用户名: 密码: 验证码:
小型SPR分析系统设计及其在环境污染检测中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境污染物所分析的化学物质具有种类繁多,形态各异,且常常相互作用,发生迁移变化,含量多在痕量水平等特点,推动了基于新技术新方法的小型自动化环境污染物分析仪器的开发研究,以满足环境科学对高灵敏度、高选择性、在线、原位、高通量、现场快速分析检测技术的紧迫要求。结合免疫分析检测方法的SPR检测技术无需分离纯化、无需标记,能在线实时监测分子之间的相互作用、可确定反应物种类和浓度定量测量,具有检测灵敏度高、抗电磁干扰性能好等特点,因而在环境污染物的检测分析中具有很好的优势。
     为了满足环境检测领域的上述需求,本文以TI公司的SpreetaTM传感器为核心,结合流动注射分析技术,开发了小型自动化的SPR分析系统;在对其进行性能优化之后,测试了所设计的仪器的性能,并应用作为液相色谱的检测器;最后结合免疫检测技术,实现地表水、海水中藻毒素水质环境痕量污染物的检测。
     主要研究的内容及成果包括下几个方面:
     (1)根据介质中电磁波传播的Maxwell方程组及其边界条件和Drude金属自由电子气模型,推导出了光激发表面等离子体共振的过程。通过解析光的衰减全反射原理,推导出Kretschmann模型的SPR传感器的反射率公式。分析了角度调制型SPR传感器各部件选择对探测精度的影响。提出了“棱镜-Ag膜-Au膜”结构式的复合膜实现SPR信号增强的设计方法,通过理论仿真设计了该复合膜结构的优化参数。结果表明,在给定传感器结构下,复合膜的总厚度为50nm,其中银膜厚度为20nm,传感器的性能最为理想。
     (2)基于TI公司的Spreeta传感器TSPR1A170100,结合流动注射分析技术及虚拟仪器设计方法,构建了小型SPR分析系统,系统可完成清洗、进样、再生等生物测量功能,实现多达8个生物样品的轮流检测。系统与免疫检测技术结合,可满足环境污染物现场准确、快速测定的需求。
     (3)针对构建的系统,进行系统性能优化。研究所构建SPR分析系统的温度特性,根据温度特性分析设计高精度恒温系统改善检测系统的性能。基于所构建的恒温系统及小型化SPR分析系统,研究了溶液折射率随温度变化特性,首次提出一种应用于SPR测量溶液折射率的温度补偿方法,补偿后溶液折射率测量的波动范围比未校正前的波动范围小两个数量级。针对造成SPR共振峰曲线的整体有规律或无规律的偏移的低频噪声,难以应用既有的SPR共振峰分析方法克服,从而造成连续监控曲线信噪比差的问题,首次提出一种实现非线性非平稳信号处理的HHT数字滤波器设计方法,对SPR连续监控曲线进行后处理,将信号噪声降低了3倍,而信号的峰峰值仅降低1%,大大提高了其信噪比,测量检测限相应降低了8倍。
     (4)基于构件的SPR检测系统,实验评估分析相应的性能指标。并利用SPR传感器对于溶液折射率变化敏感,可应用于定量分析溶液已知被测对象成分浓度的特点,提出将SPR检测方法应用作为分析化学流动分析体系的检测器。通过SPR技术与HPLC联用实验证明了该方法可行性。结果表明SPR传感器具有适用性强、样品消耗量小、小型价廉、通用性强等特点,适合作为流动分析体系的检测器。当被分析物质对紫外检测或荧光检测不敏感,或者需要通过衍生化才可进行测量的成分,SPR检测器具有很好的优势。
     (5)基于所设计的小型化SPR分析系统,结合免疫检测技术,设计了应用于地表水MC-LR检测SPR生物传感器,测试了相关性能指标,并实现地表水的实样分析。并首次提出了应用于海洋赤潮麻痹性毒素之一OA的SPR免疫分析方法,该方法以点带面,对于海洋赤潮其他毒素的SPR免疫检测分析有一定的借鉴作用。
     研究结果表明,所建立应用于环境痕量污染物分析的小型自动化SPR分析系统结合免疫检测技术具有特异性强,样品分析时间短等特点;所设计的传感器经再生后可重复使用上百次,且无需任何标记,从而大大节省分析测试的成本。所研究建立的新方法提供了一种实现环境污染物现场快速检测的解决方案。
There are a great of various chemical substances in the environmental pollutants. Due to characteristics of interaction and trace level content, it promotes the development of miniature bioassay instrument with automation based on the new method and technology, which can meet the demand of detection techniques with advantages of high sensitivity, high selectivity, in situ, in-vivo, and field quick analysis in environmental science. The SPR sensor associated with immunoassay can monitor biomolecular interaction on-line, including determinations of reactant type and analyte concentration without label, separation and purification. With the virtues of high detection sensitivity, fast response, universality and anti-electromagnetism interference, it offers advantages when be applied to environmental pollutants detection.
