用户名: 密码: 验证码:
大黄、黄连及其提取物对实热证模型大鼠肝基因表达谱的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:利用基因芯片技术检测实热证模型大鼠肝全基因表达谱的改变,经典寒性中药大黄、黄连及其提取物对实热证模型大鼠肝全基因表达谱的影响,从功能基因组角度探讨寒性中药的物质基础及其性效发生机制,探讨寒性中药属性界定的可能依据和中药药性理论研究的思路和方法。
     方法:SPF级Wistar大鼠96只。实验分2批完成,每批48只。第一批动物分为空白对照组,模型对照组,大黄水煎液、大黄乙酸乙酯萃取物,大黄正丁醇萃取物、大黄水萃取物组。其中大黄水煎液治疗组、各萃取物组按照10ml/Kg灌胃相应液体,空白对照组给予等量蒸馏水。第二批动物分为空白对照组,模型对照组,黄连水煎液、黄连乙酸乙酯萃取物,黄连正丁醇萃取物、黄连水萃取物组。其中黄连水煎液治疗组、各萃取物组按照10ml/Kg灌胃相应液体,空白对照组给予等量蒸馏水。
     大鼠背部皮下注射2,4-二硝基苯酚(DNP)生理盐水溶液复制实热证模型,造模后0.5h给药治疗,2h、4h、6h测肛温。之后提取肝组织总RNA,应用基因芯片检测各组大鼠肝脏基因表达,筛选差异表达基因,进行基因聚类分析和功能分类注释。选择部分差异基因进行荧光实时定量PCR实验验证芯片结果的准确性。
     结果:实热模型对照组与空白对照组比较有167条差异表达基因;大黄乙酸乙酯组、大黄正丁醇组、大黄水提物组和大黄水煎液组与实热模型对照组比较分别有177、139、287和177条差异表达基因;黄连乙酸乙酯组、黄连正丁醇组、黄连水提物组和黄连水煎液组与实热模型对照组比较有336、362、417和218条差异表达基因;
     对差异基因进行基因功能分类注释,实热模型对照组与空白对照组相比,查询到15项显著性基因功能.。大黄乙酸乙酯组、大黄正丁醇组、大黄水提物组、大黄水煎液组与实热模型对照组相比分别查询到34、31、53和29项显著性基因功能,主要为代谢过程基因功能。黄连乙酸乙酯组、黄连正丁醇组、黄连水提物组、黄连水煎液组与实热模型对照组相比分别查询到59、78、72、32项显著性基因功能,主要为代谢过程功能,催化活性功能项。
     结论:实热证大鼠主要通过调节代谢过程、钙离子平衡和异生物质刺激应答相关基因实现对机体活动的调节。大黄水煎液主要通过调节代谢过程功能基因,尤其是糖代谢相关基因表达,降低机体过高的能量代谢过程。黄连水煎液主要通过调节代谢过程功能基因,尤其是氨基酸代谢相关基因表达,发挥其对机体的调节作用。
     寒性中药大黄、黄连及其提取物均能通过上调Gclc、Adh1、Rpl6、Nqo1、RGD1562920_predicted基因表达,下调Ubd、Hamp、Sds、LOC683385基因表达发挥作用。以上基因改变可能是寒性中药发挥其清热、泻火、解毒作用的分子机制之一。
Objective:To detect the change of hepatic gene expression profile in rats with excessheat syndrome using gene chip technology, to study the effects of herbs with cold propertysuch as rhubarb, Rhizoma coptidis and their extracts on the change of hepatic geneexpression profiling, to discover the material foundation of cold property of Chinesemedicine and to discuss the mechanism of it from the aspect of functional genomicsperspective.
     Methods:96SPF Wistar rats were divided into two batches to complete theexperiment. The first batch animals were divided into the blank control group, excess heatsyndrome group, Rhubarb decoction group, Rhubarb ethyl acetate extract group, Rhubarbn-butanol extract group, Rhubarb water extracts group. The Rhubarb decoction group andthe extracts of Rhubarb groups were given the corresponding liquid in accordance with the10ml/Kg, the excess heat syndrome group and the blank control group were given10ml/Kgdistilled water. The second batch animals were also divided into6groups. The Rhizomacoptidis decoction group and the extracts of Rhizoma coptidis groups were given thecorresponding liquid in accordance with the10ml/Kg, the excess heat syndrome group andthe blank control group were given10ml/Kg distilled water.
     The rats were given subcutaneous injection of2,4-dinitrophenol saline solution toreplicate the excess heat syndrome model,0.5h later giving medication treatment,2h,4h,6h point later, the rectal temperature of rats was measured. After the extraction of totalRNA from liver tissue, the gene clustering analysis and functional classification annotationwere carried on. We selected the differential expression genes, analyzed the genes bycluster and conducted the significant analysis on the genetic function of differential genes. A part of genes was selected to test the accuracy of results by RT-PCR.
     Results:There were167strips of differential expression genes in excess heatsyndrome group as compared to blank control group. There were177、139、287and177strips of differential expressions in Rhubarb ethyl acetate extract group, Rhubarbn-butanol extract group, Rhubarb water extracts group and Rhubarb decoction group,respectively compared with heat syndrome rat group.336、362、417and218strips ofdifferential expressions were found in Rhizoma coptidis ethyl acetate extract group,Rhizoma coptidis n-butanol extract group, Rhizoma coptidisis water extracts group andRhizoma coptidis decoction group compared with excess heat syndrome group.
