用户名: 密码: 验证码:
氟烯烃活性自由基聚合及氢氧根离子交换膜材料制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的快速发展和有限的化石能源趋于枯竭,开发清洁、高效、可再生的新能源已成为全球十分紧迫的任务。燃料电池作为一种高效、清洁、安全的绿色能源,受到越来越多的关注。聚电解质膜是燃料电池的核心部件,对燃料电池的性能起着至关重要的作用。由于氢氧根离子交换膜能够有效地克服传统质子交换膜(如Nafion膜)甲醇透过率高和需使用铂催化剂的缺点,因而近年来备受关注。然而目前开发的氢氧根离子交换膜存在一定的问题,如薄膜的电导率较低,稳定性较差等,针对上述存在的问题,我们认为必须从膜材料的基础问题入手。众所周知,Nafion膜具有优异的综合性能源于两个方面:一个是含氟聚合物的主链结构,它赋予Nafion膜出色的稳定性;另一个是氟磺酸的强酸性,它赋予薄膜高的电导率。季胍作为一种有机强碱,具有高的电导率和稳定性。因此,我们想将两种材料的优势进行优化组合,设计、合成出这样一种聚合物材料,其主链为含氟聚合物,离子基团为季胍基团,从而获得综合性能优异的氢氧根离子交换膜。目前,通过含氟聚合物的辐射接枝制备氢氧根离子交换膜具有一定的局限性,无法调控聚合物的结构。活性/可控自由基聚合为设计合成结构和分子量可控的含氟聚合物提供了一种新方法,而目前文献中关于氟烯烃的活性/可控自由基聚合报道较少。关于季胍聚合物的合成及用于氢氧根离子交换膜的研究报道也不多。因此,本论文开展了含氟聚合物和季胍聚合物的合成方法学研究。首先设计合成了多种链转移剂,研究了氟烯烃与非氟烯烃的活性/可控自由基聚合,建立了氟烯烃的活性/可控自由基聚合方法,然而得到的含氟聚合物成膜性较差,无法直接用作氢氧根离子交换膜材料。因此,我们选取成膜性较好的聚苯醚作为主链材料,尝试了一种合成五取代胍的新方法,成功地制备了侧基为季胍基团、主链为聚苯醚的氢氧根离子交换膜。此外,还研究了一种新的季胍单体及其聚合物的合成,并初步研究了该单体及其均聚物的抗菌性能。论文的主要研究内容和成果概括分为以下四个部分:
     1.考察了三氟氯乙烯与乙烯基醚(苯基乙烯基醚和丁基乙烯基醚)的自由基共聚。实验结果表明,无论在自由基引发或者γ射线辐照下,苯基乙烯基醚和三氟氯乙烯无法发生聚合反应,而丁基乙烯基醚和三氟氯乙烯则能够进行自由基聚合反应。同时,设计合成了乙氧基二硫代甲酸苄酯,并在其存在下,实现了三氟氯乙烯和丁基乙烯基醚的室温v射线辐照聚合反应。实验结果显示,聚合物的分子量随着单体转化率线性增长,并且聚合物的分子量分布较窄,聚合反应是对单体浓度为一级动力学过程。通过扩链聚合反应,制备分子量可控的嵌段聚合物。这些结果充分说明,聚合反应具有良好的活性特征。通过1HNMR、19F NMR和13C NMR表征了共聚物的交替结构,并采用TGA和DSC研究了共聚物的热性能。相关研究结果为氟烯烃的活性/可控自由基聚合奠定了基础,并为含氟氢氧根离子交换膜的制备提供了一种有效的方法。
     2.对氯甲基苯乙烯是一种常用的功能单体,广泛地应用于各种功能高分子的合成。我们研究了三氟氯乙烯与对氯甲基苯乙烯的自由基共聚反应。以BPO为自由基引发剂,进行了三氟氯乙烯与对氯甲基苯乙烯的普通自由基聚合,并通过1H NMR和19F NMR表征了聚合物的结构,实验结果表明,三氟氯乙烯和对氯甲基苯乙烯倾向发生交替共聚。采用黄原酸酯作为链转移剂调控氟烯烃的聚合有一定的局限性,一般只能够调控非共轭单体(如醋酸乙烯脂、N-乙烯基吡咯烷酮等)的活性自由基聚合。我们采用一种三硫代碳酸酯(S-正十二烷基-S’-(2-甲基-2-丙酸基)三硫代碳酸酯)作为RAFT试剂,用于三氟氯乙烯和对氯甲基苯乙烯的RAFT共聚反应的研究。实验结果说明,聚合反应过程服从活性自由基聚合的规律。聚合物的分子量随着单体的转化率线性增加,聚合物的分子量分布较窄,并且聚合反应是对单体浓度的一级动力学过程。三氟氯乙烯和对氯甲基苯乙烯的RAFT共聚物经过季铵化和离子交换后,得到的聚合物成膜性较差,无法应用于燃料电池中。为了改善聚合物的成膜性,我们采用三氟氯乙烯和对氯甲基苯乙烯的RAFT共聚物为大分子链转移剂,合成了丙烯酸丁酯的嵌段聚合物,这一聚合物可用于阴离子交换膜的研究。由于时间关系,后续研究工作有待今后进行。
     3.在室温下,通过氯苄和1,1,3,3-四甲基胍反应,合成了一种五取代胍,2-苄基-1,1,3,3-四甲基胍,这是合成五取代胍的一种新方法。与传统的方法相比,该方法具有操作简单、避免使用草酰氯或者三氯氧磷等刺激性试剂和分离提纯简单的优点。我们以2-苄基-1,1,3,3-四甲基胍和溴代聚苯醚为原料,制备了含有季胍基团的聚苯醚氢氧根离子交换膜,并发现溴代率为52%的聚苯醚制备的氢氧根离子交换膜具有良好的成膜性。因此,对材料的结构及基本性能,如离子交换容量、吸水率和溶胀率进行了分析表征。研究了在不同温度下、不同的阴离子(氢氧根离子和碳酸根离子)的薄膜的电导率,并计算出离子传输的活化能。此外,通过TGA测试了薄膜的热稳定性,并且将薄膜浸泡入60℃1M的NaOH溶液48小时后,测试其电导率的变化。实验结果表明,这些主要的性能可以满足燃料电池的基本要求。
     4.通过对氯甲基苯乙烯和1,1,3,3-四甲基胍反应,合成了一种可聚合的五取代胍,1,1,3,3-四甲基-2-(4-乙烯基)苄基胍,并研究这种新型的含胍单体与苯乙烯的自由基共聚动力学。为了理解胍单体的共聚反应特征,我们采用Fineman-Ross法、Kelen-Tudos法和extended Kelen-Tudos法计算出了含胍单体和苯乙烯的竞聚率。采用碘甲烷为甲基化试剂,1,1,3,3-四甲基-2-(4-乙烯基)苄基胍为原料,制备了一种可聚合的六取代胍盐,1,1,2,3,3-五甲基-2-(4-乙烯基)苄基胍盐,并以AIBN为自由基引发剂进行聚合反应,得到了胍盐单体的均聚物。通过抗菌实验,我们发现1,1,2,3,3-五甲基-2-(4-乙烯基)苄基胍盐及其聚合物均对大肠杆菌和金黄色葡萄球菌有明显的抗菌作用。因此,季胍聚合物不仅可以作为阴离子交换膜材料,而且是一种新型抗菌高分子材料。
There is a growing demand on exploring clean, high efficiency and alternative energies, duo to the fast economic development and limited availability of fossil fuels. Fuel cells, as a promising solution, have received more and more attention, and this technology can convert chemical energy to electrical energy, directly and safely. As a key component in fuel cells, conductive ionomer plays a significant role in the performance of fuel cells. Anion exchange membrane has received much attention because it has many advantages over proton exchange membrane with respect of the crossover of menthol and the use of noble electrocatalysts. But there are still some problems for the application of anion exchange membrane, such as low ionic conductivity and low chemical stability in strong basic medium. In order to solve these problems, it is necessary to pay attention to the design and preparation of new membrane materials. It is well known that, Nafion exhibits outstanding properties as proton exchange membrane because of the backbone of perfluoropolymer, which leads to high stability of the membrane, and excellent electrochemical properties. Guanidine is a strong organic base, which shows high stability and ionic conductivity. In order to obtain a new kind of high-performance anion exchange membrane, we attempt to design and prepare the fluorinated polymers with functional groups of guanidinium based on the combination of their advantages of fluoropolymers and guanidinium. Although perfluoropolyme with guanidinium can be prepared, the structure of polymer can not be controlled. Living/controlled free radical polymerization has provided a powerful tool to synthesize well-defined fluoropolymers with predictable molecular weights, various architectures and narrow molecular weight distributions. However, there are few reports about living/controlled free radical polymerization of fluoroolefins. Therefore in this thesis, we investigate the synthetic methodology of well-defined fluoropolymer and polymer containing guanidium group. In order to achieve living/controlled free radical polymerization of fluoroolefins, we designed and synthesized several kinds of chain transfer agents and, investigated radical copolymerizations of fluoroolefins and nonfluoroolefins. Unfortunately, we found that fluorinated copolymer could not form a good film due to low molecular weight and the unique structures. Then we developed a new approach for preparation of pentasubstituted guanidine and utilized it to prepare anion exchange membrane containing quaternary guanidinium groups by the reaction between brominated poly(2,6-dimethyl-1,4-phenylene oxide)(BPPO) and pentasubstituted guanidine. Moreover, we also synthesized new monomers of guandine and guandinium and their polymers, and demonstrated that both of the guandinium monomer and its polymer have antimicrobial activity. The main results obtained in this thesis are listed as follows:
