用户名: 密码: 验证码:
鲎抗内毒素因子模拟肽XS10/REMP1/REMP2抗菌抗内毒素活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细菌内毒素(endotoxin)或称脂多糖(lipopolysaccharide,LPS),是所有革兰阴性细菌(G-)细胞壁外膜上的主要结构成分,是G-细菌主要的致病因子。临床上严重烧伤、创伤患者往往面临感染的威胁,甚至发展成为脓毒症或多器官功能衰竭。目前尚无有效拮抗LPS的药物应用于临床。已发现存在于生物体内的一些中和LPS活性成分具有潜在的药用开发价值,如鲎抗内毒素因子(limulus antilipopolysaccharide factor, LALF),LALF是从鲎蓝色血液中分离鉴定的一种具有抗菌及中和LPS作用的蛋白,我们在前期工作中以LALF为模板通过计算机模拟设计,应用固相化学合成得到了多条模拟肽,并进行了活性初筛,本研究将继续对其中3条环化肽XS10/REMP1/REMP2进行抗LPS及抗菌活性实验检测。
     第一部分、XS10/REMP1/REMP2体外中和内毒素及抗菌活性研究。
     方法:
     1. XS10 /REMP1 /REMP2直接中和LPS实验:以多黏菌素B(PMB)为对照,不同浓度模拟肽溶液分别与LPS工作标准品溶液直接混合反应,应用EDS-99细菌LPS测定系统,测定反应后溶液中LPS含量,计算中和率。
     2. XS10 /REMP1 /REMP2对LPS介导的小鼠RAW264.7细胞产生TNF-α的抑制作用:以PMB为对照,将PMB及各模拟肽梯度浓度溶液和LPS溶液同时加入细胞培养液中,孵育一定时间后用ELISA试剂盒检测细胞上清液内的TNF-α含量。
     3. XS10 /REMP1 /REMP2最低抑菌浓度(minimal inhibitory concentration,MIC)测定:采用琼脂稀释法,对大肠杆菌、铜绿假单胞菌、金黄色葡萄球菌等标准菌株及临床分离菌株进行MIC测定。
     4. REMP1 /REMP2对E.coli ATCC 25922形态的影响:分别将一定浓度的REMP1和REMP2加入大肠杆菌标准菌株E.coli ATCC 25922培养液中,作用一定时间后,透射电镜下观察E.coli ATCC 25922的形态学变化。
     5. XS10 /REMP1 /REMP2细胞毒性实验:采用MTT实验测定。
     结果:
     1. XS10 /REMP1 /REMP2均有不同程度的直接中和LPS的作用.并且随浓度升高而增强,中和能力从强到弱依次为REMP2 >REMP1> XS10,以REMP2最强,在0.01~100μM浓度下对1.0EU/ml的LPS中和率分别为:(5.66±2.08)%~(88.66±5.03)%,接近PMB中和能力。
     2. XS10 /REMP1 /REMP2在10μM、20μM、40μM、80μM浓度下,均能不同程度抑制LPS介导的TNF-α产生,与阳性对照组比较P<0.05,且随着浓度增高,TNF-α的分泌量逐渐减少。呈现出显著的浓度梯度效应。
     3.三种模拟肽均表现出一定的抗菌活性,对各种细菌的MIC为16~256μg/ml,抑菌活性从强到弱分别为REMP1 > REMP2 > XS10, REMP1和REMP2还对属于革兰阳性细菌的金黄色葡萄球菌表现出一定的抑菌活性。
     4.电镜下REMP1或REMP2作用后大肠杆菌内外膜变模糊、毛糙,菌体肿胀,胞质空泡变性,有的菌体裂解破碎。
     5. XS10 /REMP1 /REMP2三种模拟肽对RAW264.7细胞无毒性作用。第二部分XS10 / REMP1 / REMP2体内抗内毒素活性研究
     方法:
     1. D-氨基半乳糖(D-Gal)致敏昆明小鼠LPS休克模型的建立:不同剂量的D-Gal和LPS先后1h腹腔注射于昆明小鼠,找出LD100的最佳剂量组合。
     2. XS10 /REMP1 /REMP2对LPS休克小鼠保护的剂量效应:复制昆明小鼠LPS休克模型,观察三种模拟肽在0.5mg/kg、1.0mg/kg、2.0mg/kg剂量下与LPS同时注射时对小鼠的保护率。
     3.不同时间注射REMP2对LPS休克小鼠的保护效应:观察LPS攻击前1h和LPS攻击后1h注射REMP2(2.0mg/kg)对LPS休克小鼠的保护率。
     4. XS10 / REMP1 / REMP2对LPS休克小鼠血清TNF-α的影响:用ELISA法检测模拟肽作用后LPS休克小鼠血清TNF-α的变化。
     5. REMP1、REMP2对LPS休克小鼠重要脏器的病理学影响:REMP1、REMP2与LPS同时注射于D-Gal致敏小鼠后5h,取小鼠心脏、肺脏、肝脏、小肠、肾脏常规病理学检查。
     结果:
     1.预先注射D-Gal可使昆明小鼠对LPS敏感性极大增强,D-Gal 500mg/kg + LPS 250μg /kg组及D-Gal 600mg/kg + LPS 50μg/kg组小鼠72h内死亡率达100%。模型复制采用D-Gal 600mg/kg + LPS 50μg/kg剂量组合。
     2. 0.5、1.0、2.0mg/kg三种剂量下,XS10、REMP1、REMP2对LPS休克小鼠均有一定保护作用,REMP2保护作用最强,保护率依次为30%、60%和90%,与PMB比较P>0.05。
     3. LPS攻击前1h和攻击后1h注射REMP2对LPS休克小鼠的保护率分别为30%和50%,保护效果均低于同时注射组。
     4. LPS攻击后75分钟TNF-α升高至6365±2087 pg/ml,PMB及模拟肽作用组TNF-α水平降低,REMP1和REMP2组分别为3811±1236 pg/ml和905±264 pg/ml,与LPS组比较P<0.05,REMP2组与PMB组比较P>0.05。
     5. D-Gal组除肝脏有轻微病理改变外,其余脏器无病理改变,LPS组小鼠各脏器均出现炎症性病理改变,尤以肺脏和肝脏明显,REMP1和REMP2组各脏器病变程度减轻。
     结论
     1.环状鲎抗内毒素因子模拟肽XS10、REMP1、REMP2在溶液内可以直接中和LPS,使溶液内所能检测到的LPS减少。
     2.XS10、REMP1、REMP2对LPS刺激下小鼠RAW264.7细胞所产生的炎症介质TNF-α有抑制作用。
     3.XS10、REMP1、REMP2对临床常见的革兰阴性杆菌具有一定杀菌作用,而且还对金黄色葡萄球菌(革兰阳性菌)有一定抑制作用。
     4.MTT实验表明XS10、REMP1、REMP2没有细胞毒性。
     5.XS10、REMP1、REMP2可以降低LPS休克小鼠的死亡率。
     6.XS10、REMP1、REMP2能够降低LPS休克小鼠血清TNF-α水平。
     7.REMP1、REMP2可以减轻LPS休克小鼠心脏、肺脏、肝脏、肾脏、小肠的炎性病理变化。
     8.三种模拟肽各自在体外和体内的抗LPS及抗菌活性表现一致,抗LPS活性从强到弱依次为REMP2 >REMP1 > XS10,抗菌活性从强到弱依次为REMP1 > REMP2 > XS10。
     9.模拟肽REMP2体内外的抗LPS活性与PMB相当,并且无细胞毒性,具有潜在的药用开发价值。
Lipopolysaccharide (LPS), also called endotoxin, is a major component of the outer membrane of gram-negative bacteria. It is considered to be an important mediator of many of the responses manifested during the development of gram-negative bacterial sepsis and septic shock, which often leads to resultant multiple organ dysfunction and death in intensive care patients. The promising strategies targeting sepsis are preventing LPS from binding to its receptors, blockage of LPS intracellular signal transduction, antagonism of cytokine and application of glucocorticoids,but unfortunately all these therapies got little clinical benefits. There is no effective and safe drugs available till now.