     As compared to the blank control group, there were15items of significant genefunction in the excess heat syndrome group. There were34,31,53and29items ofsignificant gene function in Rhubarb ethyl acetate extract group, Rhubarb n-butanol extractgroup, Rhubarb water extracts group and Rhubarb decoction group respectively comparedwith excess heat syndrome group. There were59,78,72,32items of significant genefunction in Rhizoma coptidis ethyl acetate extract group, Rhizoma coptidis n-butanolextract group, Rhizoma coptidis water extracts group and Rhizoma coptidis decoctiongroup respectively compared with the excess heat syndrome group.
     Conclusion:Excess heat syndrome rats regulate body function mainly throughchanging the expression of genes related to metabolic processes, calcium ion homeostasisand xenobiotic stimuli response. Rhubarb decoction reduces the excessive energymetabolism of the body mainly through modulating the expression of genes involved inmetabolic processes, particularly glucose metabolism. Rhizoma coptidis Decoction plays aregulatory role in the rats with excess heat syndrome mainly through modulating theexpression of genes involved in metabolic processes, especially amino acid metabolism.
     The herbs with cold property such as rhubarb, Rhizoma coptidis and their extractsmay realize their antibacterial anti-inflammatory, antiviral, anti infection effect byincreasing the gene expression of Gclc, Adh1, Rpl6, Nqo1, RGD1562920_predicted anddecreasing the gene expression of Ubd, Hamp, Sds, LOC683385. The above genes may beone of the main molecular mechanisms of clearing away heat, purging fire and eliminatingtoxic materials of the Chinese medicinal herbs with cold nature.
引文
[1]严永清.药物的苦味与归经、作用及化学成分的关系[J].现代应用医学,1987;(5):12.
    [2]李武,周冬梅,李跃东.寒凉药的药性特征及配伍作用浅析[J].新疆中医药,2002;20(4):39-41.
    [3]周正礼,李峰,李佳.20种中药总糖含量和寒热药性关系探讨[J].山东中医药大学学报,2009;33(1):5-8.
    [4]王薇,周正礼,李峰,等.20种中药初生物质含量与药性相关性分析[J].山东中医药大学学报,2010;34(2):99-102.
    [5]李静文,李峰,周正礼.基于40种中药多糖HPLC图谱的寒热药性Fisher分析[J].中华中医药杂志,2011;26(9):1946-1949.
    [6]胡振华.中药四性与其所含主要成分分子量关系的探讨[J].湖南中医药导报,1996;2(6):49-50.
    [7]管竞环,李恩宽,薛莎,等.植物类中药四性与无机元素关系的初步研究[J].中国医药学报,1990;5(5):40-43.
    [8]祁俊生,徐辉碧,管竞环,等.植物类中药中微量元素的因子分析和聚类分析[J].分析化学,1998;26(11):1309-1314.
    [9]李心河,刘少平,高海青,等.313种中药35种无机元素含量的研究[J].山东医科大学学报,1994;32(2):174-179.
    [10]陈和利,冯江,孙龙川,等.100种中药的四性与15种无机元素含量关系的研究[J].微量元素与健康研究,1996;13(4):33-34.
    [11]陈阜新.信息论法探讨中药四性与微量元素含量关系[J].数理医药杂志,2001;14(2):108-110.
    [12]余惠曼,肖小河,刘塔斯,等.中药四性的生物热动力学研究—生晒参和红参药性的微量量热学比较[J].中国中药杂志,2002;27(5):393.
    [13]周韶华,潘五九,肖小河,等.中药四性的生物热动力学研究—黄连不同炮制品药性的微量量热学比较[J].中草药,2004;35(11):1230.
    [14]樊冬丽,廖庆文,鄢丹,等.基于生物热力学表达的麻黄汤和麻杏石甘汤的寒热药性比较[J].中国中药杂志,2007;32(5):421-424.
    [15]梁月华,谢竹番.寒热本质的初步研究[J].中华医学杂志,1979;59(12):705.
    [16]梁月华,王晶,谢竹番.寒凉药与温热药对交感神经肾上腺及代谢机能的影响[J].北京医科大学学报,1987;19(1):50-56.
    [17]梁月华,李薪萍,任红.寒证和热证脑、脊髓、内脏NE、DA、5-HT含量变化[J].中医杂志,1991;28(12):68.
    [18]金星,梁月华,任红.三黄汤的一般药理作用及对大鼠脑中枢提取物影响的研究[J].中国中药杂志,1995;20(10):626-629.
    [19]李良,宋辉,梁月华,等.用免疫组织化学方法观察寒证及温热药治疗后大鼠垂体激素细胞的变化[J].首都医学院学报,1995;16(1):7-10.
    [20]徐志伟.实热证、虚热证造模大鼠甲状腺超微结构及功能对比研究[J].中医杂志,2001;42(1):43-46.
    [21]余惠曼,周瑞玲,陈玉兴,等.不同药性中药对Wister大鼠脑内AC基因表达的研究[J].中国药理通讯,2003;20(2):47.
    [22]侯灿.“八纲”病理生理学基础初步探讨[J].中医杂志,1964;12:46-47.
    [23]陈群,刘亚梅,徐志伟,等.实热证,虚热证模型大鼠肝细胞琥珀酸脱氢酶活性研究[J].北京中医药大学学报,2000;23(5):48-49.