     1. The conventional radical copolymerization of chlorotrifluoroethene (CTFE) and vinyl ethers (phenyl vinyl ether and butyl vinyl ether) have been investigated. The experimental results show that, phenyl vinyl ether can not copolymerize with CTFE neither initiated by free radical nor under y-ray irradiation. However, the copolymerization of butyl vinyl ether and CTFE can proceed under free radical initiation. Meanwhile, we designed and synthesized S-benzyl O-ethyl dithiocarbonate (BEDTC), and performed copolymerization of CTFE and butyl vinyl ether in the presence of BEDTC at room temperature under60Co y-ray irradiation. The experimental results indicate that, the molecular weight of poly(CTFE-alt-BVE) increases linearly with the monomer conversion, molecular weight distribution remains narrow during the polymerization, and the polymerization is a first-order reaction with respect to the monomer concentration. By the chain extension polymerization, block copolymer with controlled molecular weight has been synthesized. All results indicate that the process possesses the natures of living/controlled free radical polymerization. The alternating structure of copolymers was confirmed by1H NMR,19F NMR and13C NMR. The thermal properties of the copolymer were also studied through TGA and DSC. This work open a new way for living/controlled free radical polymerization of fluoroolefins, which can be used for preparation of anion exchange membrane.
     2. P-chloromethyl styrene (CMS) is a common functional monomer, which can be used for synthesis of many kinds of functional polymers. Herein, we investigated the conventional radical copolymerization and RAFT copolymerization of CTFE and CMS. The conventional radical copolymerization of CTFE and CMS was initiated by BPO, and composition and structure of the copolymer were characterized by'H NMR and19F NMR. The results show that the copolymer possesses an alternating structure. Xanthate can be used as a chain transfer agent (CTA) for the living/controlled free radical copolymerization of fluoroolefins and non-conjugated monomers, such as vinyl acetate and N-vinyl pyrrolidone, but not effective for the other vinyl monomers. Here, We first used a trithiocarbonate, S-l-dodecyl-S'-(a,a'-dimethyl-a"-acetic acid)trithiocarbonate (DDMAT), as a RAFT agent for the RAFT polymerization of CTFE and CMS. The experimental results show that the polymerization possesses living/controlled natures of free radical polymerization. The molecular weight of poly(CTFE-alt-CMS) increases linearly with the monomer conversion. Molecular weight distribution remains narrow during the polymerization, and the polymerization is a first-order reaction with respect to the monomer. After the quaternization of poly(CTFE-alt-CMS), we found that quaterized polymer was hard to form the film. In order to improve the film-forming property, block copolymers of poly(CTFE-co-CMS)-b-poly(BA) were successfully synthesized using poly poly(CTFE-co-CMS)as macro-CTA. We hope the block copolymers can be suitable candidates for the study of anion exchange membrane. But since the time limited, the further work will be done in the future.
     3. In order to obtain guandinium polymers, we developed a new method for preparation of pentasubstituted guanidine,1,1,3,3-tetramethyl-2-benzyl guanidine. The reaction was carried out at room temperature by reaction of1,1,3,3-tetramethylguanidine (TMG) and benzyl chloride. Comparing with the traditional method, this new method has many advantages, such as simple purification prossesses, avoiding the use of oxalyl chloride or phosphorus oxychloride. Then the pentasubstituted guanidine was used to prepare anion exchange membrane by the reaction between brominated poly(2,6-dimethyl-1,4-phenylene oxide)(BPPO) and1,1,3,3-tetramethyl-2-(4-vinylbenzyl) guanidine. It was donstrated that the guandinium polymer from BPPO with52%bromination show excellent film-forming property. Therefore, the structure and properties of anion exchange membrane, including ion exchange capacity, water uptakes, swelling ratios, were investigated. Ionic conductivities of anion exchange membrane were assessed at different temperatures, and activation energy of ion transfer was also calculated. In addition, Thermal stability of anion exchange membrane is measured by TGA, and the chemical stability was estimated by the difference of ionic conductivity before and after immersing the membrane in1M NaOH solution at60℃for48h. All results show that the properties of anion exchange membrane can meet the requirement of fuel cells.
     4. A polymerizable guanidine,1,1,3,3-tetramethyl-2-(4-vinylbenzyl) guanidine (TMVBG), was synthesized by the nucleophilic reaction of1,1,3,3-tetramethylguanidine (TMG) and4-chloromethylstyrene (CMS). Then the kinetics of radical copolymerization of1,1,3,3-tetramethyl-2-(4-vinylbenzyl) guanidine and styrene is investigated. In order to understand polymerization behavior of the guanidine monomer, the reactivity ratios between styrene and TMVBG were accessed based on the methods of Fineman-Ross, Kelen-Tiidos and extended Kelen-Tiidos law. Moreover, by methylation reaction with CH3I, a styrene guanidinium,1,1,2,3,3-pentamethyl-2-(4-vinylbenzyl) guanidinium (PMVBG) was obtained. The homopolymer of PMVBG was prepared using AIBN as initiator. By the antibacterial activity test, it was demonstrated that TMVBG and its homopolymer show antibacterial activity against Staphylococcus aureus and Escherichia coli. As a result, the guandinium polymers can not only be used as candidate of anion exchange materials, but also novel antimicrobial materials.