     The Limulus anti-lipopolysaccharide factor and Tachypleus anti-lipopolysaccharide factor(LALF,TALF)from both limulus polyphemus and Tachypleus tridentatus Leach have been proved striking anti-gram negative bacillus as well as anti-LPS effects in vitro and in vivo. Based on the analysis of LALF and TALF structural features as well as their functional domains by way of bioinformatics methods, we designed and synthetized a series of peptides by computational molecular modeling. In this study we will investigate the bactericidal and antiendotoxic properties of synthetic cyclic peptides XS10, REMP1 and REMP2.
     Section 1. Bactericidal and antiendotoxic activities of XS10/REMP1/REMP2 in vitro.
     Methods:
     1. The LAL(Limulus Amebocyte Lysate)test was to determine the ability of XS10/ REMP1/ REMP2 to neutralize LPS in vitro. Various concentrations of the peptides and Polymyxin B (PMB) were incubated with LPS respectively , The kinetic turbidity was measured using a endoxin detecte system. The LPS neutralizing rates were calculated.
     2. Mouse RAW264.7 macrophages were cultured and then 10μl LPS (100 ng/ml) and equal volume peptides and PMB solutions (10, 20, 40 and 80μM) were added simultaneously. After cells were incubated for 4 h, the levels of TNF-αin the supernatants were analyzed using the ELISA kits.
     3. The minimal inhibitory concentration (MIC) of XS10 \REMP1 \REMP2 for the Escherichia coli, Pyocyaneum bacterium, Staphylococcus aureus, et al were determined by agar dilution.
     4. The morphological changes of E.coli ATCC 25922 affected by REMP1 and REMP2 were observed by transmission electron microscope.
     5. Cytotoxicity of XS10, REMP1 and REMP2 to the Mouse RAW264.7 macrophages was established using the 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay.
     Results:
     1. XS10,REMP1,REMP2 and PMB exhibited neutralizing activities on LPS in a dose-dependent manner. The activities decrease progressively from REMP2, REMP1 to XS10. REMP2 was the best with the neutralizing rates from 5.66% to 88.66%, which were similar to PMB.
     2. Treatments of cells with XS10, REMP1, REMP2 and PMB both inhibited the TNF-αrelease in response to the presence of LPS in a dose-dependent manner. The TNF-αdecreased significantly compared with the control group (p<0.05).
     3. All the peptides have Bactericidal activities. the MIC were from 16μg/ml to 256μg/ml for the bacteria in test. The activities decrease progressively from REMP1, REMP2 to XS10. moreover REMP1 and REMP2 have bactericidal activities to Staphylococcus aureus which is belong to gram positive coccus.
     4. Under the electron microscope the outer and interior membranes of Escherichia coli. affected by REMP1 and REMP2 was obscure, the bacterium swelled,vacuoles formation and even ruptured.
     5. XS10, REMP1 and REMP was not observed to be toxic to mouse macrophages at the concentrations tested in the MTT test. Section 2. Antiendotoxic activities of XS10/REMP1/REMP2 in vivo.
     Methods:
     1. To generate the murine endotoxin shock model induced by D-galactosamine- sensitized KunMing mice, Kunming mice were stimulated with intraperitoneal(i.p.) injection of different dosage of D-galactosamine(D-Gal) and LPS one hour later. Mice lethality was recorded at 72 h. the dose of LD100 were chosed.
     2. Generate the murine endotoxin shock models. groups of 10 mice were injected with the peptides and PMB(0.5, 1.0 and 2.0 mg/kg) intraperitoneally, together with LPS. Survivals was recorded every 6 h during the period of 72 h.
     3. Generate the murine endotoxin shock models. groups of 10 mice received an i.p. injection of peptides and PMB (2.0 mg/kg) at indicated time points: (1) 1h before LPS; (2) 1h after LPS. Survivals was recorded every 6 h during the period of 72 h.
     4. Mice endotoxin shock models was made. Seventy-five minutes after intra-peritoneal injection of peptides, PMB(2.0 mg/kg) and LPS, blood samples were collected from the sacrificed mice. The levels of TNF-αin serum samples were analyzed using the ELISA kits.
     5. Mice endotoxin shock models was made. Mice were injected intraperitoneally with REMP1 and REMP2 (2.0 mg/kg) together with the LPS. Five hours later the mice were sacrificed and the lung, heart, liver, intestine and kidney removed for histopathology.