    [24]陈锐群,张夏英,郑境娟,等.口服知母皂甙元对Na+-K+-ATP酶的作用[J].生理科学,1982;8(9):30.
    [25]丁安荣,李淑莉,王志奇.大黄、栀子对小鼠红细胞膜Na+-K+-ATP酶活性的影响[J].中国中药杂志,1990;15(1):52-53.
    [26]黄丽萍,彭淑红,胡强,等.6味热性中药对大鼠骨骼肌能量代谢相关因子的影响[J].中华中医药杂志,2010,25(2):228-230.
    [27]彭淑红,黄丽萍,高小恒,等.寒性中药对大鼠骨骼肌能量代谢相关因子的影响[J].中国中药杂志,2009,34(23):3064-3067.
    [28]于华芸,吴智春,马清翠,等.黄连对大鼠肝脏全基因表达谱的影响[J].山东中医药大学学报,2010;34(4):291-295.
    [29]于华芸,王世军,季旭明,等.基因芯片技术研究大黄“清热泻火解毒”作用机制[J].世界中西医结合杂志,2010;5(7):572-575.
    [30]于华芸,季旭明,吴智春,等.附子对大鼠能量代谢及相关基因表达的影响[J].中国中药杂志,2011;36(18):2535-2538.
    [31]王世军,于华芸,季旭明,等.附子对氧自由基及性激素代谢相关基因表达的影响[J].中国老年学杂志,2012;32(5):961-963.
    [32]韩冰冰,王世军.比较虚寒证与虚热证模型大鼠肝全基因表达谱的差异[J].北京中医药大学学报,2011;34(10):673-675.
    [33]韩冰冰,王世军,张发艳,等.基因芯片技术研究附子对虚寒证大鼠肝全基因表达谱的影响[J].中国中药杂志,2012;37(4)::500-504.
    [34]刘树民,卢芳,王喜军,等.基于代谢组学的热病证候模型评价方法研究[J].中国药理学通报,2009;25(4):549-551.
    [35]刘树民,卢芳,董培良,等.基于代谢组学整体表征中药药性及性效关系[J].云南中医学院学报,2009;32(6):1-5.
    [36]朱明,李宇航,林亭秀,等.关于中药寒热药性试验的红外成像观测[J].中国体视学与图像分析,2007;12(1):53-58.
    [37]李昊,杨慧萍,鲁小青.应用基因芯片研究藤梨根对胃癌细胞的作用[J].同济大学学报:医学版,2010;31(1):45-52.
    [38]黄建,陈康杰,张卧,等.苦参碱抑制人大肠癌HT29细胞增殖及诱导凋亡作用与机制[J].中草药,2007;38(8):1210-1214.
    [39]]陈立军,姚丽,靳秋月,等.基因芯片技术分析青蒿琥酯抑癌作用机制[J].中草药,2008;39(9):1359-1364.
    [40]毛秉豫,郭志军,康立源,等.加味四物汤对SHR心肌组织基因表达谱的影响[J].南阳理工学院学报,2009;1(1):76-81.
    [41] Wen Z, Wang Z, Wang S,et al. Discovery of molecular mechanisms of traditionalChinese medicinal formula Si-Wu-Tang using gene expression microarray andconnectivity map[J]. PLoS One.2011,6(3):e18278.
    [[42]]袁丁,谢佐福,魏莉,等.基因芯片研究小金丹对人肝癌细胞信号转导基因表达的影响[J].福建医科大学学报,2010;44(2):107-111.
    [43]杨柳,李岱,陈金卯,等.杞菊地黄汤对MNU诱发的大鼠视网膜变性基因表达谱的影响[J].眼科学报,2007;,23(3):153-158.
    [44] Hara A,Iizuka N,Hamamoto Y,et al. Molecular dissection of a medicinal herb withanti-tumor activity by oligonucleotide microarray[J]. Life Sci.2005;77(9):991-1002
    [45]周联,王培训,赖小平等.基因芯片在中药复方研究中的应用[J].中药新药与临床药理(Tradit Chin Drug Res Clin Pharmacol),2002;13(6):383.
    [46]陈勇,韩凤梅,蔡敏.中药肝脏毒性评价的基因芯片技术研究[J].中国医药学报,2003;18(6):336-338.
    [47] Kiela PR,Midura AJ,Kuscuoglu N,et al.Effects of Boswellia serrata in mousemodels of chemically induced colitis[J].Am J Physiol Gastrointest Liver Physiol.2005;288(4):G798-808.
    [48]徐晓玉.中药药理学[M].北京:中国中医药出版社,2010:115-118.
    [49]王青秀.大黄及其主要成份的毒性毒理研究[D].北京:中国人民解放军军事医学科学院,2007.
    [50]林胜彰.大黄素在抗胰腺癌作用及机制研究[D].杭州:浙江大学,2011:6-13.
    [51]周黎明.大黄素作用于大鼠重症急性胰腺炎的分子机理研究[D].成都:四川大学,2006:6-8.
    [52]张桂信.胆汁酸对胰腺腺泡细胞的损伤与大黄素调节作用的实验研究[D].大连:大连医科大学,2009:6-9.
    [53]张亚辉.大黄素对非酒精性脂肪肝大鼠胰岛素抵抗及瘦素作用的实验研究[D].长沙:中南大学,2010:4-6.