引文
[1]Acres, G.J.K.; J. Power Sources 2001,100,60-66.
    [2]Scherer, G.G.; Fuel cell I,Berlin:Heidelberg:Springer,2008
    [3]Steele, B.C.H.; Heinzel, A. Nature 2001,414,345-352.
    [4]Hickner, M.A.; Ghassemi, H.; Kim, Y.S.; Einsla, B.R.; McGrath, J.E. Chem. Rev.2004,104, 4587-4611.
    [5]Gong, K.P.; Du, F.; Xia, Z.H.; Durstock, M.; Dai, L.M. Science 2009,323,760-764.
    [6]Guelzow, E. J. Power Sources 1996,61,99-104.
    [7]Fuller, T.F.; Gallagher, K.G. Mater. Fuel Cells 2008,209-256.
    [8]Appleby A.J. Energy 1986,11,13-84.
    [9]Frangini, S. J. Power Sources 2008,182,462-470.
    [10]McPhail, S; Simonetti, E.; Moreno, A.; Bove, R. Mater. Fuel Cells 2008,248-327.
    [11]MenzlerN.M.; Tietz, F.; Uhlenbruck, S.; Buchkremer, H.P.; Stover, D. J. Mater. Sci.2010,45, 3109-3144.
    [12]Zhang, X.; Chan S.H.; Li, G; Ho, H.K.; Li, E; Feng, Z. J. Power Sources 2010,195,685-702
    [13]Miller, M.; Bazylak, A. J. Power Sources 2011,196,601-614.
    [14]Li, Q.F.; Jensen, J.O.; Savinell, R.F.; Bjerrum, N,J, Prog. Polym. Sci.2009,34,449-477.
    [15]Varcoe, J.R.; Slade, R.C.T.; Yee, E.L.H.; Chem. Commun.2006,1428-1429.
    [16]Wang, Y; Li, L.; Hu, L.; Zhuang, L.; Lu, J.; Xu, B. Electrochem. Commun.2003,5,662-666.
    [17]Rikukawa, M.; Sanui, K. Prog. Polym. Sci.,2000,25,1463-1502.
    [18]Li, Q.F.; He, R.H.; Jensen, J.O.; Bjerrum, N.J. Chem. Mater.2003,15,4896-4915.
    [19]Zhou, S.; Kim, J.; Kim, D. J. Membr. Sci.2010,348,319-325.
    [20]Kreuer, K.D. J. Membr. Sci.2001,185,29-39.
    [21]Mauritz, K.A.; Moore, R.B. Chem. Rev.,2004,104,4535-4585.
    [22]Malinski, T.; Taha, Z. Nature,1992,358,676-678.
    [23]Varcoe, J.R.; Slade, R.C.T. Fuel Cells,2005,5,187-200.
    [24]刘勇,刘世斌,张忠林,郝晓刚,电源技术,2006,2,125-129.
    [25]Stoica, D.; Alloin, F.; Marais, S.; Langevin, D.; Chappey, C; Judeinstein, P. J. Phys. Chem. B. 2008,112,12338-12346.
    [26]Jo, T.S.; Yang, M.L.; Brownell, L.V.; Bae, C. J. Polym. Sci., Part A:Polym. Chem.2009,47, 4519-4531.
    [27]Kumar, M.; Singh, S.; Shahi, V.K. J. Phys. Chem. B.2010,114,198-206.
    [28]Valade, D.; Boschet, F.; Roualdes, S.; Ameduri, B. J. Polym. Sci., Part A:Polym. Chem.2009, 47.2043-2058.
    [29]Fang,J.;Shen,P.K.J.Membr.Sci.2006,285,317-322.
    [30]Xiong,Y.;Liu,Q.L.;Zeng,Q.H.J.Power Sources 2009,193,541-546.
    [31]Li,L.;Wang,Y.J.Membe.Sci.2005,262,1-4.
    [32]Wang,G.;Weng,Y.;Chu,D.;Chen,R.;Xie D.J.Membr.Sci.2009,332,63-68.
    [33]Wang,G.;Weng,Y.;Chu,D.;Xie D.;Chen,R.J.Membr.Sci.2009,326,4-8.
    [34]Danks,T.N.;Slade,R.C.T.,Varcoe,J,R.J.Mater.Chem.2002,12,3371-3373.
    [35]S1ade,R.C.T.,Varcoe,J.R.,Solid State Ionics 2005,176,585-597.
    [36]Wang,Y.;Qiu,J.;Peng,J.;Xu,L.;Li,J.;Zhai,M.;J.Membr.Sci.2011,376,70-77.
    [37]Hcu,H.;Sun,C.;He,R.;Wu,Z.;Sun,B.;J.Power Sources 2008,182,95-104.
    [38]Mohamad,A.A.;Mohamed,N.S.;Yahya,M.Z.A.;Othman,R.;Ramesh,S.;Alias,Y;Arof, A.K.;Solid State Ionics 2003,156,171-178.
    [39]Couture,G.;Alaaeddine,A.;Boschet,F.;Ameduri,B.Prog.Polym.Sci2011,36,1521-1557.
    [40]Bauer,B.;Strathmann,H.;Effenberger,F.;Desalination 1990,79,125-144.
    [41]Wang,J.;Li,S.;Zhang,S.;Macromoleules 2010,43,3890-3896.
    [42]Zhang,Q.;Li,S.;Zhang,S.;Chem.Commun.2010,46,7495-7502.
    [43]Qiu,B.;Lin,B.;Qiu,L.;Yan,F.;J.Mater.Chem.2012,22,1040-1046.
    [44]Zhang,F.;Zhang,H.;Qu,C.;J.Mater.Chem.2011,21,12744—12753.
    [45]Cope,A.C.;Mehta,A.S.;J.Am.Chem.Soc.1963,85,1949-2001.
    [46]Merle,G.;Wessling,M.;Nijmeijer,K.;J.Membr.Sci.2011,377,1-35.
    [47]Sata,T.;Tsujimoto,M.;Yamaguchi,T.;Matsusaki,K.;J.Membr.Sci.1996,112,161-231.
    [48]Kneifel,K.;Hattenbach,K.;Desalination 1980,34,77-172.
    [49]Zschocke,P.;Quellmalz,D.;J.Mater.Sci.1985,22,325-387.
    [50]Hinksman,P.;Isaac,D.H.;Polym.Degrad.Stab.2000,68,299-305.
    [51]Ameduri,B.;Chem.Rev.2009,109,6632-6686.
    [52]Fenton,D.E.;Parker,J.M.;Wright,P.V:;Polymer 1973,14,589.
    [53]Armand,M.B.;Chabagno,J.M.;Duclot,M.J.;Chem.Abstr.1980,93,170992.
    [54]Salmon,E.;Guinot,S.;Godet,M.;Fauvarque,J.F.;J.Appl.Polym.Sci.1997,65,601-607.