     Results:
     1. Treatment of mice with D-galactosamine increased remarkably their sensitivity to the lethal effects of LPS. The dosage of D-Gal 500mg/kg + LPS 250μg /kg or D-Gal 600mg/kg + LPS 50μg/kg could produc 100% mortality in 72 h.
     2. The survival rates of LPS- attacked mice increased significantly with peptides intervention at the three dosages (p < 0.05). REMP2 have show the highest rescue rates with 30%, 60% and 90% at the dosages of 0.5, 1.0 and 2.0mg/kg.
     3. The survival rates of LPS-challenged mice after 72 h were 30%, and 50% when receiving REMP2 injection 1h before or 1h after LPS respectivel. The protection effects were less than that of injection together with LPS.
     4. the TNF-αconcentrations of mice challenged by LPS alone increased fiercely to 6365±2087 pg/ml, but decreased significantly after treatment with the peptides. The inhibitory efficacy of REMP2(905±264 pg /m l) was nearly at the equal grade with PMB(p > 0.05).
     5. LPS-attacked mice produced acute inflammation in the lung, heart, liver, intestine and kidney in mice of control group. In contrast, with REMP1 and REMP2 treatment, there was significantly abatement of inflammation.
     Conclusions:
     1. The synthetic cyclic peptides XS10/REMP1/REMP2 based on LALF can directly neutralize the LPS in solutions.
     2. XS10, REMP1 and REMP2 can inhibit the TNF-αrelease in response to the presence of LPS in Mouse RAW264.7 macrophages.
     3. XS10, REMP1 and REMP2 have bactericidal activities to some of the bacteria obtaine from clinical patients including the Staphylococcus aureus which is belong to gram positive coccus.
     4. XS10, REMP1 and REMP2 have not Cytotoxicity.
     5. XS10, REMP1 and REMP2 can increase survival rates of mice challenged by lethal LPS.
     6. XS10, REMP1 and REMP2 can decrease the TNF-αlevels in endotoxin shock mice.
     7. REMP1 and REMP2 can decrease inflammation in the lung, heart, liver, intestine and kidney in mice of endotoxin shock.
     8. The bactericidal and antiendotoxic activities of XS10, REMP1 and REMP2 in vivo are in line with that in vitro. The antiendotoxic activities degree are REMP2 > REMP1 > XS10 and the bactericidal activities degree are REMP1 > REMP2 > XS10。
     9. REMP2 have the antiendotoxic activities nearly at the equal grade with PMB, but have less bactericidal activities than that of PMB.
引文
1. Cohen J. The immunopathogenesis of sepsis. Nature, 2002, 420: 885-891.
    2. Dellinger R P, Carlet J M, Masur H, et al. Surviving sepsis campaign guidelines for management of sever sepsis and septic shock. Intensive Care Med, 2004, 30(4): 536-555.
    3. Angus D C,Linde-Zwirble W T,Lidicker J, et al.Epidemiology of severe sepsis in the United States:analysis Of incidence,outcome,and associated costs of care. Crit. Care Med, 2001, 29(7): 1303-1310.
    4.北京市科委重大项目MODS课题组.1087例多器官功能障碍综合征临床流行病学调查.中国危重病急救医学, 2007, 19(1): 2-6.
    5.肖光夏, Winchurch RA, Thupari JN,等.烧伤内毒素血症.解放军医学杂志, 1990, 14:90-91.
    6. M. Stephen T, Christopher M. S, An X. Tran, et al. Diversity of andotoxin and its Impact on Pathogenesis. Journal of Endotoxin Research, 2006, 12(4): 205-223.
    7.姚咏明,高维谊,柴家科,等.烧伤毒血症.见:杨宗城主编.烧伤治疗学.第3版.北京:人民卫生出版社. 2006: 238-262.
    8. Caroff M, Karibian D, Cavaillon JM, et al. Structural and function analyses of bacterial lipopolysaccharides. Microbes and Infection, 2002, 4: 915-926.
    9. Dauphinee S M, Karsan A. Lipopolysaccharide signaling in endothelial cells . Lab Invest , 2006 , 86(1) :9-22.
    10.徐能武,袁建成,肖光夏,等.抗生素诱导革兰氏阴性菌释放内毒素的实验研究(一).中华烧伤杂志,2001, 17:75-79.
    11.徐能武,袁建成,肖光夏,等.抗生素诱导革兰氏阴性菌释放内毒素的实验研究(二).中华烧伤杂志,2002, 18:72-76.
    12. H?vard J, Pamela H, Robert E. Peptide Antimicrobial Agents, Clinical Microbiology Reviews, 2006, 19( 3): 491-511.
    13. Roman Jerala, Massimo Porro. Endotoxin Neutralizing Peptides. Current Topics in Medicial Chemistry, 2004, 4: 1173-1184.
    14. J. Aketagawa, T. Miyata, S. Ohtsubo, et al. Primary structure of limulus anticoagulant anti-lipopolysaccharide factor. J Biol Chem, 1986, 261(16): 7357-7365.
    15. Muta T, Miyata T, Tokunaga F, et al. Primary structure of anti-lipopolysaccharide factor from American horseshoe crab, Limulus polyphemus. J Biochem (Tokyo), 1987 , 102(2): 443-448.
    16. Warren H S, Glennon M L, Wainwright N, et al.Binding and neutralization of endotoxin by Limulus antilipopolysaccharide factor. Infect Immun ,1992 ,60(6): 2506-2513
    17. Alpert G, Baldwin G, Thompson C, et al. Limulus antilipopolysaccharide factor protects rabbits from meningococcal endotoxin shock. J Infect Dis ,1992 ,165(3) :494-500.
    18. Hoess A, Watson S, Siber G R, et al. Crystal structure of an endotoxin-neutralizing protein from the horseshoe crab,Limulus anti-LPS factor, at 1.5? resolution. J EMBO, 1993, 12(9): 3351-3356.
    19. Kloczewiak M, Black K M, Loiselle P, et al. Synthetic peptides that mimic the binding site of hor seshoe crab antilipopolysaccharide factor. J Infect Dis, 1994, 170(6): 1490 -1497.
    20. Ried C, Wahl C, Miethke T, et al. High Affinity Endotoxin-binding and Neutralizing Peptides Based on the Crystal Structure of Recombinant Limulus Anti- lipopolysaccharide Factor. J. Biol. Chem, 1996 ,271(8): 28120-28127.