    [54]孙晓琦.大黄素对非酒精性脂肪肝小鼠脂质沉积的影响及机理研究[D].南京:南京中医药大学,2011:8-9.
    [55]姚婷新.大黄素对非酒精性脂肪肝大鼠内毒素性肝损伤的影响[D].长沙:中南大学,2011:4-6.
    [56]周伏喜.大黄素对非酒精性脂肪肝大鼠的干预作用及可能机制研究[D].长沙:中南大学,2011:4-8
    [57]喻剑华.虎金颗粒及大黄素抗肝纤维化作用机理研究[D].广州:广州中医药大学,2006:97-98.
    [58]曹宁.影响大黄在复方中功效发挥方向的多因素研究[D].成都:成都中医药大学,2009:3-5
    [59]李丽.大黄炮制前后物质基础变化规律研究[D].北京:中国中医科学院,2011:6-10.
    [60]李燕.四种大黄炮制品醇提物药理作用比较研究[D].成都:西南交通大学,2011.
    [61]唐宇平.凝血酶及大黄对急性脑出血大鼠水通道蛋白4的影响[D].上海:复旦大学,2006.
    [62]张文生.大黄蒽醌衍生物对大鼠结肠及LoVo细胞水通道蛋白表达的调节效应与其机制研究[D].西安:第四军医大学,2008:10-14.
    [63]刘青,李锋,任秦有,等.大黄酚对LoVo细胞AQP2表达的调节效应[J].第四军医大学学报,2009;30(9):849-853.
    [64]李蕾.A20基因对H2O2诱导的平滑肌细胞增殖及分子机制探讨和中药大黄素干预研究[D].大连:大连医科大学,2009:1-3.
    [65]华国强.小檗碱抑菌特点及抑菌机制的初步研究[D].济南:山东大学,2005:3-6.
    [66]何敏.中药影响表皮葡萄球菌形成生物被膜关键基因的机制研究[D].重庆:重庆医科大学,2008:8-11.
    [67]焦晴晴.小檗碱对小鼠骨髓来源的树突状细胞的促凋亡作用[D].安徽农业大学,2010:3-5.
    [68]王秀花.小檗碱对人类风湿关节炎成纤维滑膜细胞周期与凋亡的影响及其机制
    [D].济南:山东大学,2011:6-10.
    [69]解欣然.小檗碱抗心肌肥厚细胞模型的作用及机制研究[D].北京:北京中医药大学,2007.
    [70]吕秀秀.小檗碱抑制去甲肾上腺素诱导的心肌细胞凋亡的机制研究[D].暨南大学,2009.
    [71]孔维佳.小檗碱降低血清胆固醇的作用与分子机理研究[D].北京:中国协和医科大学,2004:4-6.
    [72]周吉银.小檗碱降糖调脂作用与PPARs/P-TEFb信号转导通路的关系[D].第三军医大学,2008:14-19.
    [73]李国生.2型糖尿病中国地鼠模型脂诱性肝脏胰岛素抵抗形成机制和小檗碱治疗机制的研究[D].北京:中国协和医科大学,2007:7-9.
    [74]张豪.小檗碱降血糖作用的分子机理研究[D].北京:中国协和医科大学,2008.
    [75]李艺.小檗碱的生物代谢反应及代谢产物活性的研究[D].北京:北京协和医学院,2010:5-7.
    [76]时丽丽.丹酚酸A、黄连碱对糖代谢的作用及机制研究[D].北京:北京协和医学院,2011:9-13.
    [77]周希乔.黄连素对成年鼠神经再生的影响及其对缺血性脑卒中神经保护的作用机制[D].南京:南京医科大学,2008:6-10.
    [78] Jia L, Liu J, Song Z, et al. Berberine suppresses amyloid-beta-induced inflammatoryresponse in microglia by inhibiting nuclear factor-kappaB and mitogen-activatedprotein kinase signalling pathways[J]. J Pharm Pharmacol.2012;64(10):1510-21.
    [79]史海岭.黄连素对人肺腺癌A549细胞株的体外作用研究[D].保定:河北农业大学,2010.
    [80]徐上林.对“寒热虚实”实质的初步探讨.广东中医,1962;(5):3.
    [81]梁月华,谢竹番.寒热本质的初步研究[J].中华医学杂志,1979;59(12):705.
    [82]谢竹藩.从寒、热证研究论证的综合结构及其研究方法[J].中国医药学报,1987,2(2):116-117。
    [83]庞宁海,谢竹藩,钮淑兰.脾胃病寒证和热证本质的探讨[J].中医杂志1998,(9):56-59.
    [84]杨明志,梁月华,任红.温热药(附子、干姜、肉桂)复方及小复方对交感神经、肾上腺、TSH、LH等的影响[J].中国中药杂志,1992;17(11):688.
    [85]李良,周以健,温祥云,等.用免疫组织化学方法观察寒证及温热药治疗寒证大鼠垂体激素细胞的变化[J].首都医学院学报,1995;16(11):7.
    [86]陈小野,易崇勤,邹世洁,等.长期热证造模的内分泌研究[J].中国中医药科技,1995;2(2):5-6.
    [87]徐志伟,陈群,孙琪,等.中医热证实质研究[J].中国比较医学杂志,2009;19(3):53-56.