    [55]Fauvarque,J.F.;Guinot,S.;Bu\ouzir,N.;Salmon,E.;Penneau,J.F.;Electrochim.Acta.1995, 40.2449-2453.
    [56]Palacios,I.;Castillo,R.;Vargas,R.A.;Electrochim.Acta.2003,48,2195-2199.
    [57]Vargas,R.A.;Zapata,V.H.;Delgado,M.I.;Palacios,I.;Solid State Ionics 2004,175, 729-732.
    [58]Yang,C.C.;Lin,S.J.;Hsu,S.T.;J.Power Sources 2003,122,210-218
    [59]Vassal,N.;Salmon,E.;Fauvarque,J.F;Electrochim.Acta.2000,45,1527-1532
    [60]Andriell,X.;Fauvarque,J.F.;Goux,A.;Hamaide,T.;M'Hamdi,R.;Vicedo,T.;Electrochim. Acta.1995,40,2295-2299.
    [61]Xing,B.;Savadogo,O.;Electrochem.Commun.2000,2,697-702.
    [62]Leykin,A.Y.;Shkrebko,O,A.;Tarasevich,M.R.;J.Mater.Sci.2009,328,86-89.
    [63]Wan,Y.;Creber,K.A.M.;Peppley,B.;Bui,V.T.;Halliop,E.;Polym.Int.2005,54,5-10.
    [64]Wu.Y.;Wu,C.;Xu,T.;Fu,Y.;J.Membr.Sci.2009,329,236-245.
    [65]Antolini,E.;Gonzalez,E.R.;J.Power Sources 2010,195,3431-3450
    [66]Xiong,Y.;Liu,Q.L.;Zhu,A.M.;Huang,S.M.;Zeng,Q.H.;J.Power Sources 2009,186, 328-333.
    [67]Yang,C.C.;J.Membr.Sci.2007,288,51-60.
    [68]Gohil,G.S.;Shashi,V.K.;Rangarajan,R.;J.Membr.Sci.2004,240,211-219.
    [69]Wu,Y.;Wu,C.;Varcoe,J.R.;Poynton,S.D.;Xu,T.;Fu,Y;J.Power Sources 2010,195, 3069-3076.
    [70]Wu,Y;Wu,C.;Xu,T.;Lin,X.;Fu,Y;J.Membr.Sci.2009,338,51-60.
    [71]Tripathi,B.P.;Kumar,M.;Shahi,V.K.;J.Membr.Sci.2010,360,90-101.
    [72]Sata,T.;Kawamura,K.;Matsusaki,K.;J.Membr.Sci.2001,181,167-178.
    [73]Lebrun,L.;Follain,N.;Metayer,M.;Electrochim.Acta.2004,50,985-993.
    [74]Jaeger;W.;Bohrisch,J.;Laschewsky,A.;Prog.Polym.Sci.2010,35,511-577.
    [75]Luo,Y.;Guo,J.;Wang,C.;Chu,D.;ChemSusChem 2011,4,1557-1560.
    [76]Fang,J.;Li,W.;Lv,M.;Chell,X.J.;Chi,X.J.;Yang,Y.X.;Zhang,Y.M.;J.Mater.Chem. 2011,21,11340-11347.
    [77]Valade,D.;Boschet,F.;Ameduri,B.;Macromolecules 2009,42,7689-7700.
    [78]Clark,T.J.;Robertson,N.J.;Kostalik,H.A.;Lobkovsky,E.B.;Mutolo,P.F.;Abruna,H.D.; Coates,G.W.;J.Am.Chem.Soc.2009,131,12888-12889.
    [79]Robertson,N.J.;Kostalik,H.A.;Mutolo,P.F.;Abruna,H.D.;Coates,G.W.;J.Am.Chem.Soc. 2010,132,3904-3951.
    [80]Wang,J.;Zhao,Z.;Gong,F.;Li,S.;Zhang,S.;Macromolecules 2009,42,8711-8717
    [81]Lu,S.;Pan,J.;Huang,A.;Zhuang,L.;Lu,J.;P.N.A.S.2008,105,20611-20614.
    [82]Pan,J.;Lu,S.;Li,Y.;Huang,A.;Zhuang,L.;Lu,J.;Adv.Funct.Mater.2010,20,312-319.
    [83]Pan,J.;Chen,C.;Zhuang,L.;Lu,J.;Acc.Chem.Res.,DOI:10.1021/ar200201x.
    [84]Tanaka,M.;Fukasawa,K.;Nishino,E.;Yamaguchi,S.;Yamada,K.;Tanaka,H.;Bae,B.; Miyatake,K.;Watanabe,M.;J.Am.Chem.Soc.2011,133,10646-10654.
    [85]Li,N.;Zhang,Q.;Wang,C.;Lee,Y.M.;Guiver,M.D.;Macromolecules 2012,45,2411-2419.
    [86]Stoica,D.;Ogier,L.;Akrour,L.;Alloin,F.;Fauvarque,J.F.;Electrochim.Acta.2007,53, 1596-1603.
    [87]Sollogoub,C.;Guinault,A.;Bonnebat,C.;Bennjima,M.;Akrour,L.;Fauvarque,J.F.;Ogler, L.;J.Membr.Sci.2009,335,37-42.
    [88]Vinodh,R.;Ilakkiya,A.;Elamathi,S.;Sangeetha,D.;Mat.Sci.Eng.B-Solid 2010,167, 43.50.
    [89]Zeng,Q.H.;Liu,Q.L.;Broadwell,I.;Zhu,A.W.;Xiong,X.;Tu,X.P;J.Membr.Sci.2010, 349.237-243.
    [90]Varcoe,J.R.;Slade,R.C.T.;Yee,E.L.H.;Poynton,S.D.;Driscoll,D.J.;Apperley,D.C.;Chem. Mater.2007,19,2686-2693.
    [91]Ameduri,B;Macromolecules 2010,43,10163-10184.
    [92]Ameduri,B.;Boutevin,B.Well-Architectured Fluoropolymers:Synthesis,Properties and Applications,Elsevier,Amsterdam,2004.
    [93]Ameduri,B.Chem.Rev.2009,109,6632-6686.
    [94]Hawker,C.J.;Bosman,A.W;Harth,E.Chem.Rev.2001,101,3661-3688.
    [95]Matyjaszewski,K.;Xia,J.H.Chem.Rev.2001,101,2921-2990.
    [96]Chong,YK.;Krstina,J.;Le,TPT.;Moad,G;Postma,A.;Rizzardo,E.;Thang,S.H. Macromolecules 2003,36,2256-2272.
    [97]Hansen,N.;Jankova,K.;Hvilsted,S.Eur.Polym.J.2007,43,255-293.
    [98]Wang,J.S.;Matyjaszewski,K.;J.Am.Chem.Soc.1995,117,5614-5615.
    [99]Wang,J.S.;Matyjaszewski,K.;Macromolecules 1995,28,7901-7910.
    [100]Kato,M.;Kamigaito,M.;Sawamoto,M.;Higashimura,T.;Macromolecules 1995,28, 1721-1723.
    [101]Braunecker,W.A.;Matyjaszewski,K.;Prog.Polym.Sci.2007,32,93-146.
    [102]Goto,A.;Fukuda,T.;Prog.Polym.Sci.2004,29,329-385.
    [103]华静,陈滇宝,高分子材料科学与工程,2002,5,21-25.