     To satisfy the needs of environmental pollutants detection, associated with the flow injection analysis technique, a miniature SPR bio-analytical instrument with automation was developed, whose kernel is SpreetaTM sensor by TI. After optimization of the instrument performance, it acted as the detector of HPLC. Finally, associated with immunoassay, the SPR biosensors were fabricated to detect the trace amount algae toxins in the surface water and seawater.
     The main research achievements include the followings.
     (1) According to the Maxwell equations and its boundary condition that the electromagnetic wave propagates in the medium, and the Drude model of free-electron gas in the mental, the principle that surface plasma resonance was excited by the incident light was interpreted in detail. Based on the theory of attenuated total reflection of light, the reflectance equation of Kretschmann SPR sensor was derivated. The performance of the senor influenced by each component was simulated. The complex film with the structure of'prism-Ag film-Au film'in SPR sensor was designed. Its parameters were optimized via simulation. It could be concluded that the SPR sensor with 50nm complex film, which includes 20nm gold film, provides the best performance.
     (2) Based on the Spreeta sensor TSPR1A170100 by TI Ltd, the flow injection analysis technique and the design method of virtual instruments, the miniature SPR bio-analytical instrument with automation was developed. It can perform the bioassay function of clean, injection and regeneration, and detect 8 different samples in sequence. Coupled with immunoassay method, it can be well satisfy the needs of accurate, rapid, and field detection for environmental pollutions.
     (3) The performance of the fabricated SPR instrument was optimized. After the temperature effect of the instrument was studied, the efficiently constant temperature regulator was developed to improve the sensor's performance. Based on the efficiently constant temperature regulator, the variation of analyte's refractive index against temperature was evaluated. Therefore, the temperature compensation method for the refraction index of the liquid determined via SPR sensor was proposed firstly. The compensated result was two degree lower than the refraction index without compensation determined by SPR sensor. To overcome the defect that the SPR formant curve interfered by the low-frequency noise, which was difficult to be avoided by traditional analysis algorithm for SPR formant curve, the HHT digital filter for the non-stationary nonlinear signal was designed and firstly applied to filter the continuous monitoring signal of SPR. It can help to evidently improve the signal noise ratio, and the detection limit was 8 lower than that without filtering.
     (4) Based on the SPR bio-analytical instrument, its performance is evaluated via experiment. Since the SPR sensor is sensitive to the changes of the refractive index of the solution, it can be applied to detect concentration of the defined composition in solution. It was proposed that the SPR acted as the novel detector of the flow analysis system. The feasibility was confirmed by the experiment that SPR detector was coupled to HPLC. Result showed that it fit for the flow analysis system due to its universality, low sample consumption and cost-effectiveness. The SPR detector is of advantage to detecting the composition insensitive to ultraviolet detection or fluorescence detection, or the composition needed to be derived for determination, such as glucide, lipid, high polymer and surfactant.