    [88]侯灿.“八纲”病理生理学基础初步探讨.中医杂志,1964;(12):460
    [89]刘亚梅.实热证、虚热证在机体能量代谢方面的对比研究[D].广州:广州中医药大学,2000.
    [90]张学智,纪宝安,谢竹藩,等.炎症因子与十二指肠溃疡寒热辨证的关系[J].中国中西医结合杂志,1999;19(5):267-270.
    [91]元颖.中医热证的免疫网络与病理研究[D].广州:广州中医药大学,2002.
    [92]戴璐.寒性中药对实热证疗效的表述及大黄、黄连对实热证大鼠效应的实验研究
    [D].济南:山东中医药大学,2011.
    [93]熊启逵,赵慧业,赵凌云,等.实验性温病卫、气、营、血证候动物模型复制的研究[J].四川医学,1983;4(2):65-67.
    [94]陈扬荣,戴春福.白虎汤降低家兔气分证体温的观察[J].安徽中医学院学报,1993;12(2):49-50.
    [95]陆平成,龚婕宁,杨进,等.仙台病毒小鼠肺热证模型的实验研究[J].南京中医药大学学报,1996;12(30):22-24
    [96]卢芳,董培良.三种热病证候模型最佳造模方法的探索与评价[J].山东中医杂志,2009;28(2):114-115.
    [97]梁月华.寒热本质研究进展[J].中医杂志1996;37(12):747-750.
    [98]黎敬波,葛金文.胃溃疡胃实寒、实热证模型大鼠经穴辐射热、PH值、氧分压的检测研究[J].湖南中医学院学报,1998;18(3):56-57.
    [99]郑小伟.腑病证动物模型研究[J].浙江中医学院学报,2000;24(1):46.
    [100]王浩.生物化学[M].北京:人民卫生出版社,2002:144.
    [101] Pinz I, Tian R, Belke D, et al.Compromised myocardial energetics in hypertrophiedmouse hearts diminish the beneficial effect of overexpressing SERCA2a[J]. J BiolChem.2011;286(12):10163-8.
    [102] Prasad AM, Inesi G..Regulation and rate limiting mechanisms of Ca2+ATPase(SERCA2) expression in cardiac myocytes[J]. Mol Cell Biochem.2012;361(1-2):85-96.
    [103] Shao CH, Capek HL, Patel KP,et al.Carbonylation contributes to SERCA2a activityloss and diastolic dysfunction in a rat model of type1diabetes[J]. Diabetes.2011;60(3):947-59.
    [104] Gavrilovich Zgoda V, Arison B, Mkrtchian S, et al.Hemin-mediated restoration ofallylisopropylacetamide-inactivated CYP2B1: a role for glutathione and GRP94inthe heme-protein assembly[J]. Arch Biochem Biophys.2002;408(1):58-68.
    [105] Gelebart P, Opas M, Michalak M.Calreticulin, a Ca2+-binding chaperone of theendoplasmic reticulum[J]. Int J Biochem Cell Biol.2005;37(2):260-266.
    [106] Kageyama K, Ihara Y, Goto S,et al.Overexpression of calreticulin modulates proteinkinase B/Akt signaling to promote apoptosis during cardiac differentiation ofcardiomyoblast H9c2cells[J]. J Biol Chem.2002;277(22):19255-64.
    [107]吕素芳,郭广君,蔡永萍.翻译控制肿瘤蛋白(TCTP)研究进展[J].科学技术与工程,2006;6(4):424-428.
    [108] Morisseau C.Role of epoxide hydrolases in lipid metabolism[J]. Biochimie.2012
    [Epub ahead of print]
    [109] Imig JD, Zhao X, Capdevila JH, et al.Soluble epoxide hydrolase inhibition lowersarterial blood pressure in angiotensin II hypertension[J]. Hypertension.2002;39(2Pt2):690-4.
    [110] Charles RL, Burgoyne JR, Mayr M, et al.Redox regulation of soluble epoxidehydrolase by15-deoxy-delta-prostaglandin J2controls coronary hypoxicvasodilation[J]. Circ Res.2011;108(3):324-34.
    [111]韩冰冰.附子对虚寒证、知母对虚热证大鼠肝全基因表达谱的影响[D].济南:山东中医药大学,2011.
    [112] Zweigner J, Schumann R R, Weber J R. The role of lipopolysaccharide-bindingprotein in modulating the innate immune response[J].Microbes Infect,2006;8(3):946-952.
    [113]张慧锋,王月鹏,李妍.细胞色素P450的研究进展[J].吉林医药学院学报,2005;26(30:174-177.
    [114] Anwar-Mohamed A, Klotz LO, El-Kadi AO.Inhibition of heme oxygenase-1partiallyreverses the arsenite-mediated decrease of CYP1A1, CYP1A2, CYP3A23, andCYP3A2catalytic activity in isolated rat hepatocytes[J]. Drug Metab Dispos.2012;40(3):504-14.
    [115] Zhu H, Li Y. NAD(P)H: quinone oxidoreductase1and its potential protective role incardiovascular diseases and related conditions[J]. Cardiovasc Toxicol.2012;12(1):39-45. doi:10.1007/s12012-011-9136-9.
    [116] Park JS, Jung JS, Jeong YH, et al.Antioxidant mechanism of isoflavone metabolitesin hydrogen peroxide-stimulated rat primary astrocytes: critical role ofhemeoxygenase-1and NQO1expression[J]. J Neurochem.2011;119(5):909-19.