    [104]Feiring,A.E.;Wonchoba,E.R.;Davidson,F.;Percec,V.;Barboiu,B.J.Polym.Sci.,Part A: Polym.Chem.2000,38,3313-3335.
    [105]Wang,W.;Yan,D.;Bratton,D.;Howdle,S.W.;Wang,Q.;Lecomte,P.Adv.Mater.2003, 15.1348-1352.
    [106]Chiefari,J,;Chong,Y.K.;Ercole,F.;Krstina,J.;Jeffery,J.;Le,TPT.;Mayadunne,RTA.; Meijs,G.F.;Moad,C.L.;Moad,G.;Rizzardo,E.;Thang,S.H.Macromolecules 1998,31, 5559-5562.
    [107]Moad,G.;Rizzardo,E.;Thang,S.H.;Polymer 2008,49,1079-1131.
    [108]王艳君,王玉霞,袁才登,曹同玉,高分子通报,2003,3,57-63.
    [109]Lowe,A.B.;McCormick,C.L.;Prog.Polym.Sci.2007,32,283-351.
    [110]Kostov,G.; Boschet,F.;Buller,J.;Badache,L.;Brandsadter, S.;Ameduri, B. Macromolecules 2011,44,1841-1855.
    [111]Girard,E.;Marty,J.;Ameduri,B.;Destarac,M.ACS Macro Lett.2012,1,270-274.
    [112]Liu,L.;Lu,D.;Wang,H.;Dong,Q.;Wang,P.;Bai,R.;Chem.Commun.,2011,47, 7839-7841.
    [113]DaVid,G.;Boyer,C.;Tonnar,J.;Ameduri,B.;Desmazes,P.L.;Boutevin,B.Chem.Rev. 2006,106,3936-3962.
    [114]Boutevin,B.;J.Polym.Sci.,Part A:Polym.Chem.2000,38,3235-3243.
    [115]Maccone,P.;Apostolo,M.Macromolecules 2000,33,1656-1663.
    [116]Boyer,C.;Ameduri,B.;Hung,M.H.Macromolecules 2010,43,3652-3663.
    [117]Valade,D.;Boyer,C.;Ameduri,B.;Boutevin,B.Macromolecules 2006,39,8639-8651.
    [118]Boyer,C.;Valade,D.;Lacroix-Desmazes,P.;Ameduri,B.;Boutevin,B.J.Polym.Sci.,Part A:Polym.Chem.2006,44,5763-5777.
    [119]Natta,G.;Allegra,G.;Bassi,I.W.;Sianesi,F.;Caporiccio,G.;Torti,T.;J.Polym.Sci.,Part A: Polym.Chem.1965,3,4263-4270.
    [120]Zhang,Z.C.;Wang,Z.;Chung,T.C.;Macromolecules 2007,40,5235-5243.
    [1]Ameduri, B.; Boutevin, B. In Well-Architectured Fluoropolymers:Synthesis, Properties and Applications; Ameduri, B., Boutevin, B., Eds.; Elsevier:New York,2004.
    [2]Ameduri, B.; Boutevin, B. Well-Architectured Fluoropolymers:Synthesis, Properties and Applications, Elsevier, Amsterdam,2004.
    [3]Ameduri, B. Macromolecules 2010,43,10163-10184.
    [4]Durand, N.; Boutevin B.; Silly, G; Ameduri, B. Macromolecules 2011,44,8487-8493.
    [5]Wall, L. A. Fluoropolymers; Wiley Interscience:New York,1972.
    [6]Ebnesajjad, S.; Non-Melt Processible Fluoroplastics; Plastics Design Library:Norwich, NY, 2000.
    [7]Yogesh, P.; Ono, T.; Ameduri, B. ACS Macro Lett.2012,1,315-320.
    [8]Ameduri, B. Chem. Rev.2009,109,6632-6686.
    [9]Hawker, C.J.; Bosnian, A.W.; Harth, E. Chem. Rev.2001,101,3661-3688.
    [10]Hawker, C.J.; Barclay, G.G.; Orellana, A.; Dao, J.; Devonport, W. Macromolecules 1996,29, 5245-5254.
    [11]Fukuda, T.; Terauchi, T.; Goto, A.; Ohno, K.; Tsujii, Y; Miyamoto, T.; Kobatake, S.; Yamada, B. Macromolecules 1996,29,6393-6398.
    [12]Matyjaszewski, K.; Xia, J.H. Chem. Rev.2001,101,2921-2990.
    [13]Wang, J.S.; Matyjaszewski, K. J. Am. Chem. Soc.1995,117,5614-5615.
    [14]Kamigaito, M.; Ando, T.; Sawamoto, M. Chem. Rev.2001,101,3689-3745.
    [15]Chiefari, J,; Chong, Y.K.; Ercole, R; Krstina, J.; Jeffery, J.; Le, TPT.; Mayadunne, RTA.; Meijs, G.F.; Moad, C.L.; Moad, G; Rizzardo, E.; Thang, S.H. Macromolecules 1998,31, 5559-5562.
    [16]Moad, G; Rizzardo, E.; Thang, S.H. Aust. J. Chem.2005,58,379-410.
    [17]Chong, Y.K.; Krstina, J.; Le, TPT.; Moad, G; Postma, A.; Rizzardo, E.; Thang, S.H. Macromolecules 2003,36,2256-2272.
    [18]Hansen, N.; Jankova, K.; Hvilsted, S. Eur. Polym. J.2007,43,255-293.
    [19]Wang, W.; Dong, Q.; Wang, Y; Wang, H.; Li, G; Bai, R.; Macromol. Rapid Commun.2010, 31,1816-1821.
    [20]Xia, J.H.; Johnson, T; Gaynor, S.G.; Matyjaszewski, K.; DeSimone, J. Macromolecules 1999, 32,4802-4805.
    [21]Feiring, A.E.; Wonchoba, E.R.; Davidson,E; Percec, V.; Barboiu, B. J. Polym. Sci., Part A: Polym. Chem.2000,38,3313-3335.
    [22]Wang,W.;Yan,D.;Bratton,D.;Howdle,S.W.;Wang,Q.;Lecomte,P.Chem.Rev.2006, 106.1348-1352.
    [23]Kostov, G.; Boschet, F.; Buller, J.; Badache, L.; Brandsadter, S.; Ameduri, B. Macromolecules 2011,44,1841-1855.
    [24]Girard,E.;Marty,J.;Ameduri,B.;Destarac,M.ACS Macro Lett.2012,1,270-274.
    [25]David,G.;Boyer,C.;Tonnar,J.;Ameduri,B.;Desmazes,P.L.;Boutevin,B.Chem.Rev. 2006,106,3936-3962.
    [26]Boutevin,B.J.Polym.Sci.,Part A:Polym.Chem.2000,38,3235-3243;
    [27]Maccone,P.;Apostolo,M.Macromolecules 2000,33,1656-1663.
    [28]Boyer,C.;Ameduri,B.;Hung,M.H.Macromolecules 2010,43,3652-3663.
    [29]Bai,R.;You,Y.;Pan,C.Macromol.Rapid Commun.2001,22,315-319.
    [30]Hua,D.;Bai,W.;Xiao,J.;Bai,R.;Lu,W.;Pan,C.Chem.Mater.2005,17,4574-4576.
