher S, et al. Timing and climatic impact of Greenland interstadials recorded in stalagmites from northern Turkey. Geophysical Research Letters, 2009,36:L19707.
    [280]Gascoyne M. Trace-element part it ion coefficient s in the calcite-water system and their paleoclimatic significance in cave studies. Journal of Hydrology,1983,61:213-222.
    [281]Sharp M, Parkes J, Cragg B, et al. Widespread bacterial populations at glacier beds and their relationship to rock weathering and carbon cycling. Geology,1999,27:107-110.
    [282]Baker A, Genty D, Fairchild I J. Hydrological characterisation of stalagmite dripwaters at Grotte de Villars, Dordogne, by the analysis of inorganic species and luminescent organic matter. Hydrology and Earth System Sciences,2000,4:439-449.
    [283]Tooth A F and Fairchild I J. Soil and karst aquifer hydrological controls on the geochemical evolution of speleothem-forming drip waters, Crag Cave, southwest Ireland. Journal of Hydrology,2003,273:51-68.
    [284]Fairchild I J, Tuckwell G W, Baker A., et al. Modelling of dripwater hydrology and hydrogeochemistry in a weakly karstified aquifer (Bath, UK):implications for climate change studies. Journal of Hydrology,2006b,321:213-231.
    [285]Zhou H, Wang Q, Zhao J, et al. Rare earth elements and yttrium in a stalagmite from Central China and potential paleoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology,2008,270(1-2):128-138.
    [286]Heathwaite A L. Sources and pathways of phosphorus loss from agriculture.In:Tunney H, Careton O T, Brookes P C, et al.(Eds.), Phosphorus Loss From Soil to Water. CAB International, Wallingford, UK,1997, pp:205-223.
    [287]Karmann I, Cruz F W, Viana Jr O, et al. Climate influence on trace element geochemistry of waters from Santana-Perolas cave system, Brazil. Chemical Geology,2007,244:232-247.
    [288]Fairchild I J and Treble P C. Trace elements in speleothems as recorders of environmental change. Quaternary Science Reviews,2009,28:449-468.
    [289]李彬,袁道先,林玉石等.洞穴次生化学沉积物中Mg、Sr、Ca及其比值的环境指代意义.中国岩溶,2000,19(2):115-122.
    [290]Huang Y and Fairchild I J. Partitioning of Sr2+ and Mg2+ into calcite under karst analogue experimental conditions. Geochimica et Cosmochimica Acta,2001,65:47-62.
    [291]Treble P C, Shelley J M G, Chappell J. Comparison of high-resolution subannual records oft race element s in a modern (1911-1992) speleothem with instrumental climate data from southwest Australia. Earth and Planetary Science Letters,2003,216:141-153.
    [292]马志邦.李红春,夏明等.距今3ka来京东地区的古温度变化:石笋Mg/Sr记录.科学通报,2002,47(23):1829-1834.
    [293]McMillan E A, Fairchild I J, Frisia S, et al. Annual trace element cycles in calcite-aragonite speleothems:evidence of drought in the western Mediterranean 1200-1100 yr BP. Journal of Quaternary Science,2005,20(5):423-433.
    [294]Hu C, Huang H, Fang N, et al. Adsorbed silica in stalagmite carbonate and its relationship to past rainfall. Geochimica et Cosmochimica Acta,2005,69(9):2285-2292.
    [295]Li H, Ku T, You C, et al.87Sr/86Sr and Sr/Ca in speleothems for paleoclimate reconstruction in Central China between 70 and 280 kyr ago. Geochimica et Cosmochimica Acta,2005, 69:3933-3947.
    [296]Cruz F R, Bums, S J, Jercinovic, M, et al. Evidence of rainfall variati on s in Southern Brazil from trace element ratios (Mg/Ca and Sr/Ca) in a Late Pleistocene stalagmite. Geochimica et Cosmochimica Acta,2007,71:2250-2263.