    [117] Vasiliou V, Ross D, Nebert DW. Update of the NAD(P)H:quinone oxidoreductase(NQO) gene family[J]. Hum Genomics.2006;2(5):329-35.
    [118] Gong X, Gutala R, Jaiswal AK. Quinone oxidoreductases and vitamin Kmetabolism[J]. Vitam Horm.2008;78:85-101.
    [119] Li H, Kundu TK, Zweier JL. Characterization of the magnitude and mechanism ofaldehyde oxidase-mediated nitric oxide production from nitrite[J]. J Biol Chem.2009;284(49):33850-8.
    [120] Gomis RR, Favre C, García-Rocha M, et al. Glucose6-phosphate produced bygluconeogenesis and by glucokinase is equally effective in activating hepaticglycogen synthase[J]. J Biol Chem.2003;278(11):9740-6.
    [121] Hutton JC, O'Brien RM. Glucose-6-phosphatase catalytic subunit gene family[J]. JBiol Chem.2009,284(43):29241-5.
    [122] Barfell A, Crumbly A, Romani A. Enhanced glucose6-phosphatase activity in liverof rats exposed to Mg(2+)-deficient diet[J]. Arch Biochem Biophys.2011;509(2):157-63.
    [123] Metzger S, Goldschmidt N, Barash V, et al.Interleukin-6secretion in mice isassociated with reduced glucose-6-phosphatase and liver glycogen levels[J]. Am JPhysiol.1997;273(2Pt1):E262-7.
    [124] Munro S, Ceulemans H, Bollen M, et al. A novel glycogen-targeting subunit ofprotein phosphatase1that is regulated by insulin and shows differential tissuedistribution in humans and rodents[J]. FEBS J.2005;272(6):1478-89
    [125]Shen GM, Zhang FL, Liu XL, et al. Hypoxia-inducible factor1-mediated regulationof PPP1R3C promotes glycogen accumulation in human MCF-7cells underhypoxia[J]. FEBS Lett.2010;,584(20):4366-4372.
    [126]于华芸.热性、寒性中药对大鼠肝全基因表达谱影响的研究[D].济南:山东中医药大学,2010.
    [127]王浩.生物化学[M].北京:人民卫生出版社,2002:329-339.
    [128] Rumberger JM, Wu T, Hering MA, et al. Role of hexosamine biosynthesis inglucose-mediated up-regulation of lipogenic enzyme mRNA levels: effects ofglucose, glutamine, and glucosamine on glycerophosphate dehydrogenase, fatty acidsynthase, and acetyl-CoA carboxylase mRNA levels[J]. J Biol Chem.2003;278(31):28547-52.
    [129] Rider MH, Bertrand L, Vertommen D, et al.6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase: head-to-head with a bifunctional enzyme that controlsglycolysis[J]. Biochem J.2004;381(Pt3):561–579.
    [130] Attia RR, Sharma P, Janssen RC, et al. Regulation of pyruvate dehydrogenase kinase4(PDK4) by CCAAT/enhancer-binding protein beta (C/EBPbeta)[J]. J Biol Chem.2011,286(27):23799-807.
    [131]李丰益.肠道铁吸收调控的研究进展[J].中国小儿血液与肿瘤,2006;11(6):324-328
    [132] Mollbrink A, Holmstr m P, Sj str m M, et al. Iron-regulatory gene expressionduring liver regeneration[J]. Scand J Gastroenterol.2012;47(5):591-600.
    [133] Dev S, Mizuguchi H, Das AK, et al. Transcriptional microarray analysis revealssuppression of histamine signaling by Kujin alleviates allergic symptoms throughdown-regulation of FAT10expression[J]. Int Immunopharmacol.2011;11(10):1504-9
    [134] T Giannini AL, Gao Y, Bijlmakers MJ.-cell regulator RNF125/TRAC-1belongs to anovel family of ubiquitin ligases with zinc fingers and a ubiquitin-binding domain[J].Biochem J.2008;410(1):101-11.
    [135] Arimoto K, Takahashi H, Hishiki T, et al. Negative regulation of the RIG-I signalingby the ubiquitin ligase RNF125[J]. Proc Natl Acad Sci U S A.2007;104(18):7500-5.
    [136] Shi L, Chang Y, Yang Y, et al. Activation of JNK signaling mediates connectivetissue growth factor expression and scar formation in corneal wound healing[J].PLoS One.2012;7(2):e32128.
    [137] Csanaky IL, Lu H, Zhang Y, et al. Organic anion-transporting polypeptide1b2(Oatp1b2) is important for the hepatic uptake of unconjugated bile acids: Studies inOatp1b2-null mice[J]. Hepatology.2011;53(1):272-81.
    [138] Blade AM, Fabritius MA, Hou L, et al. Biogenesis of apolipoprotein A-V and itsimpact on VLDL triglyceride secretion[J]. J Lipid Res.2011;52(2):237-44.
    [139] López-Flores I, Peragón J, Valderrama R, et al. Downregulation in the expression ofthe serine dehydratase in the rat liver during chronic metabolic acidosis[J]. Am JPhysiol Regul Integr Comp Physiol.2006;291(5):R1295-302.