    21. Roth R I, Su D, Child A H, et al. Limulus antilipopolysaccharide factor prevents mortality late in the course of endotoxemia. J Infect Dis, 1998 ,177(2): 388-94.
    22. Dong-Ning Wang, Jie-Wu Liu, Guan-Zhen Yang, et al.Cloning of Anti-LPS Factor cDNA from Tachypleus tridentatus,Expression in Bombyx mor/Larvae and Its Biological Activity In Vitro. Molecular biotechnology, 2002, 21: 1-7.
    23. .Maribel G V, Luis A G, Osvaldo R, et al. A Limulus Antilipopolysaccharide Factor-Derived Peptide Exhibits a New Immunological Activity with Potential Applicability in Infectious Diseases. Clinical and Diagnostic Laboratory Immunology, 2000, 7(4): 669-675.
    24. Maribel G V, J C Alvarez-Obregon, I. Rodriguez-Alonso, et al. A Limulus anti-LPS factor-derived peptide modulates cytokine gene expression and promotes resolution of bacterial acute infection in mice. International Immunopharmacology,2003, 3:247– 256.
    25. Combet C, Blanchet C, Geourjon C, et al.NPS@: Network Protein Sequence Analysis TIBS ,2000, 25, (3):147-150.
    26.骆兆文,来鲁华.基于蛋白质结构的药物分子设计.国外医学药学分册,1995, 22(6):331-336.
    27.赵金城,王庆莉,毕秀玲.计算机辅助直接药物分子设计.大连大学学报,2002,23(6):22-30.
    28.顾劲松,肖光夏,夏培元.鲎抗内毒素因子模拟肽中和内毒素的体外研究.第三军医大学学报,2005,27(13):1323-1325.
    29.顾劲松,肖光夏,夏培元.鲎抗内毒素因子模拟肽4的体外生物活性实验研究.中国抗生素杂志,2005,30(7):385-403.
    30. Pauletti G M, Gangwar S, Wang B, etal. Esterase-Sensitive Cyclic Prodrugs of Peptides: Evaluation of a Phenylpropionic Acid Promoiety in a Model Hexapeptide. Pharm-Res, 1997, 14(1): 11-17.
    31.王思理,胡冠时,贡立青主编,细菌内毒素检查法及其应用.北京,气象出版社出版,2003: 72-80.
    32. Jian-Dong Ren, Jin-Song Gub, Hong-Fu Gao, et al. A synthetic cyclic peptide derived from Limulus anti-lipopolysaccharide factor neutralizes endotoxin in vitro and in vivo. International Immunopharmacology, 2008, 8(5): 607-774.
    33. Minou Adib-Conquya, Jean-Marc Cavaillon. Stress molecules in sepsis and systemic inflammatory response syndrome. FEBS Letters,2007, 581(19): 3723-3733.
    34. Hongmei Gao, Susannah K L, Anne B G, et al. Severe sepsis and Toll-like receptors. Semin Immunopathol, 2008, 30: 29–40.
    35. Alexandra K M, William J G, Robert E W. Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Current Opinion in Pharmacology, 2006, 6(5) : 468-472.
    36.郑江,周红,鲁永玲,等.杀菌性/通透性增加蛋白(BPI)模拟肽中和内毒素作用的研究.中华烧伤杂志,2002,18(2): 95 -99.
    37.郭毅斌,郑江,吕根法,等.阳离子多肽21拮抗内毒素/脂多糖活性的实验研究。中华烧伤杂志,2005,21(3):95-99.
    38.杨策,蒋建新.内毒素研究的相关动物模型.见蒋建新主编.细菌内毒素基础与临床.北京:人民军医出版社, 2004,183-189.
    39. Akitaka I, Massimo P, Matthew P. Lipopolyamines: Novel Antiendotoxin Compounds That Reduce Mortality in Experimental Sepsis Caused by Gram-Negative Bacteria. Antimicrobial Agents and Chemotherapy, 1999, 43(4):912-919.
    40. Isao N, Satoko H, Fran?ois N, et al. Augmentation of the Lipopolysaccharide- Neutralizing Activities of Human Cathelicidin CAP18/LL-37-Derived Antimicrobial Peptides by Replacement with Hydrophobic and Cationic Amino Acid Residues. Clin Diagn Lab Immunol, 2002, 9(5): 972–982.
    41. Carlos S, Silda L , Steve Q, et al. Bactericidal and Antiendotoxic Properties of Short Cationic Peptides Derived from a Snake Venom Lys49 Phospholipase A2. Antimicrobial Agents and Chemotherapy, 2005, 49(4): 1340-1345.
    42.黄宏.内毒素作用的病理学改变,见蒋建新主编.细菌内毒素基础与临床.北京:人民军医出版社, 2004: 198-206.
    43. Galanos C, M. A. Freudenberg, W. Reutter. Galactosamine-induced sensitization of the lethal effects of endotoxin. Proc. Natl. Acad. Sci. USA , 1979,76: 5939-5943.
    44. Bogdanowich K S J, Jois D, Siahaan T J. The effect of conformation on the solution stability of linear vs. cyclic RGD peptides. Pept. Res, 1999, 53: 523-529.
    1.肖光夏.烧伤感染.见:黎鳌主编.黎鳌烧伤学.上海:上海科学技术出版社,2001: 67-80.
    2. Reilly M, Newcomb DE, Remick D, et al. Endotoxin, sepsis, and the primrose path. Shock, 1999,12: 411-420.
    3. Cohen J. The immunopathogenesis of sepsis. Nature, 2002, 420, 885-891.
    4. Verhoef J, Hustinx W M, Frasa H, et al. Issues in the adjunct therapy of severe sepsis.J. Antimicrob. Chemother. 1996, 38(20): 167-171.
    5. Angus D C,Linde-Zwirble W T,Lidicker J, et al.Epidemiology of severe sepsis in the United States:analysis Of incidence,outcome,and associated costs of care. Crit. Care Med. 2001, 29(7): 1303-1310.
    6. Darveau R P. Lipid A diversity and the innate host response to bacterial. Curr. Opin. Microbiol, 1998, 1:36-42.
    7.顾长国,李磊.内毒素致炎的作用机制.见:蒋建新主编.细菌内毒素基础与临床.北京:人民军医出版社,2004:75-86.