    [297]李清,王建力,李红春等.重庆地区石笋记录中Mg/Ca比值及古气候意义.中国岩溶,2008,27(2),145-150.
    [298]Zhou H, Feng Y, Zhao J, et al. Deglacial variations of Sr and 87Sr/86Sr ratio recorded by a stalagmite from Central China and their association with past climate and environment. Chemical Geology,2009,268(3-4):233-247.
    [299]von Grafenstein U, Erlenkeuser H, Muller J, et al. The cold event 8200 years ago documented in oxygen isotope records of precipitation in Europe and Greenland. ClimateDynamics,1998,14:73-81.
    [300]Cacho I, Grimalt J O, Canals M, et al. Variability of the western Mediterranean Sea surface temperature during the last 25,000 years and its connection with the Northern Hemisphere climatic changes. Paleoceanography,2001,16:40-52.
    [301]Boyle E A. Is ocean t hermohaline circulation linked to abrupt stadia/interstadialt ransitions. Quaternary Science Reviews,2000,19(1-5):255-272.
    [302]Marotzke J.Abrupt climate change and t hermohaline circulation:"mechanisms and predictability. Proceedings of he National Academy of Sciences of the United States of America,2000,97 (4):1347-1350.
    [303]Perry C A and Hsu K. Geophysical, archaeological, and historical evidence support a solar-output model for climate change.Proceedings of t he National Academy of Sciences oft he United States of America,2000,97 (23):12433-12438.
    [304]St-Onge G, Stoner J S, Hillaire-Marcel C. Holocene paleomagnetic records from the St. Lawrence estuary, eastern Canada:centennial-to millennial-scale geomagnetic modulation of cosmogenic isotopes. Earth Planet Science Letter,2003,209:113-130.
    [305]Haigh J D. The impact of solar variability on climate. Science,1996,272:981-984.
    [306]Shindell D, Rind D, Balachandran N, et al. Solar cycle variability, ozone, and climate. Science,1999,284:305-308.
    [307]王增银,万军伟,姚长宏.清江流域溶洞发育特征.中国岩溶,1998,18(2):151-157.
    [308]Hu C, Henderson G, Huang J, et al. Report of a three-year monitoring programme at Heshang Cave, Central China. International Journal of Speleology,2008b,37 (3) 143-151.
    [309]万军伟,沈继方,晁念英.清江半峡地区岩溶洞穴发育特征及其旅游资源.中国岩溶,1997,16(3):268-274.
    [310]高由禧,郭其蕴.我国的秋雨现象.气象学报,1958,29(4):264-273.
    [311]Webster P J, Magana V O, Palmer T N, et al. Monsoons:Processes, predictability, and the prospects for prediction. Journal of Geophysical Research-Oceans,1998,103,14451-14510.
    [312]Krishna K K, Rajagopalan B, Cane M A. On the weakening relationship between the Indian Monsoon and ENSO. Nature,1999,284:2156-2159.
    [313]胡超涌.湖北清江洞穴石笋沉积记录与长江中游近2万年以来的古气候研究.博士论文.北京:中国地质大学(北京),2005.
    [314]Ding Y, Shi X, Liu Y, et al. Multiyear Simulations and Experimental Seasonal Predictions for Rainy Seasons in China by Using a Nested Regional Climate Model (RegCM NCC). Part I:Sensitivity Study. Advances in Atmospheric Sciences,2006,23:323-341.
    [315]Ford D and Williams P. Karst Hydrogeology and Geomorphology. Chichester,2007, Wiley: 561
    [316]胡超涌谢树成.湖北清江和尚洞石笋古环境研究的回顾和展望.地质科学情报,2012,inpress.
    [317]何璐瑶,胡超涌,曹振华等.湖北清江和尚洞洞穴温度对气候变化的响应.中国岩溶,2008,27(3):273-277.
    [318]Genty D and Deflandre G. Drip flow variations under a stalactite of the Pere Noel cave (Belgium). Evidence of seasonal variations and air pressure constraints. Journal of Hydrology,1998,211:208-232.