    [31]Zheng,H.;Hua,D.;Bai,R.;Hu,K.;An,L.;Pan,C.;J.Polym.Sci.,Part A:Polym.Chem. 2007,45,2609-2616.
    [32]Hu,a,D.;Bai,R.;Lu,W.;Pan,C.J.Polym.Sci.,Part A:Polym.Chem.2004,42,5670-5677.
    [33]Barsbay,M.;Guven,O.Radiat.Phys.Chem.2009,78,1054-1059.
    [34]Barner,L.;Quinn,J.F.;Barner.Kowollik,C.;Vana,P.;Davis,T.P.Eur.Polym.J.2003,39, 449-459.
    [35]Liu,J.;Bulmus,V.;Herlambang,D.L.;Bamer-Kowollik,C.;Stenzel,M.H.;Davis,T.P. Angew.Chem.Int.Ed.2007,46,3099-3103.
    [36]Hua,D.;Cheng,K.;Bai,W;Bai,R.;Lu,W.;Pan,C.Macromoloecules 2005,38,3051-3053.
    [37]Ratouis,R.;Boissier,J.R.;Dumont,C.,Med.Chem.,1965,8,104-107.
    [38]Kimura,Y.;Regen,S.L.J.Org.Chem.1982,47,2493-2494.
    [39]Wan,D.C.;Satoh,K.;Kamigaito,M.;Okamoto,Y;Macromolecules 2005,38,10397-10405
    [40]Tabata,Y;Plessis,D.;TA.J.Polym.Sci.,Part A:Polym.Chem.1971,9,3425-3435
    [41]Valade,D.;Boschet,F.;Ameduri,B.Macromolecules 2009,42,7689-7700.
    [42]Perrier,S.;Takolpuckdee,P.J.Polym.Sci.,Part A:Polym.Chem.2005,43,5347-5393.
    [43]蒋波,易玲敏,詹晓力,陈碧,陈丰秋,化学进展,2008,20(7/8),1128-1135.
    [44]Inglis,A.J.;Sinnwell,S.;Davis,T.P.;Kowollik,C.B.;Stenzel,M.H.Macromolecues 2008, 41.4120-4126.
    [45]Gao,H.F;Tsarevsk y,N.V,Matyjaszewski,K.Mac.romolecules 2005,38,5995-6004.
    [46]Bartels,J.W.;Cauet,S.I.;Billings,P.L.;Lin,L.Y;Zhu,J.H.;Fidge,C.;Pochan,D.J.;Wooley, K.L.Macromolecules 2010,43,7128-7138.
    [1]Liu,L.;Lu,D.;Wang,H.;Dong,Q.;Wang,P.;Bai,R.;Chem.Commun.2011,47,7839-7841.
    [2]Perrier,S.;Takolpuckdee,P.;J.Polym.Sci.,Part A:Polym.Chem.2005,43,5347-5393.
    [3]Stenzel,M.H.;Cummins,L.;Roberts,G.E.;Davis,T.P.;Vana,P.;Barner-Kowollik,C.; Macromol.Chem.Phys.2003,204,1160-1168.
    [4]Destarac,M.;Bzducha,W.;Taton,D.;Gauthier-Gillaizeau,I.;Zard,S.Z.;Macromol.Rapid. Commun.2002,23,1049-1054.
    [5]蒋波,易玲敏,詹晓力,陈碧,陈丰秋,化学进展,2008,20,1128-1135.
    [6]Bernard,J.;Favier,A.;Zhang,L.;Nilasaroya,A.;Davis,T.P.;Barner-Kowollik,C.;Stenzel, M.H.;Macromolecules 2005,38,5475-5484.
    [7]Coote,M.L.;Radom,L.;Macromolecules 2004,37,590-596.
    [8]Hideharu,M.;Hiroshi,O.;Shuji,N.;Macromol.Chem.Phys.2006,207,1005-1017.
    [9]Mori,H.;Yahagi,M.;Endo,T.;Macromolecules 2009,42,8082-8092.
    [10]Yuan,J.Y;Schlaad,H.;Giordano,C.;Antonietti,M.;Eur.Polym.J.2011,47,772-781.
    [11]Ge,Z.;Xie,D.;Chen,D.;Jiang,X.;Zhuang,Y;Liu,H.;Liu,S.;Macromolecules 2007,40, 3538-3546.
    [12]Wan,D.C.;Satoh,K.;Kamigaito,M.;Okamoto,Y.;Macromolecules 2005,38,10397-10405.
    [13]Nguyen,TL.U.,Eagles,K.;Davis,T P.;Barner-Kowollik,C.;Stenzel,M.H.;J.Polym.Sci., Part A:Polym.Chem.2006,44,4372-4383.
    [14]Valade,D.;Boschet,F.;Ameduri,B.;Macromolecules 2009,42,7689-7700.
    [15]Kumar, K.S.S;Ameduri,B.;J.Polym.Sci.,Part A:Polym.Chem.2010,48,3587-3595.
    [16]Valade,D.;Boschet,F.;Roualdes,S.;Ameduri,B.J.Polym.Sci.,Part A:Polym.Chem.2009, 47.2043-2058.
    [17]Kostov,G.;Tredwell,M.;Gouverneur,V.;Ameduri,B.;J.Polym.Sci.,Part A:Polym.Chem. 2007,45,3843-3850.
    [18]Weimer,M.W.;Frechet,J.M.J.;Gitsov,I.;J.Polym.Sci.,Part A:Polym.Chem.1998,36, 955.970.
    [19]Mehdi,J.;Polymer 2011,52,4760-4769.
    [20]Hirata,M.;Abe,Y.;Ochiai,B.;Endo,T.;J.Polym.Sci.,Part A:Polym.Chem.2010,48, 4385-4392.
    [21]Malagu,K.;Guerin,P.;Guillemin,J.C.;Synlett 2002,2,316-318.
    [22]Qiu,B.;Lin,B.;Qiu,L.;Yan,F.;J.Mater.Chem.2012,22,1040-1045,
    [23]Danks,T.N.;Slade,R.C.T,Varcoe,J.R.J.Mater.Chem.2002,12,3371-3373.
    [24]Slade,R.C.T.,Varcoe,J.R.,Solid State Ionics,2005,176,585-597.
    [25]Varcoe,J.R.;Slade,R.C.T;Yee,E.L.H.;Poynton,S.D.;Driscoll,D.J.;Apperley,D.C.;Chem. Mater.2007,19,2686-2693.
    [26]Wang,W.;Yan,D.;Bratton,D.;Howdle,S.W.;Wang,Q.;Lecomte,P.Adv.Mater.2003,15, 1348-1352.
    [27]Cauet,S.;Wooly,K.L.;J.Polym.Sci.,Part A:Polym.Chem.2010,48,2517-2524.
    (28]Lu,L.;Yang,N.;Cai,Y;Chem.Commun.2005,5287-5288.
    [29]Cheng,C.;Sun,G.;Khoshdel,E.;Wooley,K.L.;J.Am.Chem.Soc.2007,129,10086-10087.
    [30]Sun,G;Cheng,C.;Wooley,K.L.;Macromolecules 2007,40,793-795.
    [31]Tai,J.T.;Filla,D.;Shea,R.;Macromolecules 2002,35,6754-6756.