    8. Dauphinee S M, Karsan A. Lipopolysaccharide signaling in endothelial cells . Lab Invest , 2006 , 86(1) :9-22
    9. Hamann L , Alexander C , Stamme C , et al . Acute-phase concentrations of lipopolysaccharide (LPS)-binding protein inhibit innate immune cell activation by dif- ferent LPS chemotypes via different mechanisms . Infect Immun,2005,73 (1) :193- 200.
    10. Knapp S , Florquin S , Golenbock D T , et al . Pulmonary lipopolysaccharide (LPS) 2binding protein inhibits the LPS2induced lung inflammation in vivo . J Immunol , 2006 , 176 (5) :3189-3195.
    11. Pavcnik A M, Hojker S , Derganc M. Lipopolysaccharide-binding protein in critically ill neonates and children with suspected infection : comparison with procalcitonin , interleukin-6 , and C-reactive protein . Intensive Care Med , 2004 , 30 (7) :1454-1460.
    12. Pahlman L I, Morgelin M, Eckert J, et al. Streptococcal Mprotein: a multipotent and powerful inducer of inflammation. J Immunol ,2006 , 177 (2):1221-1228.
    13. Otsuki K, Yakuwa K, Sawada M, et al. Recombinant human lactoferrin has preventive effects on lipopolysaccharide-induced preterm delivery and production of inflammatory cytokines in mice . J Perinat Med , 2005 , 33 (4) :320-323.
    14. Na Y J, Han S B, Kang J S, et al. Lactoferrin works as a newLPS- binding protein in inflammatory activation of macrophages. Int Immunopharmacol,2004,4 (9) :1187 -1199.
    15. Obminska2Mrukowicz B , Szczypka M, Gaweda B. Modulation of murine macro- phages and T lymphocytes by lysozyme dimmer. Pol J Vet Sci, 2002,5 (4): 237 -241.
    16. Yamada C, Sano H, Shimizu T, et al. Surfactant protein A directly interacts with TLR4and MD-2 and regulates inflammatory cellular response. Importance of supratrimeric oligomerization . J Biol Chem, 2006, 281 (31) :21771-21780.
    17. Hozumi H, Adachi Y, Murakami T, et al. Increment of plasma soluble CD14 level in carrageenan-primed endotoxin shock model mice. Biol Pharm Bull, 2006, 9 (5) :1015 -1021.
    18. Yaegashi Y, Shirakawa K, Sato N, et al. Evaluation of a newly identified soluble CD14 subtype as a marker for sepsis. J Infect Chemother, 2005, 11(5) :234-238.
    19. Medzhitov R , Preston-Hurburt P , Janeway CAJ . A human homologu f the Drosophila Toll protein signals activation of adaptor immunity. Nature , 1997, 5:388 - 394.
    20. Kokkinopoulos I , Jordan W J , Ritter M A. Toll-like receptor mRNA expression patterns in human dendritic cells and monl-cytes. Mol Immunol, 2005, 42 :957 - 960.
    21. Susu M Z, Shanta M Z, Anup D, et al. Differential Induction of the Toll-Like Receptor 4-MyD88-Dependent and -Independent Signaling Pathways by Endotoxins. Infection and Immunity, 2005, 73(5).2940-2950.
    22. Fitzgerald K A, Rowe D C, Golenbock D T. Endotoxin recognition and signal transduction by the TLR4/MD2-complex. Microbes-Infect. 2004, 6(15): 1361-1367.
    23. Fitzqerald K A , Rowe D C , Barnes D J , et al . LPS/TLR4 signaling to IRF-3/7 and NF-κB involves the toll adapters TRAM and TRIF. J Exp Med ,2003,7 :1043 - 1055.
    24. Ashley M, Elizabeth B , Jodee A , et al . Mal interacts with tumor necrosis factor receptor-associated factor (TRAF)-6 to mediate NF-κB activation by toll-like receptor (TLR)-2 and TLR4 . J Bio Chem, 2004, 36: 37227 - 37230.
    25. Lenert P S. Targeting Toll-like receptor signaling in plasmacytoid dendritic cells and autoreactive B cells as a therapy for lupus. Arthritis Res Ther , 2006, 8 (1): 203-214.
    26. Cotena A , Gordon S , Platt N. The class A macrophage scavenger receptor at- tenuates CXC chemokine production and the early infiltration of neutrophils in sterile peritonitis. J Immunol, 2004, 173(10):6427-6432.
    27. Jozefowski S, Arredouani M, Sulahian T, et al. Disparate regulationand function of the class A scavenger receptors SR-A I/II and MARCO. J Immunol,2005, 175 (12):8032 -8041.
    28. Zhou X, Gao X P, Fan J, et al. LPS activation of Toll-like receptor 4 signals CD11b/ CD18 expression in neutrophils. Am J Physiol Lung Cell Mol Physiol , 2005 , 288 (4) :655-662.
    29. Klintman D, Li X, Thorlacius H. Important role of P-selectin for leukocyte recruitment, hepatocellular injury, and apoptosis in endotoxemic mice. Clin Diagn Lab Immunol, 2004, 11 (1) :56-62.
    30. Sloan CL, Sloan GJ, Cannon J G. Anti-inflammatory influence of P- selectin on human mononuclear cells. Vascul Pharmacol , 2006 , 44(3) :166-169.
    31. Iontcheva I , Amar S , Zawawi K H , et al . Role for moesin inlipopolysaccharide- stimulated signal transduction. Infect Immun, 2004, 72 (4) :2312-2320.
    32. Triantafilou M, Triantafilou K. Receptor cluster formation during activation by bacterial products. J Endotoxin Res , 2003 , 9 (5) : 331-335.
    33. Perera P Y, Mayadas T N, Takeuchi O, et al. CD11bPCD18 acts in concert with CD14 and Toll-like receptor ( TLR) 4 to elicit full lipopolysaccharide and Taxol-inducible gene expression. J Immunol , 2001 , 166(1) :574-581.
    34. Ogata H, Su I, Miyake K, et al. The Toll-like receptor protein RP105 regulates lipopolysaccharide signalling in B cells. J Exp Med , 2000 , 192 (1) :23-29.