    [319]Baldini J U L, McDermott F, Fairchild I J. Spatial variability in cave drip water hydrochemistry:Implications for stalagmite paleoclimate records. Chemical Geology,2006, 235:390-404.
    [320]黄俊华,胡超涌,周群峰.湖北清江和尚洞石笋的高分辨率碳氧同位素及古气候研究,地球科学-中国地质大学学报,2000,25(5):505-509.
    [321]周种,胡超涌,黄俊华等.同步变化的东业季风和印度季风:来自年层石笋氧同位素的证据.地球学报,2008,29(6):761-764.
    [322]何璐瑶,胡超涌,黄俊华等.石笋氧同位素指示东亚季风大尺度环流特征.第四纪研究,2009,29(5):950-956.
    [323]黄俊华,胡超涌,周群峰等.长江中游和尚洞石笋的高分辨率同位素、微量元素记录及古气候研究.沉积学报,2002,20(3):442-446.
    [324]Huang J, Hu C, Zhou J, et al. Stable isotope and trace element record of a stalagmite in Heshang Cave, Hubei and its palaeoclimatic significance. Science in China(Series E),2001, 44(Supp.):123-128.
    [325]Hu C, Huang J. Fang N. et al. Adsorbed silica in stalagmite carbonate and its relationship to past rainfall. Geochimica et Cosmochimica Acta,200569(9):2285-2292.
    [326]王明达,胡超涌,周炼等.土壤和围岩地球化学组成及气候对洞穴滴水水化学的影响——以湖北清江和尚洞为例.地质科学情报,2010,29,(3):97-103.
    [327]陈菲菲,胡超涌,史郁等.石笋P/Ca重建宜昌地区9000年以来的陆地生产力.中国岩溶,2010,29(3):280-284.
    [328]Ruan J and Hu C. Seasonal variations and environmental controls on stalagmite calcite crystal growth in Heshang Cave, central China. Chinese Science Bulletin,2010,55(34): 3929-3935.
    [329]Xie S. Yi Y, Huang J, et al. Lipid distribution in a subtropical southern China stalagmites as a record of soil ecosystem response to paleoclimate change. Quaternary Research,2003, 60(3):340-347.
    [330]谢树成,黄俊华,王红梅等.湖北清江和尚洞石笋脂肪酸的古气候意义.中国科学(D辑),2005,35(3):246-251.
    [331]蒲阳,黄俊华,黄咸雨等.岩溶地区现代土壤与洞穴石笋中单甲基支链烷烃与烷基环己烷对比研究.沉积学报,2005,(5):740-746.
    [332]Pu Y, Huang J, Huang X, et al. Acyclic Alkanes in the Soil over Heshang Cave in Qingjiang, Hui Province. Journal of China University of Geosciences,2006,17(2):115-120
    [333]黄咸雨,蒲阳,崔景伟等.湖北清江和尚洞洞穴滴水脂肪酸分布特征及其古生态意义,第四纪研究,2007,(3):401-407.
    [334]崔景伟,黄俊华,蒲阳等.湖北清江和尚洞洞顶植物叶片和土壤的类脂物对比及其意第四纪研究,2008,28(1):35-42.
    [335]赵锐,王红梅,刘倩瑛等.湖北清江和尚洞滴水微生物群落随空间和季节的变化.地球利学-中国地质大学学报,2010,35(6):899-907.
    [336]业渝光.地质年代学理论与实践[M].北京:地质出版社,2003.
    [337]Gabler H E. Applications of magnetic sector ICP-MS in geochemistry. Journal of Geochemical Exploration,2002,75:1-15.
    [338]Edwards R L, Gallup D G, Cheng H. Uranium-series Dating of Marine and Lacustrine Carbonates. In:Bourdon B, Henderson GM, Lundstrom C C, et al. eds. Review in Mineralogy and Geochemistry (Volume 52):Uranium-series Geochemistry. Washington: the Mineralogical Society of America,2003,363-405.