    [32]Kyulavska,M.;Kostov,G.;Ameduri,B.;Mateva,R.;J.Polym.Sci.,Part A:Polym.Chem. 2010,48,2681-2697.
    [33]Camevale,D.;Wormald,P.;Ameduri,B.;Tayouo,R.;Ashbrook,S.E.;Macromolecules 2009, 42.5652-5659.
    [34]Valade,D.;Boschet,F.;Ameduri,B.Macromolecules 2009,42,7689-7700.
    [35]Gaboyard,M.;Hervaud,Y.;Boutevin,B.;Polym.Int.2002,51,577-584.
    [36]Boutevin,B.;Cersosimo,F.;Youssef,B.;Macromolecules 1992,25,2842-2846.
    [37]Ishigure,K.;Ohashi,H.;Tabata,Y.;Oshima,K.;Macromolecules 1976,9,290-293.
    [38]Lu,Y.;Claude,J.;Neese,B.;Zhang,Q,;Wang,Q.;J.Am.Chem.Soc.2006,128,8120-8121.
    [39]Gao,H.;Tsarevsky.N.V.;Matyjaszewski,K.;Macromolecules 2005,38,5995-6004.
    [40]Inglis,A.J.;Sinnnwell,S.;Davis,T.P.;Barner-Kowollik,C.;Stenzel,M.H.;Macromolecules 2008,41,4120-4126.
    [1]Tang,H.Z.;Novak,B.M.;He,J.;Polavarapu,P.L.;Angew.Chem.Int.Ed.2005,44,7298-7301.
    [2]Coles,M.P.;Aragon-Saez,P.J.;Oakle y,S.H.;Hitchcock,P.B.;Davidson,M_J.;Maksie,Z.B.; Vianello,R.;Leito,I.;Kaljurand,I.;Apperley,D.C.;J.Am.Chem.Soc.2009,31, 16858-16868.
    [3]Gabriel,G.C.;Madkour,A.E.;Dabkowski,J.M.;Nelson,C.F.;Nusslein,K.;Tew,G.N.; Biomacromolecules 2008,9,2980-2983.
    [4]Rao,Y.V.;De Vos,D.E.;Jacobs,P.A.;Angew.Chem.Int.Ed.1997,36,2661-2663.
    [5]Cortes-Salva,M.;Nguyen,B.;Cuevas,J.;Pennypacker,K.R.;Antilla,J.C.;Org.Lett.2010,12, 1316-1319.
    [6]Qian,L.;Guan,Y.;He,B.;Xiao,H.;Polymer 2008,49,2471-2475.
    [7]Coles,M.P.,Chem.Commun.2009,3659-3676
    [8]Gao,Y;Arritt,S.W.;Twamley,B.;Shreev,J.M.;Inorg.Chem.2005,44,1704-1712.
    [9]Mateus,N.M.M.;Branco,L.C.;Lourenco,N.M.T.;Afonso,C.A.M.;Green Chemistry 2003,5, 347-352.
    [10]李胜方,袁庆荣,柯刚,王洛礼,精细石油化工进展,2002,12,45-52.
    [11]Xu,T.;Wu,D.;Wu,L.;Prog.Polym.Sci2008,33,894-915.
    [12]Hay,A.S.J.Polym.Sci.,Part A:Polym.Chem.1998,36,505-517.
    [13]Wu,L.;Xu,T.;Wu,D.;Zheng,X.;J.Membr.Sci.2008,310,577-585.
    [14]Wu,Y.;Wu,C.;Xu,T.;Lin,X.;Fu,Y.;J.Membr.Sci.2009,338,51-60.
    [15]Wu,Y.;Wu,C.;Varcoe,J.R.;Poynton,S.D.;Xu,T.;Fu,Y.;J.Power Sources 2010,195, 3069-3076.
    [16]Xu,T.;Wu,D.;Seo,S.J.;Woo,J.J.;Wu,L.;Moon,S.H.;J.Appl.Polym.Sci.2012,4, 3511-3519.
    [17]Xiao,X.;Wu,C.;Cui,P.;Luo,J.;Wu,Y;Xu,T.;J.Membr.Sci.2011,1-2,112-120.
    [18]Zhang Z.;Wu,L.;Xu,T.;J.Membr. Sci.2011,1-2,160-166.
    [19]Wang,N.;Wu,C.;Wu,Y.;Xu,T.;J.Membr.Sci.2010,1-2,128-139.
    [20]Ong,A.L.;Saad,S.;Lan,R.;Goodfellow,R.J.;Tao,S.;J.Power Sources 2011,196, 8272-8279.
    [21]Wang,J.;Li,S.;Zhang,S.;Macromolecules 2010,43,3890-3896.
    [22]Zhang,Q.;Li,S.;Zhang,S.;Chem.Commun.2010,46,7495-7497.
    [23]Kim,D.S.;Labouriau,A.;Guiver,M.D.;Kim,Y.S.;Chem.Mater.2011,23,3795-3797.
    [24]Leadbeater,N.E.;Cornelia P.;J.Chem.Soc.,Perkin Trans.2001,1,2831-2835.
    [25]Santoro,A.V.;Mickevicius,G;J.Org.Chem.1979,44,117-120.
    [26]Huang,C.;Yang,M.;Liang,M.;J.Polym.Sci.,Part A:Polym.Chem.2006,44,5875-5886.
    [27]段海峰,郭旭,李胜海,林英杰,张所波,谢海波,有机化学,2006,10,1335-1343.
    [28]Wang,P.;Zakeeruddin,S.M.;Gratzel,M.;Kantlehner,W.;Mezger,J.;Sttoyanov,E.V.;Scherr, O.;Appl.Phys.A 2004,79,73
    [29]Xie,H.;Zhang S.;Duan,H.;Tetrahedron Lett.2004,45,2013-2015.
    [30]Li,H.;Lin,Y.;Cao,Y.;Zhang,S.;J.Org.Chem.2007,72,4067-4072.
    [31]Kostalik,H.A.;Clark,T.J.;Robertson,N.J.;Mutolo,P.F.;Longo,J.M.;Abruna,H.D.;Coates, G.W;Macromolecules 2010,43,7147-7150.
    [32]Wang,J.;Zhao,Z.;Gong,F.;Li,S.;Zhang,S.;Macromolecules 2009,42,8711-8717.
    [33]Liang,M.;Jhuang,Y.;Zhang,C.;Tsai,W.;Feng,H.;Eur.Polym.J.2009,45,2348-2357.
    [34]Gu,S.;Cai,R.;Yan,Y;Chem.Commun.2011,47,2856-2858.
    [35]Zhou,J.;Unlu,M.;Anestis-Richard,I.;Kohl,P.A.;J.Membr.Sci.2010,350,286-292.
    [36]Antolini,E.;Gonzalez,E.R.;J.Power Sources 2010,195,3431-3450.
    [37]Qiu,B.;Lin,B.;Qiu,L.;Yan,F.;J.Mater.Chem.2012,22,1040-1045.
    [38]Tanaka,M.;Fukasawa,K.;Nishino,E.;Yamaguchi,S.;Yamada,K.;Tanaka,H.;Bae,B.; Miyatake,K.;Watanabe,M.;J.Am.Chem.Soc.2011,133,10646-10654.