     (5) Coupled with the immunoassay method, the miniature SPR bio-analytical instrument with MC-LR biosensor was applied to detection the MC-LR in surface water. The performance was evaluated, and real sample of surface water was determined. Equipped with the OA biosensor, it was firstly applied to detect OA, which belong to the PSP algae in the sea. The method can be universally established to detection the other algae in the sea.
     The result of the research indicates that miniature SPR bio-analytical instrument with automation can be well applied to detect trace environmental pollution directly and rapidly without cumbersome sample pretreatment due to specificity of immunosensor. In addition, the reusable immunosensor with free-labeling contributes to reducing the cost of assay. All of its characteristics can complement the shortcomings of traditional assay method, such as long assay time, high cost and labeling. Most of all, it is a promising project to monitor field samples in situ for environmental pollution detection.
引文
[1]张雷,刘慧.中国国家资源环境安全问题初探 [J].中国人口资源与环境,2002,12(1).
    [2]韦进宝,钱沙华.环境分析化学[M].北京:化学工业出版社,2002.
    [3]周文敏,寇洪如,王湘君.环境优先污染物[M].北京:中国环境科学出版社,1989:13-14.
    [4]刘晓丽.环境监测[M].北京大学出版社.2005.
    [5]张中林.优先污染物优先监测的环境要素研究[J].上海环境科学,1994,13(002):28-30.
    [6]谢武明,胡勇有,刘焕彬,许振成.持久性有机污染物(POPs)的环境问题与研究进展[J].中国环境监测,2004,20(002):58-61.
    [7]但德忠.我国环境监测技术的现状与发展[J].中国测试技术,2005,31(005):1-5.
    [8]王胜天,许宏鼎,李景虹.环境电分析化学[J].分析化学(FENXIHUAXUE),2002,30.
    [9]王瑞芬.现代色谱分析法的应用[M].北京:冶金工业出版社,2006.
    [10]梁国栋.最新分子生物学实验技术[M].北京:科学出版社,2001.
    [11]赵华清.环境监测中的新工具-酶免疫检测技术[J].上海环境科学,1998,17(001):39-42.
    [12]傅若农.高效液相色谱进展(一):HPLC/MS联用技术及其应用[J].国外分析仪器技术与应用,2000,(003):1-11.
    [13]武宝利,张国梅,高春光,双少敏.生物传感器的应用研究进展[J].中国生物工程杂志,2004,24(007):65-69.
    [14]赵广达.环境监测分析仪器的发展及展望[J].分析仪器,2001,(002):11-14.
    [15]庞叔薇,徐晓白.环境分析化学发展趋向[J].大学化学,2002,17(001):1-12.
    [16]叶常明,王春霞,金龙珠.世纪的环境化学[M].北京:科学出版社,2004.
    [17]王学琳,孙淑萍.现代分析仪器发展趋势[J].现代仪器,2007,13(006):11-13.
    [18]Homola, J, Ss Yee,G Gauglitz.Surface plasmon resonance sensors:review[J]. Sensors and Actuators B:Chemical,1999,54(1-2):3-15.
    [19]隋森芳,肖才德,杨军表面等离子体激元共振生物传感器[M].上海:上海科学技术出版社,2008.
    [20]Otto, A.Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection[J].Zeitschrift Physik A Hadrons and Nuclei,1968,216(4): 398-410.
    [21]Kretschmann, E.The determination of the optical constants of metals by excitation of surface plasmons[J].Z. Phys,1971,241(4):313.
    [22]Nylander, C, B Liedberg,T Lind.Gas detection by means of surface plasmon resonance[J].Sensors and Actuators,1983,3:79-88.
    [23]Liedberg, B, C Nylander,I Lunstr M.Surface plasmon resonance for gas detection and biosensing[J].Sensors and Actuators,1983,4:299-304.
    [24]Jorgenson, Rc,Ss Yee.A fiber-optic chemical sensor based on surface plasmon resonance[J].Sensors and Actuators B:Chemical,1993,12(3):213-220.