    [339]蔡演军,Cheng H,安芷生等.洞穴碳酸盐230Th-234U-238U测年初始针校正的等时线研究.地球科学进展,2005,20(4):414-419.
    [340]Shen C C, Edwards R L, Cheng H, et al. Uranium and thorium isotopic and concentration measurements by magnetic sector inductively coupled plasma mass spectrometry. Chemical Geology,2002,185:165-178.
    [341]Blichert-Toft J._On the Lu-Hf isotope geochemistry of silicate rocks. Geostandard Newsletters,2001,25(1):41-56.
    [342]Halliday A N, Lee D C, Christensen J N, et al. Recent developments in inductively coupled plasma magnetic sector multiple collector massspectrometry. International Journal of MassSpectrometry and Ion Processes,1995,146-147:21-33.
    [343]Halliday A N, Lee D C, Christensen J N, et al. Applicationsof multiple collector ICPMS to cosmochenistry, geochemistry and paleoceansgraphy. Geochimica et Cosmochimica Acta, 1998,62:919-940.
    [344]Robinson L F, Henderson G M, Slowey N C.U-Th dating of marine isotope stage 7 in Bahamas slope sediments. Earth and Planet. Science Letters,2002,196,175-187.
    [345]Mason, A. J.& Henderson, G. M. Correction of multi-collector-ICP-MS instrumental biases in high-precision uranium-thorium chronology. International Journal of Mass Spectrometry, 2010,295,26-35.
    [346]杨琰,袁道先,程海.高精度ICP-MS 230Th测年新技术及其在贵州衙门洞Y1石笋测年研究中的应用.中国岩溶,2006,25(2):89-94.
    [347]Baker A, Proctor C J, Barnes W L Stalagmite lamina doublets:a 1,000 year record of extreme winters in NW Scotland. International Journal of Climatology,2002,22:1339-1345.
    [348]Moberg A, Sonechkin D M, Holmgren K, et al. Highly variable Northern Hemisphere temperatures reconstructed from low-and high-resolution proxy data, Nature,2005,433: 613-617.
    [349]谭明,程海,Edwards R L等.甚年轻石笋的TIMS 230Th定年及其年层确定.第四纪研究,2000,20(4):391.
    [350]侯居峙,谭明,程海等.本溪水洞石笋微层年代学初步研究.中同科学(D辑),2001,31(5):387-392.
    [351]谭明,侯居峙,程海.定量重建气候历史的石笋年层方法.2002,22(3):209-219.
    [352]Baker A, GentyD. Fluorescence wavelength and intensity variations of cave waters. Journal of Hydrology,1999,217:19-34.
    [353]秦小光,刘东生,谭明等.北京石花洞石笋微层灰度变化特征及其气候意义——Ⅰ.微层显微特征.中国科学(D辑),1998,28(1):91-96.
    [354]秦小光,刘东生,谭明等.北京石花洞石笋微层灰度变化特征及其气候意义——Ⅱ.灰度的年际变化.中国科学(D)辑,2000,30(3):239-248.
    [355]Fischer M, Botz R, Schmidt M, et al. Origins of CO2 in permian carbonate reservoir rocks (Zechstein, Ca2) of the NW-German Basin (Lower Saxony). Chemical Geology,2006,227: 184-213
    [356]Nederbragt A J and Thurow J W. A 6000 yr varve record of Holocene climate in Saanich Inlet, British Columbia, fromm digital sediment colour analysis of ODP Leg 169S cores. Marine Geology,2001,174:95-110.
    [357]Raffi I, Backman J, Palike H. Changes in calcareous nannofossil assemblages across the Paleocene/Eocene transition from the paleo-equatorial Pacific Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology,2005,226:93-126.
    [358]Heinrich C A, Pettke T, Halter W E, et al.:Quantitative muli-element analysis of minerals. fluid and melt inclusions by laser-ablation ICP-MS; Geochimica and Cosmochimica Acta, 2003,67,3473-3496.