    35. Lemjabbar H, Basbaum C. Platelet-activating factor receptor andADAM10 mediate responses to Staphylococcus aureus in epithelial cells. Nat Med , 2002 , 8 (1) :41-46.
    36. Triantafilou M, Brandenburg K, Kusumoto S , et al . Combinational clustering of receptors following stimulation by bacterial products determines LPS responses. BiochemJ , 2004 , 381(Pt2) :527-536.
    37. Triantafilou M, Triantafilou K. The dynamics of LPS recognition : complex orchestration of multiple receptors. J Endotoxin Res , 2005, 11 (1) :5-11.
    38. Kobayashi S, Kawata T, Kimura A, et al. Suppression of murine endotoxin response by E5531,a novel synthetic lipidA antagonist. Antimicrob Agents Chemother, 1998, 42 (11): 2824-2831.
    39. Kawata T, Bristol J R, Rossianol D P, et al. E5531,a synthetic non-toxic lipidA derivative blocks the immunobiological activities of lipopolysaccharide. Br. J Pharmacol, 1999, 127(4): 853-859.
    40. Steven M, Richard L. Antiendotoxin strategies for the prevention and treatment of septic shock. Drugs, 1998, 55(4): 497-504.
    41. Means T K, Jones B W, Schromm A B, et al. Differential effects of a Toll-like receptorantagonist on Mycobacterium tuberculosis-induced macrophage responses. J immunol, 2001, 166(6): 4074-4082.
    42. Lien E, Chow J C, Hawkins L D, et al. A novel synthetic acyclic lipid A-like agonist activates cells via lipopolysaccharide/toll-like receptor 4 signaling pathway. J Biol Chem, 2001, 276(3):1873-1880.
    43. Bunnell E, Lynn M, Habet K, et al. A lipidA analog, E5531,blicks the endotoxin response in human volunteers with experimental endotoxemia. Crit Care Med, 2000, 28(8): 2713-2719.
    44. kumar A, Bunnell E, Lynn M,et al. Experimental human endotoxemia is associated with depression of load-independent contractility indices: prevention by the lipid a analogue E5531. Chest, 2004,126(3): 860-867.
    45. Mullarkey M, Rose J R, Bristol J, et al. Inhibition of endotoxin response by e5564,a novel Toll-like 4-directed endotoxin antiagonist. J Pharmacol Exp Ther. 2003, 304(3): 1093-1102.
    46. Kim H M, Park B S, Kim J I, et al. Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran. Cell. 2007, 130(5): 906-917.
    47. Wasan K M, Sivak, O, Cote R A, et al. Association of the endotoxin antagonist E5564 with high-density lipoproteins in vitro dependence on low-density and triglyceride-rich lipoprotein concentrations. Antimicrob Agents Cheother. 2003, 47(9): 2796-803.
    48. Lynn M, Rossignal D P, Wheeler J L, et al. E5564 blocks responses to endotoxin in normalvolunteers with experimental endotoxemia. J Infect Dis, 2003, 187(4): 631-639.
    49. Lynn M, Wong N Y, Weeler J L, et al. Extended vivo Pharmacodynamic activity of E5564 in normal volunteers with experimental endotoxemia. J.Pharmacol. Exp. Ther, 2004, 308(1):175-181.
    50. Wong Y N, Rossignol D, Rose J R, et al. Safety, pharmacokinetics, and pharmacodynamics of E5564,a lipidA antagonist during an ascending single-dose clinical study. J Clin Pharmaco, 2003, 43(7): 735-742.
    51. Rossignol D P, Wasan K M, Choo E, et al. Safety, pharmacokinetics, pharmacodynamics, and plasma lipoprotein distribution of eritoran (E5564) during continuous intravenous infusion into healthy volunteers. Antimicrob-Agents-Chemother, 2004, 48(9):3233-3240.
    52. Baumgarten G, Knuefermann P, Schuhmacher, et al. Toll-like receptor 4, nitric oxide, and myocardial depression in endotoxemia. Shock. 2006, 25(1): 43-49.
    53. Kevin A. Stierer, Charles W. Hogue, Albert T. Cheung, Rsults of a phase 2 trial of eritoran, a synthetic TLR4 antagonist, in patients with sever sepsis. Critical Care Medcine. 2006, 34(12):7-12.
    54. Rossignol D P, Lynn M. TLR4 antagonists for endotoxemia and beyond. Curr-Opin-Investig-Drugs. 2005, 6(5): 496-502.
    55. Elliott Bennett-Guerrero, Hilary P. Grocott, Jerrold H. Levy, A Phase II, Double-Blind, Placebo-Controlled, Ascending-Dose Study of Eritoran (E5564), a Lipid A Antagonist, in Patients Undergoing Cardiac Surgery with Cardio- pulmonary Bypass. Trial of Eritoran in Cardiac Surgery,2007,104(2):378-382.
    56. St?ver A G., J. da Silva Correia, J T Evans, et al. Structure- activity relationship of synthetic Toll-like receptor 4 agonists. J. Biol. Chem, 2004, 279: 4440-4449.
    57. Madeline M F, Afsaneh M, Axel G. S, et al. A Synthetic TLR4 Antagonist Has Anti-Inflammatory Effects in Two Murine Models of Inflammatory Bowel Disease. The Journal of Immunology, 2005, 174: 6416-6423.
    58. Yamada M, Ichikawa T, Ii M, etal. Discovery of novel and potent small-molecule inhibitors of NO and cytokine production as antisepsis agents: synthesis and biological activity of alkyl 6-( N-substituted sulfamoyl )cyclohex -1-ene-1- carboxylate. J-Med-Chem. 2005, 48(23): 7457-7467.
    59. Masayuki I, Naoko M , Kaoru H,et al. A Novel Cyclohexene Derivative, Ethyl (6R)-6-[N-(2-Chloro-4-fluorophenyl)sulfamoyl]cyclohex-1-ene -1- carboxylate (TAK-242), Selectively Inhibits Toll-Like Receptor 4-Mediated Cytokine Production through Suppression of Intracellular Signaling. Molecular Pharmacology Fast Forward. Mol Pharmacol , 2006, 69:1288-1295.