    [25]Byun, Km, D Kim,Sj Kim. Investigation of the sensitivity enhancement of nanoparticle-based surface plasmon resonance biosensors using rigorous coupled-wave analysis[C]. Proc SPIE, Plasmonics in Biology and Medicine Ⅱ,5703, 61 (2005).
    [26]Chien, Fc, Sj Chen, Wp Hu, Gy Lin,Kt Huang (2004) Nanoparticle-enhanced ultrahigh-resolution surface plasmon resonance biosensors [C]. Proc SPIE, Plasmonics in Biology and Medicine,5327,140 (2004);
    [27]Suarez-Garcia, A, R Del Coso, R Serna, J Solis,Cn Afonso.Controlling the transmission at the surface plasmon resonance of nanocomposite films using photonic structures [J]. Applied Physics Letters,2003,83:1842.
    [28]Seplveda, B, A Calle, Lm Lechuga,G Armelles.Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor[J].Optics letters,2006,31 (8):1085-1087.
    [29]Homola, J,Ss Yee.Surface plasmon resonance sensor based on planar light pipe: theoretical optimization analysis[J].Sensors and Actuators B:Chemical,1996,37(3): 145-150.
    [30]Alleyne, Cj, Ag Kirk, Rc Mcphedran, Nap Nicorovici,D Maystre.Enhanced SPR sensitivity using periodic metallic structures[J].Phys. Rev. Lett,1996,77:2670-2673.
    [31]Nelson, Sg, Ks Johnston,Ss Yee.High sensitivity surface plasmon resonace sensor based on phase detection[J].Sensors and Actuators B:Chemical,1996,35(1-3): 187-191.
    [32]Kochergin, Ve, Aa Beloglazov, Mv Valeiko,Pi Nikitin.Phase properties of a surface-plasmon resonance from the viewpoint of sensor applications[J].Quantum electronics,1998,28:444.
    [33]Jory, Mj, Gw Bradberry, Ps Cann.Jr Sambles.A surface-plasmon-based optical sensor using acousto-optics[J].Measurement Science and Technology,1995,6:1193.
    [34]Hanken, Dg.Rm Corn.Electric Fields and Interference Effects inside Noncentrosymmetric Multilayer Films at Electrode Surfaces from Electrochemically Modulated Surface Plasmon Resonance Experiments[J].Anal. Chem,1997,69(18):3665-3673.
    [35]Iwasaki, Y, T Horiuchi, M Morita,O Niwa.Analysis of electrochemical processes using surface plasmon resonance[J].Sensors and Actuators B:Chemical,1998, 50(2):145-148.
    [36]Iwasaki, Y, T Horiuchi,O Niwa.Detection of electrochemical enzymatic reactions by surface plasmon resonance measurement[J].Anal. Chem,2001,73(7):1595-1598.
    [37]Jin, Y, X Kang, Y Song, B Zhang, G Cheng,S Dong.Controlled nucleation and growth of surface-confined gold nanoparticles on a (3-aminopropyl) trimethoxysilane-modified glass slide:a strategy for SPR substrates[J].Anal. Chem,2001,73(13):2843-2849.
    [38]Kang, X, Y Jin, G Cheng,S Dong.In situ analysis of electropolymerization of aniline by combined electrochemistry and surface plasmon resonance[J].Langmuir, 2002,18(5):1713-1718.
    [39]Krone, Jr, Rw Nelson, D Dogruel, P Williams,R Granzow.BIA/MS:Interfacing Biomolecular Interaction Analysis with Mass Spectrometry[J]. Analytical biochemistry,1997,244(1):124-132.
    [40]Nelson, Rw, D Nedelkov,Ka Tubbs.Biosensor chip mass spectrometry:a chip-based proteomics approach[J].Electrophoresis,2000,21(6):1155-1163.
    [41]Borch, J,P Roepstorff.Screening for enzyme inhibitors by surface plasmon resonance combined with mass spectrometry[J].Anal. Chem.2004,76(18): 5243-5248.