    [359]Gao S, Rudnick R L, Yuan H L, et al.:Recycling lower continental crust in the North China craton. Nature,2004,432,892-897.
    [360]Allan M M, Yardley B W D, Forbes L J, et al.:Validation of LA-ICP-MS fluid inclusion analysis with synthetic fluid inclusions. American Mineralogist,2005,90,1767-1775.
    [361]Verheyden S, Baele J M, Keppens E, et al. The Proserpine stalagmite (Han-Sur-Lesse Cave, Belgium):preliminary environmental interpretation of the last 1000 years as recorded in a layered speleothem. Geologica Belgica,2006:9(3-4):245-256.
    [362]Fuller L, Baker A,Fairchild I J, et al. Isotope hydrology of dripwaters in a Scottish cave and implications for stalagmite palaeoclimate research. Hydrology and Earth System Sciences Discussions,2008,5:547-577.
    [363]Bard E, Antonioli F, Silenzi S. Sea-level during the penultimate interglacial period based on a submerged stalagmite from Argentarola Cave (Italy). Earth and Planetary Science Letters, 2002,196:135-146.
    [364]Spotl C, Mangini A. Stalagmite from the Austrian Alps reveals Dansgaard-Oeschger events during isotope stage 3::Implications for the absolute chronology of Greenland ice cores. Earth and Planetary Science Letters,2002,203(1):507-518.
    [365]McCrea M. The isotopic chemistry of carbonates and a paleotem-perature scale. Journal of Chemical Physics,1950,18:849-857.
    [366]Cheng H., Edwards R L., Hoff J, et al. The half lives of uranium-234 and thorium-230. Chemical Geology,2000,169:17-33.
    [367]Ramsey C B. Deposition models for chronological records. Quaternary Science Reviews, 2008,27:42-60
    [368]Brook G A, Rafter M A, Railsback L B. A high-resolution proxy record of rainfall and ENSO since AD 1550 from layering in stalagmites from Anjohibe cave, Madagascar. Holocene,1999,9(6):695-705.
    [369]Karlen H W, Lauritzen S E. A 3000-year high-resolution stalagmite based record of palaeoclimate for northeastern South Africa. Holocene,1999,9(3):295-309.
    [370]刘东生,谭明,秦小光等.洞穴碳酸钙微层理在中国的首次发现及其对全球变化研究的意义.第四纪研究,1997,1:41-53.
    [371]谭明,秦小光,刘东生.石笋记录的年际十年百年尺度气候变化.中国科学(D辑),1998,28(3):272-277.
    [372]Qin X G, Tan M, Liu T S, et al. S. Spectral analysis of a 1000-year stalagmite lamina-thickness record from Shihua Cavern. Beijing, China, and its climatic significance. Holocene,1999,9(6):689-694.
    [373]吴江滢,孔兴功,汪永进.盛冰期南京石笋6180与年纹层厚度的对比.南京师大学报(自然科学版),2005,28(4):109-113.
    [374]梁燕,孔兴功,汪永进.湖北神农架石笋年纹层与氧碳同位素关系.中国岩溶,2008,27(371-376):196-201.
    [375]何潇,王建力,李清等.重庆地区石笋沉积速率与古气候意义初探.中国岩溶,2007,26(3):196-201.
    [376]Dreybrodt W. Chemical kinetics, speleothem growth and climate. Boreas,1999,28:347-356.
    [377]刘再华,Dreybrodt W.方解石沉积速率控制的物理化学机制及其古环境重建意义.中国岩溶,2002,21(4):252-257.
    [378]周运超,王世杰.贵州凉风洞洞穴滴水水文水化学过程分析.第四纪研究,2005,25(2):208-215.
    [379]Miorandi R, Borsato A, Frisia S. Epikarst hydrology and implications for stalagmite capture of climate changes at Grotta di Ernesto (NE Italy):results from long-term monitoring. Hydrol. Process,2010,24(21):3101-3114.