    [140] Imai S, Yagi I, Saeki T, et al. Quantity as well as quality of dietary protein affectsserine dehydratase gene expression in rat liver[J]. J Nutr Sci Vitaminol (Tokyo).2003;49(1):33-9.
    [141] Smith C, Wilson NW, Louw A, et al. Illuminating the interrelated immune andendocrine adaptations after multiple exposures to short immobilization stress by invivo blocking of IL-6[J]. Am J Physiol Regul Integr Comp Physiol.2007;292(4):R1439-47.
    [142] Shull JD, Pennington KL, Gurr JA, et al. Cell-type specific interactions betweenretinoic acid and thyroid hormone in the regulation of expression of the geneencoding ornithine aminotransferase[J]. Endocrinology.1995;136(5):2120-6
    [143] Greene MW, Burrington CM, Ruhoff MS, et al. PKC{delta} is activated in a dietarymodel of steatohepatitis and regulates endoplasmic reticulum stress and cell death[J].J Biol Chem.2010;285(53):42115-29.
    [144] Yasumo H, Masuda N, Furusawa T, et al. Nuclear receptor binding factor-2(NRBF-2),a possible gene activator protein interacting with nuclear hormonereceptors[J].Biochim Biophys Acta.2000;1490(1-2):189-97
    [145] Nagata K, Murayama N, Miyata M, et al. Isolation and characterization of a new ratP450(CYP3A18) cDNA encoding P450(6)beta-2catalyzing testosterone6beta-and16alpha-hydroxylations[J]. Pharmacogenetics.1996;6(1):103-11.
    [146] Kawai M, Bandiera SM, Chang TK, et al. Growth hormone regulation anddevelopmental expression of rat hepatic CYP3A18, CYP3A9, and CYP3A2[J].Biochem Pharmacol.2000;59(10):1277-87.
    [147] Zhang P, Wang H, Min X, et al. Pim-3is expressed in endothelial cells and promotesvascular tube formation[J] J Cell Physiol.2009;220(1):82-90.
    [148] Liu D, He M, Yi B, et al. Pim-3protects against cardiomyocyte apoptosis inanoxia/reoxygenation injury via p38-mediated signal pathway[J]. Int J Biochem CellBiol.2009;41(11):2315-22.
    [149] Naoe Y, Arita K, Hashimoto H, et al. Structural characterization of calcineurin Bhomologous protein1[J]. J Biol Chem.2005;280(37):32372-8.
    [150] Andrade J, Zhao H, Titus B, et al. The EF-hand Ca2+-binding protein p22plays arole in microtubule and endoplasmic reticulum organization and dynamics withdistinct Ca2+-binding requirements[J] Mol Biol Cell.2004;15(2):481-96.
    [151] Wu G, Sun M, Zhang W, et al. AIG1is a novel Pirh2-interacting protein that activatesthe NFAT signaling pathway[J]. Front Biosci (Elite Ed).2011;3:834-42.
    [152] Chen CN, Brown-Borg HM, Rakoczy SG, et al. Aging impairs the expression of thecatalytic subunit of glutamate cysteine ligase in soleus muscle under stress[J]. JGerontol A Biol Sci Med Sci.2010;65(2):129-37.
    [153] Guerrero-Beltrán CE, Calderón-Oliver M, Martínez-Abundis E,et al. Protectiveeffect of sulforaphane against cisplatin-induced mitochondrial alterations andimpairment in the activity of NAD(P)H: quinone oxidoreductase1and γ glutamylcysteine ligase: studies in mitochondria isolated from rat kidney and in LLC-PK1cells[J]. Toxicol Lett.2010;199(1):80-92..
    [154] Ohno T, Hiroi H, Momoeda M, et al. Evidence for the expression of alcoholdehydrogenase class I gene in rat uterus and its up-regulation by progesterone[J].Endocr J.2008;55(1):83-90.
    [155] Quintanilla ME, Tampier L, Sapag A, et al. Sex differences, alcohol dehydrogenase,acetaldehyde burst, and aversion to ethanol in the rat: a systems perspective[J]. Am JPhysiol Endocrinol Metab.2007;293(2):E531-7.
    [156] Gou Y, Shi Y, Zhang Y, et al. Ribosomal protein L6promotes growth and cell cycleprogression through upregulating cyclin E in gastric cancer cells[J]. BiochemBiophys Res Commun.2010;393(4):788-93..
    [157] Wu Q, Gou Y, Wang Q, et al. Downregulation of RPL6by siRNA inhibitsproliferation and cell cycle progression of human gastric cancer cell lines[J]. PLoSOne.2011;6(10):e26401.
    [158] Endo M, Takahashi Y, Sasaki Y, Novel gender-related regulation of CYP2C12geneexpression in rats[J]. Mol Endocrinol.2005;19(5):1181-90..
    [159] Dinkova-Kostova AT, Talalay P. NAD(P)H:quinone acceptor oxidoreductase1(NQO1), a multifunctional antioxidant enzyme and exceptionally versatilecytoprotector[J]. Arch Biochem Biophys.2010;501(1):116-23.
    [160]张冰,林志健.基于“三要素”学说研究中药药性的设想[J].中国中药杂志,2008;33(2):221-223
    [161] Boult JK, Walker-Samuel S, Jamin Y, et al. Active site mutant dimethylargininedimethylaminohydrolase1expression confers an intermediate tumour phenotype inC6gliomas[J]. J Pathol.2011;225(3):344-52.