    [42]Nedelkov, D, A Rasooly,Rw Nelson.Multitoxin biosensor-mass spectrometry analysis:a new approach for rapid, real-time, sensitive analysis of staphylococcal toxins in food[J].International journal of food microbiology,2000,60(1):1-13.
    [43]Owega, S, Epc Lai,Ado Bawagan. Surface plasmon resonance-laser desorption/ionization-time-of-flight mass spectrometry[J].Anal. Chem,1998,70(11): 2360-2365.
    [44]张微微,陈宇春,王菊英,马德毅.表面等离子体共振技术在环境污染物分析中研究[J].环境科学与技术,2007,30(005):95-97.
    [45]Gobi, Kv,N Miura.Highly sensitive and interference-free simultaneous detection of two polycyclic aromatic hydrocarbons at parts-per-trillion levels using a surface plasmon resonance immunosensor[J].Sensors and Actuators B:Chemical,2004, 103(1-2):265-271.
    [46]Miura, N, M Sasaki, Kv Gobi, C Kataoka,Y Shoyama.Highly sensitive and selective surface plasmon resonance sensor for detection of sub-ppb levels of benzo [a] pyrene by indirect competitive immunoreaction method[J].Biosensors and Bioelectronics,2003,18(7):953-959.
    [47]Shimomura, M, Y Nomura, W Zhang, M Sakino, Kh Lee, K Ikebukuro,I Karube.Simple and rapid detection method using surface plasmon resonance for dioxins, polychlorinated biphenylx and atrazine[J].Analytica Chimica Acta,2001, 434(2):223-230.
    [48]Samsonova, Jv, Na Uskova, An Andresyuk, M Franek,Ct Elliott.Biacore biosensor immunoassay for 4-nonylphenols:assay optimization and applicability for shellfish analysis[J].Chemosphere,2004,57(8):975-985.
    [49]Wright, Jd, Jv Oliver, Rjm Nolte, Sj Holder, Najm Sommerdijk,Pi Nikitin.The detection of phenols in water using a surface plasmon resonance system with specific receptors[J].Sensors and Actuators B:Chemical,1998,51(1-3):305-310.
    [50]Granito, C, Jn Wilde, Mc Petty, S Houghton,Pj Iredale.Toluene vapour sensing using copper and nickel phthalocyanine Langmuir-Blodgett films[J].Thin Solid Films,1996,284:98-101.
    [51]Urashi, T,T Arakawa.Detection of lower hydrocarbons by means of surface plasmon resonance [J]. Sensors and Actuators B:Chemical,2001,76(1-3):32-35.
    [52]Minunni, M,M Mascini.Detection of pesticide in drinking water using real-time biospecific interaction analysis (BIA)[J].Analytical Letters,1993,26(7):1441-1460.
    [53]Chegel, Vi, Ym Shirshov, Ev Piletskaya.Sa Piletsky.Surface plasmon resonance sensor for pesticide detection[J].Sensors and Actuators B:Chemical,1998,48(1-3): 456-460.
    [54]Mouvet, C, Rd Harris, C Maciag, Bj Luff, Js Wilkinson, J Piehler, A Brecht, G Gauglitz, R Abuknesha,G Ismail.Determination of simazine in water samples by waveguide surface plasmon resonance[J].Analytica Chimica Acta,1997,338(1-2): 109-117.
    [55]Mauriz, E, A Calle, A Abad, A Montoya, A Hildebrandt, D Barcel"(?),Lm Lechuga.Determination of carbaryl in natural water samples by a surface plasmon resonance flow-through immunosensor[J].Biosensors and Bioelectronics,2006, 21(11):2129-2136.
    [56]Yu, Jcc, Epc Lai,S Sadeghi.Surface plasmon resonance sensor for Hg (Ⅱ) detection by binding interactions with polypyrrole and 2-mercaptobenzothiazole[J].Sensors and Actuators B:Chemical,2004,101(1-2):236-241.