    [380]McDonald J, Drysdale R, Hill D, et al. The hydrochemical response of cave drip waters to sub-annual and inter-annual climate variability, Wombeyan Caves, SE Australia. Chemical Geology,2007,244:605-623.
    [381]Riechelmann D F C, Schroder-Ritzrau A, Scholz D, et al. Monitoring Bunker Cave (NW Germany):A prerequisite to interpret geochemical proxy data of speleothems from this site. Journal of Hydrology,2011,409:682-695.
    [382]Linge H, Baker A, Andersson C, et al. Variability in luminescent lamination and initial 23OTh/232Th activity ratios in a late Holocene stalagmite from northern Norway. Quaternary Geochronology,2009,4:181-192.
    [383]Kaufmann G and Dreybrodt W. Stalagmite growth and palaeo-climate:an inverse approach. Earth and Planetary Science Letters,2004,224:529-545.
    [384]Baldini J U L, McDermott F, Hoffmann D L, et al. Very high-frequency and seasonal cave atmosphere Pco2 variability:Implications for stalagmite growth and oxygen isotope-based paleoclimate records. Earth and Planetary Science Letters,2008,272:118-129.
    [385]Sherwin C M, Baldini J U L. Cave air and hydrological controls on prior calcite precipitation and stalagmite growth rates:Implications for palaeoclimate reconstructions using speleothems. Geochimica et Cosmochimica Acta,2011,75:3915-3929.
    [386]张美良,朱晓燕,李涛等.桂林现代洞穴碳酸盐——石笋的沉积速率及其环境意义.海洋地质与第四纪地质,2011,31(1):125-133.
    [387]刘浴辉.长江中游近9000年来气候变化的石笋微层记录.硕士论文.武汉:中国地质大学(武汉),2005.
    [388]Martin J C, Mark B D. Temperature and moisture effects on the production of dissolved organic carbon in a spodosol. Soil Biol Biochem,1996,28(9):1191-1199.
    [389]McGarry, S and Baker A. Organic acid fl uorescence:applications to speleothem palaeoenvironmental reconstruction. Quaternary Science Reviews,2000,19,1087-1101.
    [390]Wang X F, Auler A S, Edwards R L, et al. Wet periods in northeastern Brazil over the past 210 kyr linked to the distant climate anomalies. Nature,2004,432:740-743.
    [391]Lachniet M S. Climatic and environmental controls on speleothem oxygen-isotope values. Quaternary Science Reviews,2009,28,412-432.
    [392]Lauritzen S E. High-resolution paleotemperature proxy record for the last interglacial based on Norwegian speleothems. Quaternary Research,1995,43:133-146.
    [393]Johnson K R and Ingram B L. Spatial and temporal variability in the stable isotope systematics of modern precipitation in China:implications for paleoclimate reconstructions. Earth and Planetary Science Letters,2004,220:365-377.
    [394]Ayalon A, Bar-Matthews M and Sass E. Rainfall-rechargerelationships within a karstic terrain in the Eastern Mediterranean semi-arid region, Israel:δ18O and δD characteristics. Journal of Hydrology,1998,207:18-31.
    [395]Genty D. and Massault, M.. Carbon transfer dynamics from bomb-14C and δ13C time series of a laminated stalagmite from SW France-modelling and comparison with other stalagmite records. Geochimica et Cosmochimica Acta,1999,63,1537-1548.
    [396]Genty, D, Baker, A., Massault, M., Proctor, et al. Dead carbon in stalagmites:Carbonate bedrock paleodissolution vs. ageing of soil organic matter. Implication for 13C variation in speleothems. Geochimica et Cosmochimica Acta,2001a,65,3443-3457.
    [397]Vogel J.C and Kronfeld J. Calibration of radiocarbon dates for the late Pleistocene using U/Th dates on stalagmites. Radiocarbon,1997,39:27-32.