    [39]Varcoe,J.R.;Slade,R.C.T.;Yee,E.L.H.;Poynton,S.D.;Driscoll,D.J.;Apperley,D.C.;Chem. Mater.2007,19,2686-2693.
    [40]Robertson,N.J.;Kostalik IV,H,A.;Clark,TA.;Mutolo,P.F.;Abruna,H.D.;Coates,G.W.;J. Am.Chem.Soc.2010,132,3400-3404.
    [41]Xiong,Y.;Liu,Q.L.;Zeng,Q.H.J.Power Sources 2009,193,541-546.
    [42]Ye,Y;Elabd,Y.A.;Macromolecules 2011,44,8494-8503.
    [43]Zhou,J.;Unlu,M.;Vega,J.A.;Kohl,P.A.;J.Power Sources 2009,190,285-292.
    [44]Luo,Y.;Guo,J.;Wang,S.;Chu,D.;J.Power Sources 2010,195,3765-3771.
    [45]Pan,J.;Lu,S.;Li,Y.;Huang,A.;Zhuang,L.;Lu,J.;Adv.Funct.Mater.2010,20,312-319.
    [1]Costerton,W.;Stewart,P.S.;Greenberg,E.P.Science 1999,284,1318-1322.
    [2]Lewis,K.;Klibanov,A.M.;Trends Biotechnol.2005,23,343-348.
    [3]O'Toole,G A.;Stewart,P.S.Nat.Biotechnol.2005,23,1378-1379.
    [4]Hoffman,L.R.;Lucas R.;D'Argenio,D.A.;MacCoss,M.J.;Zhang,Z.;Jones,R.A.;Miller, S.I.Nature 2005,436,1171-1175.
    [5]Di Martino,A.;Sittinger,M.;Risbud,M.V.;Biomaterials 2005,26,5983-5990.
    [6]Kim,I.;Seo,S.;Moon,H.;Yoo,M.;Park,I.;Kim,B.;Cho,C.;Biotechnol.Adv.2008,26, 1-21.
    [7]Lee,S.B.;Koepsel,R.R.;Morley,S.W.;Matyjaszewski,K.;Sun,Y.J.;Russell,A.J.; Biomacromolecules 2004,5,877-882.
    [8]Kenawy,E.;Worley,S.D.;Broughton,R.;Biomacromolecules 2007,8,1359-1384.
    [9]Ho,C.H.;Tobis,J.;Christina,S.;Thoman R.;Tiller,J.C.Adv.Mater.2004,16,957-961.
    [10]Cioffi,N.;Torsi,L.;Ditaranto,N.;Tantillo,G;Ghibelli,L.;Sabbatini,L.;Bleve-Zacheo,T.; D'Alessio,M.;Zambonin,P.G.;Traversa,E.Chem.Mater.2005,17,5255-5262.
    [11]Sambhy,V;MacBride,M.M.;Peterson,B.R.;Sen,A.;J.Am.Chem.Soc.2006,128, 9798-9808.
    [12]Zachariadis,C.P.;Hadjikakou,S.K.;Hadjiliadis,N.;Skoulika,S.;Michaelides,A.;Balzarini, J.;De Clercq,E.Eur.J.Inorg.Chem.2004,7,1420-1426.
    [13]Kohnen,.M;Kolbenschlag,C.;Keiser,S.T.;Jansen,B.Biomaterials 2003,24,4865-4869.
    [14]Dizman,B.;Elasri,M.O.;Mathias,L.J.Biomacromolecules 2005,6,514-520
    [15]Iconomopoulou,S.M.;Voyiatzis,G A.J.Controlled Release 2005,103,451-464.
    [16]Changez,M.;Koul,V.;Dinda,A.Biomaterials 2004,26,2095-2104.
    [17]Sun,Y;Sun,G.Macromolecules 2002,35,8909-8912.
    [18]Gelman,A.;Weisblum,B.;Lynn,D.M.;Gellman,S.H.;Org.Lett.2004,6,557-560.
    [19]Kanazawa,A.;Ikeda,T.;Endo,T.;J.Polym.Sci.,Part A:Polym.Chem.1993,31, 1441-1447.
    [20]Popa,A.;Davidescu,C.M.;Trif,R.;Ilia,G;Iliescu,S.;Dehelean,G;React.Funct.Polym. 2003,55,151-158.
    [21]Jiang,S.;Wang,L.;Yu,H.;Chen,Y;React.Funct.Polym.2005,62,209-213.
    [22]Patel,M.V.;Dolia,M.B.;Patel,J.N.;Patel,R.M.;React.Funct.Polym.2005,65,195-204.
    [23]Dizman,B.;Elasri,M.O.;Mahias,L.J.;J.Polym.Sci.,Part A:Polym.Chem.2006,44, 5965-5973.
    [24]Kenawy,E.R.;Abdel-Hay,F.I.;EI.Shanshoury,A.R.R.;El-Newehy,M.H.;J.Polym.Sci., Part A:Polym.Chem.2002,40,2384-2393.
    [25]Lu,G.;Wu,D.;Fu,R.;React.Funct.Polym.2007,67,355-366.
    [26]Venkataraman,S.;Zhuang,Y.;Liu,L.;Yang,Y.Y.;Biomaterials 2010,31,1751-1756.
    [27]Ilker,M.F.;Nusslein,K.;Tew,G.N.;Coughlin,E.B.;J.Am.Chem.Soc.2004,126, 15870-15875.
    [28]Gabriel,G.J.;Madkour,A.E.;Dabkowski,J.M.;Nelson,C.F.;Nusslein,K.;Tew,G.N.; Biomacromolecules 2008,9,2980-2983.
    [29]Venkataraman,S.;Zhang,Y.:;Liu,L.;Yang,Y.;Biomaterials 2010,31,1751-1756.
    [30]Kanazawa,A.;Ikeda,T.;Endo,T.;J.Polym.Sci.,Part A:Polym.Chem.2003,31, 1441-1447.
    [31]Chang,H.;Yang,M.;Liang,M.;React.Funct.Polym.2010,70,944-950.
    [32]Madkour,A.E.;Tew,G.N.Polym.Int.2008,57,6-10.
    [33]Klibanov,A.M.J.Mater.Chem.2007,17,2479-2482.
    [34]Qian,L.;Guan,Y.;He,B.;Xiao,H.;Polymer 2008,49,2471-2475.
    [35]Wang,J.;Li,S.;Zhang,S.;Macromolecules 2010,43,3890-3896.
    [36]Fineman,M.;Ross,S.D.;J.Polym.Sci.1950,2,259-262.
    [37]Kelen,T.;Tudos,F.;J.Macromol.Sci.Chem.1975,1,1-27.
    [38]Kelen,T.;Tudos,F.;Foldes-Berezsnich,T.;Turcsanyi,B.;J.Macromol.Sci.Chem.1976,10, 1513-1540.
    [39]Ikada,T.;Yamaguchi,H.;Tazuke,S.;Antimicrob,Agents.Chemother 1984,26,139-144.
    [40]Chen,C.Z.;Beck-Tan,N.C.;Dhurjati,P.;Van Dyk,T.K.;Larossa,R.A.;Cooper,S.L.; Biomacromolecules 2000,1,473-480.
    [41]Kim,D.S.;Labouriau,A.;Guiver,M.D.;Kim,Y.S.;Chem.Mater.,2011,23,3795-3797.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700