    [57]Chah, S, J Yi,Rn Zare.Surface plasmon resonance analysis of aqueous mercuric ions[J].Sensors and Actuators B:Chemical,2004,99(2-3):216-222.
    [58]May May, L,Da Russell.Novel determination of cadmium ions using an enzyme self-assembled monolayer with surface plasmon resonance[J].Analytica Chimica Acta,2003,500(1-2):119-125.
    [59]Agbor, Ne, Jp Cresswell, Mc Petty,Ap Monkman.An optical gas sensor based on polyaniline Langmuir-Blodgett films[J].Sensors and Actuators B:Chemical, 1997,41(1-3):137-141.
    [60]Rella, R, A Rizzo, A Licciulli, P Siciliano, L Troisi,L Valli.Tests in controlled atmosphere on new optical gas sensing layers based on TiO2/metal-phthalocyanines hybrid system[J].Materials Science and Engineering:C,2002,22(2):439-443.
    [61]Tudos, Aj, Er Lucas-Van Den Bos,Eca Stigter.Rapid surface plasmon resonance-based inhibition assay of deoxynivalenol[J].J. Agric. Food Chem, 2003,51(20):5843-5848.
    [62]Nedelkov, D,Rw Nelson.Detection of staphylococcal enterotoxin B via biomolecular interaction analysis mass spectrometry[J].Applied and environmental microbiology,2003,69(9):5212.
    [63]陈军.光学电磁理论[M].北京:科学出版社.2005.
    [64]顾秉林,王喜坤.固体物理学[M].北京:清华大学出版社,1989.
    [65]吕强.表面等离子体共振光电传感系统的研究[D],武汉:华中科技大学,2007.
    [66]Raether, H.Surface plasma oscillations and their applications[J].Physics of thin films,1977,9:145-261.
    [67]Lide, Dr. CRC handbook of chemistry and physics[M]. CRC press.1993.
    [68]Weber, Mj. Handbook of optical materials[M]. CRC.2003.
    [69]Kukanskis, K, J Elkind, J Melendez, T Murphy, G Miller,H Garner.Detection of DNA hybridization using the TISPR-1 surface plasmon resonance biosensor [J]. Analytical biochemistry,1999,274(1):7-17.
    [70]Stenberg, E, B Persson, H Roos,C Urbaniczky.Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins[J].Journal of colloid and interface science,1991,143(2):513-526.
    [71]Kolomenskii, Aa, Pd Gershon,Ha Schuessler.Sensitivity and detection limit of concentration and adsorption measurements by laser-induced surface-plasmon resonance[J].Applied optics,1997,36(25):6539-6547.
    [72]Nenninger, Gg, M Piliarik,J Homola.Data analysis for optical sensors based on spectroscopy of surface plasmons[J].Measurement Science and Technology, 2002,13:2038.
    [73]Thirstrup, C,W Zong.Data analysis for surface plasmon resonance sensors using dynamic baseline algorithm[J]. Sensors and Actuators B:Chemical,2005, 106(2):796-802.
    [74]Herminghaus, S.,P. Leiderer.Surface plasmon enhanced transient thermoreflectance[J].Applied Physics A:Materials Science & Processing,1990, 51(4):350-353.
    [75]Chiang, Hp, Pt Leung,Ws Tse.The surface plasmon enhancement effect on adsorbed molecules at elevated temperatures[J].The Journal of Chemical Physics,1998,108:2659.
    [76]Chiang, Hp, Pt Leung,Ws Tse.Optical properties of composite materials at high temperatures[J].Solid State Communications,1997,101 (1):45-50.
    [77]Lawrence, We.Electron-electron scattering in the low-temperature resistivity of the noble metals[J].Physical Review B,1976,13(12):5316-5319.
    [78]Chiang, Hp, Yc Wang, Pt Leung,Ws Tse.A theoretical model for the temperature-dependent sensitivity of the optical sensor based on surface plasmon resonance[J].Optics Communications,2001,188(5-6):283-289.