    [398]Denniston, R.F., Gonzalez, L.A., Asmerom, et al. A high-resolution speleothem record of climatic variability at the Allerod-Younger Dryas transition in Missouri, central United States. Palaeogeography Palaeoclimatology, Palaeoecology,2001,176,147-155.
    [399]Dorale, J.A., Edwards, R.L., Ito, E.. Climate and vegetation history of the Midcontinent from 75 to 25 ka:A speleothem record from Crevice Cave, Missouri, USA. Science,1998:282, 1871-1874.
    [400]Salomon, W and Mook, W.G. Isotope geochemistry of carbonates in the weathering zone, Handbook of Environmental. In:Fritz, P., Fontes. J.Ch. (Eds.),1986, Isotope Geochemistry, pp.239-269.
    [401]朱诚,马春梅,张文卿等.神农架大九湖15.753 ka BP以来的孢粉记录和环境演变.第四纪研究,2006,26(5):814-826.
    [402]Matthew M, Ayalon A, Kaufman A. Timing and hydrological conditions of Sapropl evnents in the Eastern Mediterranean, as evident from speleothems, Soreq Cave, Israel. Chemical Geology,2000,169,145-156.
    [403]Plagnes V, Causse C, Genty D, et al. A discontinous climatic record from 187 to 74 from speleothem of the Clamouse Cave(south of Francce). Earth and Planetary Science Letters, 2002,201:87-103.
    [404]Hellstrom J, McCulloch M, Stone, J. A detailed 31,000-year record of climate and vegetation change, from the isotope geochemistry of two New Zealand speleothems. Quaternary Research,1998,50:167-178.
    [405]Clark I D, Lauriol B. Kinetic enrichment of stable isotopes in cryogenic calcite. Chemical Geology,1992,102:217-228.
    [406]Genty D. Palaeoclimate research in Villars Cave (Dordogne, SW France). International Journal of Speleology,2008,37(3):173-191.
    [407]Couchoud I, Genty D, Hoffmann D, et al Millennial scaleclimate variability during the LastInterglacial recorded in a speleothem from south Western France. Quaternary Science Reviews,2010,27-28:3263-3274.
    [408]姜修洋,孔兴功,汪永进等.神农架三宝洞倒数第二次冰期高分辨率石笋δ13C记录.第四纪研究,2011,31(1):1-7.
    [409]Fairchild I J, Borsato A, Tooth A F, et al. Controls on trace element (Sr-Mg) compositions of carbonate cave waters:implications for speleothem climatic records, Chemical Geology, 2000,166 (3-4):255-269.
    [410]陈正洪.武汉、宜昌20世纪平均气温突变的诊断分析.长江流域资源与环境,2000,9(1):56-62.
    [411]Griffiths M L, Drysdale R N, Gagan M K, et al. Evidence for Holocene changes in Australian-Indonesian monsoon rainfall from stalagmite trace element and stable isotope ratios. Earth and Planetary Science Letters,2010,292:27-38.
    [412]周厚云,王悦,黄柳苑等.氧同位素阶段5c~d时期川东北石笋Mg,Sr和Ba记录及其意义.科学通报,2011,56(33):2791-2796.
    [413]Perrette Y, Delannoy J, Bolvin H, et al. Comparative study of a stalagmite sample by stratigraphy, laser induced fluorescence spectroscopy, EPR spectrometry and reflectance imaging. Chemical Geology,2000,162:221-243.
    [414]Moreno A, Stoll H, Jimenez-Sanchez M, et al. A speleothem record of glacial (25-11.6 kyr BP) rapid climatic changes from northern Iberian Peninsula. Global and Planetary Change, 2010,71:218-231.
    [415]Bourdin F C, Douville E, Genty D. Alkaline-earth metal and rare-earth element incorporation control by ionic radius and growth rate on a stalagmite from the Chauvet Cave, Southeastern. Chemical Geology,2011,290:1-11.
    [416]Fairchild I J and Baker A. Speleothem science-from process to past environments. U.K.:A John Wiley & Sons, Ltd., Publication,2012.