    [162]王浩.生物化学[M].北京:人民卫生出版社,2002:406-411
    [163] Hardiman MK, Alfant M, Wakelin VP, et al. Capacity of rat liver for pyrimidinesynthesis and catabolism during fetal and neonatal development[J]. Arch BiochemBiophys.1983;224(1):326-31.
    [164] Ueki I, Stipanuk MH.Enzymes of the taurine biosynthetic pathway are expressed inrat mammary gland[J]. Nutr.2007;137(8):1887-94.
    [165] Lee CK, Han JS, Won KJ, et al. Diminished expression of dihydropteridine reductaseis a potent biomarker for hypertensive vessels[J]. Proteomics.2009;9(21):4851-8.
    [166] Shi L, Du JB, Pu DF, et al. Regulation of endogenous cystathionine-gamma-lyasegene expression in high pulmonary flow by nitric oxide precursor[J]. Zhongguo YingYong Sheng Li Xue Za Zhi.2006;22(3):343-7.
    [167] Murayama H, Ikemoto M, Hamaoki M. Ornithine carbamyltransferase is a sensitivemarker for alcohol-induced liver injury [J]. Clin Chim Acta.2009;401(1-2):100-4..
    [168] Beck B, Ciszek M, Polaniak R, et al. The activity of ornithine transcarbamoylase andarginase during mechanical jaundice in the rat model[J]. J Surg Res.2005;126(1):19-26.
    [169] Seiler N. Ornithine aminotransferase, a potential target for the treatment ofhyperammonemias[J]. Curr Drug Targets.2000;1(2):119-53.
    [170]Hao G, Xie L, Gross SS. Argininosuccinate synthetase is reversibly inactivated byS-nitrosylation in vitro and in vivo[J]. J Biol Chem.2004;279(35):36192-200.
    [171] Koga T, Zhang WY, Gotoh T, et al. Induction of citrulline-nitric oxide (NO) cycleenzymes and NO production in immunostimulated rat RPE-J cells. Exp Eye Res.2003;76(1):15-21.
    [172] Yokota H, Kunimasa Y, Shimoyama Y, et al. Effects on extrahepaticUDP-glucuronosyltransferases in hypophysectomized rat[J]. J Biochem.2002;132(2):265-70.
    [173] Alkharfy KM, Poloyac SM, Congiu M, et al. Effect of the acute phase responseinduced by endotoxin administration on the expression and activity of UGT isoformsin rats[J]. Drug Metab Lett.2008;2(4):248-55.
    [174] Imig JD, Zhao X, Capdevila JH, et al.Soluble epoxide hydrolase inhibition lowersarterial blood pressure in angiotensin II hypertension[J]. Hypertension.2002;39(2Pt2):690-4.
    [175] Morisseau C. Role of epoxide hydrolases in lipid metabolism[J]. Biochimie.2012Jun18.[Epub ahead of print].
    [176] Gatica A, Aguilera MC, Contador D, et al. P450CYP2C epoxygenase and CYP4Aomega-hydroxylase mediate ciprofibrate-induced PPARalpha-dependentperoxisomal proliferation[J]. J Lipid Res.2007;48(4):924-34.
    [177] Wang MH, Wang J, Chang HH, et al. Regulation of renal CYP4A expression and20-HETE synthesis by nitric oxide in pregnant rats[J]. Am J Physiol Renal Physiol.2003;285(2):F295-302.
    [178] Yang Y, Eggertsen G, G fvels M, et al. Mechanisms of cholesterol and sterolregulatory element binding protein regulation of the sterol12alpha-hydroxylase gene(CYP8B1). Biochem Biophys Res Commun.2004;320(4):1204-10.
    [179] Westerlund M, Belin AC, Felder MR, et al. High and complementary expressionpatterns of alcohol and aldehyde dehydrogenases in the gastrointestinal tract:implications for Parkinson's disease[J]. FEBS J.2007;274(5):1212-23.
    [180] Wang HJ, Lee EY, Han SJ, et al. Dual pathways of p53mediatedglucolipotoxicity-induced apoptosis of rat cardiomyoblast cell: activation of p53proapoptosis and inhibition of Nrf2-NQO1antiapoptosis[J]. Metabolism.2012;61(4):496-503.
    [181] Nagao K, Bannai M, Seki S, et al. Adaptational modification of serine and threoninemetabolism in the liver to essential amino acid deficiency in rats[J]. Amino Acids.2009;36(3):555-62..
    [182] Chen K, Jin P, He HH, et al. Overexpression of Insig-1protects β cell againstglucolipotoxicity via SREBP-1c[J]. J Biomed Sci.2011;18:57.
    [183] Koch A, K nig B, Spielmann J, et al. Thermally oxidized oil increases the expressionof insulin-induced genes and inhibits activation of sterol regulatory element-bindingprotein-2in rat liver[J]. J Nutr.2007;137(9):2018-23.
    [184] Bortoff KD, Zhu CC, Hrywna Y, et al. Insulin induction of pip92, CL-6, and novelmRNAs in rat hepatoma cells[J]. Endocrine.1997;7(2):199-207.
    [185] Chin S, Ramirez S, Greenbaum LE, et al. Blunting of the immediate-early gene andmitogenic response in hepatectomized type1diabetic animals[J]. Am J Physiol.1995;269(4Pt1):E691-700.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700