    [79]林开群,鲁拥华,罗艳华,陈勇,郑荣升,谢志国,王沛,明海.便携式表面等离子体共振传感器温度特性[J].光子学报,2009,(009):2229-2233.
    [80]Harvey, Ah, Js Gallagher,Jmh Levelt Sengers.Revised formulation for the refractive index of water and steam as a function of wavelength, temperature, and density[J].Journal of Physical and Chemical Reference Data,1998,27(4):761-774.
    [81]陶永华.新型PID控制及其应用[M].北京:机械工业出版社,1998,(001):57-62.
    [82]Chinowsky, Tm, Ls Jung,Ss Yee.Optimal linear data analysis for surface plasmon resonance biosensors[J].Sensors and Actuators B:Chemical,1999,54(1-2):89-97.
    [83]Johnston, Ks, Ss Yee,Ks Booksh.Calibration of surface plasmon resonance refractometers using locally weighted parametric regression[J].Anal. Chem,1997, 69(10):1844-1851.
    [84]Kurihara, K, K Nakamura,K Suzuki. Asymmetric SPR sensor response curve-fitting equation for the accurate determination of SPR resonance angle[J].Sensors and Actuators B:Chemical,2002,86(1):49-57.
    [85]Naimushin, An, Sd Soelberg, Du Bartholomew, J1 Elkind,Ce Furlong.A portable surface plasmon resonance (SPR) sensor system with temperature regulation[J]. Sensors and Actuators B:Chemical,2003,96(1-2):253-260.
    [86]Huang, Ne,Ss Shen. Hilbert-Huang transform and its applications[M]. World Scientific Pub Co Inc.2005.
    [87]朱岩.离子色谱原理及其应用[M].杭州:浙江大学出版社,2002.
    [88]张晓彤,云自厚.液相色谱检测方法[M].北京:化学工业出版社,2000
    [89]Schwarz, M. A.,P. C. Hauser.Recent developments in detection methods for microfabricated analytical devices[J].Lab on a Chip,2001,1 (1):1-6.
    [90]Schwarz, Ma,Pc Hauser.Recent developments in detection methods for microfabricated analytical devices[J].Lab on a Chip,2001,1(1):1-6.
    [91]林炳承,秦建华.微流控芯片实验室[J].色谱,2005,23(005):456-463.
    [92]穆丽娜,俞顺章.微囊藻毒素的毒理学研究[J].卫生毒理学杂志,2001,15(002):95-96.
    [93]Harada, K, K Tsuji, Mf Watanabe,F Kondo.Stability of microcystins from cyanobacteria-Ⅲ* Effect of pH and temperature[J].Phycologia,1996,35(6S):83-88.
    [94]Dawson, Rm.The toxicology of microcystins[J].Toxicon,1998,36(7):953-962.
    [95]Schwimmer, M,D Schwimmer.Medical aspects of phycology-Algae, man and the environment [M]. Syracuse University Press.1968:279-358.
    [96]Fewtrell, L,J Bartram. Water quality:guidelines, standards, and health:assessment of risk and risk management for water-related infectious disease[M]. IWA Publishing.2001.
    [97]Falconer, Ir.Mechanism of toxicity of cyclic peptide toxins from blue-green algae[M]. London:Academic Press,1993.
    [98]Heresztyn, T,Bc Nicholson.Determination of cyanobacterial hepatotoxins directly in water using a protein phosphatase inhibition assay [J]. Water research,2001,35(13):3049-3056.
    [99]Allum, L1, Do Mountfort, R Gooneratne, N Pasco, G Goussain,Eah Hall.Assessment of protein phosphatase in a re-usable rapid assay format in detecting microcystins and okadaic acid as a precursor to biosensor development[J].Toxicon,2008,52(7):745-753.