    [417]Hu C, Henderson G, Johnson K, et al. A cave-based assessment of the controls on stalagmite growth-rate and trace-element concentration. Geochimica et Cosmochimica Acta,2013 (in submission)
    [418]Tesoriero A J, and Pankow J F. Solid solution partitioning of Sr2+, Ba2+ and Cd2+ into calcite. Geochim. Cosmochim. Acta,1996,60,1053-1063.
    [419]Desmarchelier J M, Hellstrom J C, McCulloch M T. Rapid trace element analysis of speleothems by ELA-ICP-MS. Chemical Geology,2006,231:102-117.
    [420]Jahn B M, Gallet S, Han J M. Geochemistry of the Xining, Xifeng and Jixian sections, Loess Plateau of China:Eolian dust provenance and paleosol evolution during the last 140 ka. Chemistry Geology,2001,178:71-94.
    [421]Tegen I, Rind D. Influence of the latitudinal temperature gradient on soil dust concentration and deposition in Greenland. Journal of Geophysical Research,2000,105(D6):7199-7212.
    [422]姚檀栋,邬光剑,蒲建辰等.古里雅冰芯中钙离子与大气粉尘变化关系.科学通报,2004,49(9):888-891.
    [423]Ayalon A, Bar-Matthews M, Kaufman A. Petrography, strontium, barium and uranium concentrations, and strontium and uranium isotope ratios in speleothems as palaeoclimatic proxies:Soreq Cave, Israel. The Holocene,1999,9(6):715-722.
    [424]Jo K, Woo K S, Hong G H. Rainfall and hydrological controls on speleothem geochemistry during climatic events (droughts and typhoons):An example from Seopdong Cave, Republic of Korea. Earth and Planetary Science Letters,2010,295:441-450.
    [425]Lajeunesse P and St-Onge G. The subglacial origin of the Lake Agassiz-Ojibway final outburst flood:Nature Geoscience,2008,1:184-188.
    [426]Morrill C, Wanger A J, Otto-Bliesner B L, et al. Evidence for significant climate impacts in monsoonal Asia at 8.2 ka from multiple proxies and model simulations.3Journal of Earth Environment,2011,2(3):426-441.
    [427]Goodman P J. Thermohaline adjustment and advection in an OGCM. Journal of Physical Oceanography,2001,31:1477-1497.
    [428]Dong B W and Sutton R T. Adjustment of the coupled ocean-atmosphere system to a sudden change in the Thermohaline Circulation. Geophysical Research Letters,2002,29, doi:1728 10.1029/2002g1015229
    [429]Barnett T P, Dumenil L, Schlese U et al. The effect of Eurasian snow cover on global climate. Science,1988,239:504-507.
    [430]Chiang J C H and Bitz C M. Influence of high latitude ice cover on the marine Intertropical Convergence Zone. Climate Dynamics,2005,25:477-496.
    [431]Broccoli A J, Dahl K A, Stouffer R J. Response of the ITCZ to Northern Hemisphere cooling. Geophysical Research Letters,2006,33, doi:L0170210.1029/2005g1024546.
    [432]Kang S M, Held I M, Frierson D M W, et al. The response of the ITCZ to extratropical thermal forcing:idealized slab-ocean experiments with a GCM. Journal of Climate,2008, 21:3521-3532.
    [433]Chiang J C H, Koutavas A. Climate change-Tropical flip-flop connections. Nature,2004, 432:684-85.
    [434]Hastenrath S, Heller L. Dynamics of climatic hazards in Northeast Brazil. Quarterly Journal of the Royal Meteorological Society,1977,103(435):77-92.
    [435]Chiang J C H, Fang Y, Chang P. Interhemispheric thermal gradient and tropical Pacific climate. Geophysical Research Letters,2008,35:1-5.
    [436]Chiang J C H. The Tropics in Paleoclimate. Annual Review of Earth and Planetary Sciences, 2009,37:263-297.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700