    60. Ii M, Matsunaga N, Hazeki K, et al. A novel cyclohexene derivative, ethyl (6R)-6- [N- (2-Chloro-4-fluorophenyl)sulfamoyl]cyclohex-1- ene-1- carboxylate (TAK-242), selectively inhibits toll-like receptor 4- mediated cytokine production through suppression of intracellular signaling. Mol-Pharmacol. 2006, 69(4): 1288-1295.
    61. Sha T, Sunamoto M, Kitazaki T, et al. Therapeutic effects of TAK-242, a novelselective Toll-like receptor 4 signal transduction inhibitor, in mouse endotoxin shock model. Eur-J-Pharmacol, 2007, 571(2-3): 231-239.
    62. Hoess A, Watson S, Siber G.R, et al.Crystal structure of an endotoxin-neutralizing protein from the horseshoe crab,Limulus anti-LPS factor, at 1.5? resolution. J EMBO, 1993,12(9):3351-3356.
    63. Maribel G. V, Luis A. G, Osvaldo R, et al. A Limulus Antilipopoly- saccharide Factor- Derived Peptide Exhibits a New Immunological Activity with Potential Applicability in Infectious Diseases. Clinical and Diagnostic Laboratory Immunology, 2000, 7(4):669-675.
    64. Maribel G. V, J.C. Alvarez-Obregon, I. Rodriguez-Alonso,et al. A Limulus anti-LPS factor-derived peptide modulates cytokine gene expression and promotes resolution of bacterial acute infection in mice. International Immunopharmacology , 2003, 3 :247–256.
    65. Pauletti G M, Gangwar S, Wang B, et al. Esterase-Sensitive Cyclic Prodrugs of Peptides: Evaluation of a Phenylpropionic Acid Promoiety in a Model Hexapeptide. Pharm-Res. 1997, 14(1): 11-7.
    66. Ried C ,Wahl C, Miethke T,et al. High Affinity Endotoxin-binding and Neutralizing Peptides Based on the Crystal Structure of Recombinant Limulus Anti-lipopolysaccharide Factor. Biol Chem, 1996, 271 (8): 28120 -28127.
    67.顾劲松,肖光夏,夏培元.鲎抗内毒素因子模拟肽中和内毒素的体外研究.第三军医大学学报,2005,27(13):1323-1325.
    68.顾劲松,肖光夏,夏培元.鲎抗内毒素因子模拟肽4的体外生物活性实验研究.中国抗生素杂志,2005,30(7):385-403.
    69. Jian-Dong Ren,Jin-Song Gub,Hong-Fu Gao,et al,A synthetic cyclic peptide derived from Limulus anti- lipopolysaccharide factor neutralizes endotoxin in vitro and in vivo. International Immunopharmacology. 2008, 8(5): 607-774.
    70.高宏富,肖光夏,夏培元,等.鲎抗内毒素因子模拟肽REMP2体外中和内毒素及抗菌活性研究.中华烧伤杂志,2008, 24(2): 424-427.
    71. Weiss J, Elsbach P, Olsson I, et al. Purification and characterization of a potent bacteria and membranes active protein from the granules of human polymorphonuclear leukocytes. J.Bio.Chem, 1978, 253: 2664-2672.
    72. Beamer L J, Carroll S F, Eisenberg D. Crystal structure of human BPI and two bound phospholipids at 2.4 angstrom resolution. Science,1997, 276(5320):1861-1870.
    73. Capodici C, Weiss J. Both N-and C-terminal regions of the bioactive N-terminal fragment of the neutrophil granule bactericidal/permeability-increasing protein are required for stability and function. J.Immunol, 1996, 156: 4789-4796.
    74. Tobias PS, Soldau K, Iovine NM, et al. Lipopolysaccharide(LPS)-binding protein BPI and LBP from different types of complex with LPS. J.Biol.Chem, 1997, 272: 18682-18685.
    75. Kleiger G, Beamer L J, Grothe R, et al. The 1.7 A crystal structure of BPI: a study of how two dissimilar amino acid sequences can adopt the same fold. Mol Biol, 2000, 299: 1019-1034.
    76. Li C , Li J , Lv Z , et al . Protection of mice from lethal endotoxemia by chimeric human BPI-Fcgamma1 gene delivery . Cell Mol Immunol , 2006 , 3(3) :221-225.
    77. Canny G, Cario E, Lennartsson A , et al. Functional and biochemical character- ization of epithelial bactericidalPpermeability/ increasing protein. Am J Physiol Gastrointest Liver Physiol , 2006 , 290 (3): 557-567.
    78. Levin M, Quint P A, Goldstein B, et al. Recombinant bactericidal/ permeability -increasing protein (rBPI21) as adjunctive treatment for children with severe meningococcal sepsis: a randomised trial. Lancet, 2000, 356: 961-967.
    79. Levy O. Therapeutic potential of the bactericidal/permeability increasing protein. Expert Opin Investig Drugs, 2002,11(2): 159-167.
    80. Iovine N, Eastvold J, Elsbach P, et al. The carboxyl-terminal domain of closely related endotoxin–binding proteins determines the target of protein- lipopoly- saccharide complexes. J.Biol.Chem,2002, 277(10): 7970-7978.
    81.郑江,肖光夏.杀菌性/通透性增加蛋白功能区结构模拟肽的分子设计、筛选及鉴定.第三军医大学学报,1998,20(6):190-194.
    82.郑江,周红,鲁永玲等.杀菌性/通透性增加蛋白(BPI)模拟肽中和内毒素作用的研究.中华烧伤杂志,2002,18(2),95-99.
    83.郑江,龚小云,吕根法,等.杀菌性/通透性增加蛋白模拟肽与LPS/ LipidA的亲和力测定.解放军医学杂志,2003,28(3):197-199.
    84.郑江,袁建成,周红等.杀菌性/通透性增加蛋白(BPI)模拟肽小鼠体内拮抗内毒素作用的研究.第三军医大学学报,1998,20(6):520-523.
    85.程君涛,郑江,袁建成等.杀菌性/通透性增加蛋白模拟肽对内毒素致血管内皮细胞损伤的保护作用.中华烧伤杂志,2002,18(8):485-488.
    86.郑江,周红,秦孝建,等.杀菌性/通透性增加蛋白模拟肽(BPI)对铜绿假单胞菌形态学的影响。中国抗生素杂志,2002,27(8):474-477.