    [100]Lawrence, Jf,C Menard.Determination of microcystins in blue-green algae, fish and water using liquid chromatography with ultraviolet detection after sample clean-up employing immunoaffinity chromatography [J].Journal of Chromatography A,2001,922(1-2):111-117.
    [101]Lawton, La, C Edwards,Ga Codd.Extraction and high-performance liquid chromatographic method for the determination of microcystins in raw and treated waters[J].The Analyst,1994,119(7):1525-1530.
    [102]Kondo, F, Y Ikai, H Oka, M Okumura, N Ishikawa, K Harada, K Matsuura, H Murata,M Suzuki.Formation, characterization, and toxicity of the glutathione and cysteine conjugates of toxic heptapeptide microcystins [J].Chemical research in toxicology,1992,5(5):591-596.
    [103]Ruangyuttikarn, W, I Miksik, J Pekkoh, Y Peerapornpisal,Z Deyl.Reversed-phase liquid chromatographic-mass spectrometric determination of microcystin-LR in cyanobacteria blooms under alkaline conditions[J].Journal of Chromatography B,2004,800(1-2):315-319.
    [104]Zhang, L, X Ping,Z Yang.Determination of microcystin-LR in surface water using high-performance liquid chromatography/tandem electrospray ionization mass detector[J].Talanta,2004,62(1):191-198.
    [105]Sheng, Jw, M He, He Shi,Y Qian.A comprehensive immunoassay for the detection of microcystins in waters based on polyclonal antibodies[J].Analytica Chimica Acta,2006,572(2):309-315.
    [106]CampuS, M,J1 Marty.Highly sensitive amperometric immunosensors for microcystin detection in algae[J].Biosensors and Bioelectronics,2007,22(6): 1034-1040.
    [107]Zhang, F, Sh Yang, Ty Kang, Gs Cha, H Nam,Me Meyerhoff.A rapid competitive binding nonseparation electrochemical enzyme immunoassay (NEEIA) test strip for microcystin-LR (MCLR) determination[J].Biosensors and Bioelectronics,2007, 22(7):1419-1425.
    [108]Long, F, M He, He Shi,An Zhu.Development of evanescent wave all-fiber immunosensor for environmental water analysis[J]. Biosensors and Bioelectronics,2008,23(7):952-958.
    [109]曾呈奎,相建海.赤潮藻及其毒素生物监测新技术[M].济南:山东科学技术出版社,1998.
    [110]宋杰军,毛庆武.海洋生物毒素学[M].北京:北京科学技术出版社,1996.
    [111]林燕棠,杨美兰.广东沿海麻痹性贝类毒素的研究[J].海洋与湖沼,1994,25(002):220-225.
    [112]William Horwitz, The Official Methods of Analysis of AOAC International (OMA)[M],17th Edition, AOAC International, Gaithersburg, USA,2000.
    [113]Holmes, Cfb.Liquid chromatography-linked protein phosphatase bioassay; a highly sensitive marine bioscreen for okadaic acid and related diarrhetic shellfish toxins[J].Toxicon,1991,29(4-5):469-477.
    [114]Diener, M, K Erler, S Hiller, B Christian,B Luckas.Determination of Paralytic Shellfish Poisoning (PSP) toxins in dietary supplements by application of a new HPLC/FD method[J].European Food Research and Technology,2006,224(2): 147-151.
    [115]Chu, Fs, Kh Hsu, X Huang, R Barrett,C Allison.Screening of Paralytic Shellfish Posioning Toxins in Naturally Occurring Samples with Three Different Direct Competitive Enzyme-Linked Immunosorbent Assays[J].J. Agric. Food Chem,1996, 44(12):4043-4047.
    [116]Cheun, Bs, M Loughran, T Hayashi, Y Nagashima,E Watanabe.Use of a channel biosensor for the assay of paralytic shellfish toxins[J].Toxicon,1998,36(10): 1371-1381.
    [117]Soames, Cp.Shellfish poisoning:public health risks, quality assurance and analytical detection[J].Chemistry in Australia,1995,62:22-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700