    87.高宏富,袁建成,肖光夏.杀菌性/通透性增加蛋白模拟肽对内毒素/脂多糖致小鼠急性肺损伤的保护作用.中华烧伤杂志, 2005, 21(2): 100-103.
    88. Bone R C, Balk R A, Fein A M, et al. A second large controlled clinical study of E5,amonoclonal antibody to endotoxin: results of a prospective, multicenter, rando-mized,controlled trail. Crit Care Med, 1995, 23(6): 994-1006.
    89. Sprung C L, Eidilman L A, Pizov R, et al. Influence of alteration in foregoing life-sustaining treatment practices on a clinical sepsis trial. Crit Care Med, 1997, 25(3): 383-392.
    90. Akita EM, Nakai S. Comparison of four purification methods for the production of immunoglobulins from eggs laid by hens immunized with an enterotoxigenic E. coli strain. J Immu-nol Methords, 1993,160 (2);207-214.
    91. Warr GW,Magor KE ,Higgins DA. IgY: clues to the origins of modern antibodies. Immunol Today , 1995 , 16 ( 8) :392 - 398.
    92. Sasse M , Kruger M , Schade R , et al . Generation and character2 ization of avian vitelline antibodies against lipopolysaccharide and lipid A. 1. Induction and preparation of specific egg yolk antibody ( IgY) against endotoxin. Berl Munch Tierarztl Wochenschr ,1998 ,111 (4) :121-126.
    93. Akita EM, Nakai S. Neutralization of entero2toxigenic Es2 cherichia coli heat2labile toxin by chicken egg yolk immuno2 globulin yand its antigen2 binding fragments. Food Agric Immunol ,1998 ,10(2) :161 - 172.
    94.赵永亮,张雅萍,蔡志民,等.特异性抗内毒素鸡蛋黄抗体的制备.免疫学杂志, 2003 ,19(1):66-68.
    95.史政荣,张雅萍抗内毒素鸡蛋黄抗体F(ab′) 2制备.山西医科大学学报2005,36 (2):155-158.
    96.李强,张雅萍抗内毒素IgY体外拮抗内毒素效应的实验研究.第三军医大学学报. 2004,26(7):608-610.
    97. Lee E N , Sunwoo HH , Menninen K,et al . In vitro studies of chicken egg yolk antibody ( IgY) against Salmonella enteritidis and Salmonella typhimurium Poult Sci , 2002 , 81 (5) : 632 - 641.
    98. Srimal S, Surolia N, Balasubramanian S, et al. Titration calorimetric studies to elucidate the specificity of the interactions of polymyxin B with lipopolysaccharides and lipidA. Biochem J. 1996, 315: 679-686.
    99. Tsubery H, Ofek I, Cohen S, et al. Structure-function study of polymyxin B nona- peptide : implication to sensitization of gram-negative bacteria. J Med Chem, 2000, 43, 3085-3091.
    100. Tsubery H, Ofek I, Cohen S, et al. N-terminal modifications of Polymyxin B nonapeptide and their effect on antibacterial activity. Peptides, 2001, 22: 1675-1681.
    101. Tsubery H, Ofek I, Cohen,S, et al. Modulation of the hydrophobic domain of polymyxin B nonapeptide: effect on outer-membrane permeabilization and lipopolysaccharide neutralization. Mol Pharmacol. 2002 62(5): 1036-1042.
    102. Uriu K, Osajima A, Kamochi M, et al. The severity of hyperdynamic circulation may predict the effects of direct hemoperfusion with the adsorbent column using polymyxin B-immobilized fiber in patients with gram-negative septic shock. Ther Apher, 2001, 5:25-31.
    103. Teramoto K, Nakamoto Y, Kunitomo T, et al. Removal of endotoxin in blood by poly- myxin B immobilized polystyrene-derivative fiber. Ther-Apher, 2002, 6(2): 103-108.
    104. Zaiou M, Nizer V, Gallo R L. Antimicrobial and protease inhibitory functions of the human cathelicidin(Hcap18/IL-37) prosequence. J Invest Dermatol, 2003, 120: 810-816.
    105. Johansson J, Gudmundsson G H, Rottenberg ME, et al. Conformation-dependent antibacterial activity of the naturally occurring human peptide IL-37. J Biol. Chem, 1998, 273: 3718-3724.
    106. Scott M G, Davidson D J, Gold M R, et al. The human antimicrobial peptide IL-37 is a multifunctional modulator of innate immune response. J Immunol, 2002, 169, 3883-3891.
    107. Nagaoka I, Hirota S, Niyonsaba F, et al. Augmentation of the lipopolysaccharide neutralizing activities of human cathelicidin CAP18/LL-37-derived antimicrobialpeptides by replacement with hydrophobic and cationic amino acid residues. Clin Drug Lab Immunol. 2002, 9: 972-982.
    108. Neeloffer M, Kelly L B, Dawn M. B,et al. Modulation of the TLR-Mediated Inflam- matory Response by the Endogenous Human Host Defense Peptide LL-37. The Journal of Immunology, 2006, 176: 2455-2464.
    109. Ghiselli R, Giacomtti A, Cirioni O, et al. Cationic peptides combined with betalactams reduce mortality from peritonitis in experimented rat model. J. Surg .Res. 2002, 108: 107-111.
    110. Ghiselli R, Giacometti A, Cirioni O, et al. Neutralization of endotoxin in vitro and in vivo by Bac7(1-35), a proline-rich antibacterial peptide. Shock. 2003 19(6): 577-581.
    111. Esmon C T. The protein C anticoagulant pathway. Arterioscler. Thromb, 1992, 12: 135-145.
    112. Matthay M A. Severe sepsis-a new treatment with both anticoagulant and manning flammatyory propertie. N Engl J Med, 2001, 344(10): 759-762.
    113. Warren H S, Suffredini A F, Eischacker P Q. et al. Risks and benefits of activated protein C for severe sepsis. N. Engl.J.Med, 2002, 347: 1027-1030.
    114. Seigel J P, Assessing the use of activated protein C in the treatment of severe sepsis. N.Engl.J.Med, 2002,347:1030-1034.
    115. Hongmei Gao, Susannah K L, Anne B G, et al. Severe sepsis and Toll-like receptors. Semin Immunopathol, 2008, 30: 29–40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700