用户名: 密码: 验证码:
我国高山鹑类分子系统发生研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国高山鹑类传统分类包括5属、11种、29个亚种,它们主要分布于我国青藏高原及周围的山地、我国中北部地区。本研究共采集我国高山鹑类4属(雪鸡属Tetraogallus、石鸡属Alectoris、山鹑属Perdix和雉鹑属Tetraophasis)、9种23亚种(喜马拉雅雪鸡的4个亚种、藏雪鸡3个亚种,石鸡5个亚种、大石鸡2亚种,灰山鹑1个亚种、斑翅山鹑3个亚种、高原山鹑3个亚种,雉鹑、四川雉鹑)的样本以及其它雉科鸟类样本,包括从genebank上下载相关序列,研究共涉及鸡形目雉科鸟类30属67种82亚种,包括我国雉科鸟类21属55种中的20属41种,利用核基因c-mos、线粒体DNA细胞色素b基因(Cyt b)、NADH脱氢酶第二亚基(ND2)基因、控制区(control region)多种分子标记,来分析探讨我国高山鹑类的分子系统发生及物种形成过程。
     对c-mos、CYT B、ND2、control region四个核苷酸序列片段单独及合并来进行系统发生分析,不同序列片段合并后的一致性检验采取incongruence-length-difference (ILD)检验,采用最大简约法MP (maximum parsimony)和贝叶斯法(Bayesian analyses)来分析建树;采用斑翅山鹑化石作内部锚定,雉科起源时间作为外部锚定,通过BEAST 1.4.8软件分析三个编码基因的合并片段(c-mos+CYT B+ND2)以及控制区序列,来估算相关类群的分歧时间。
     研究的主要结果如下:
     1、高山鹑类cytb基因与ND2基因密码子各位点碱基含量属间一致性很高,各属的碱基替代多数是沉默的,密码子第二位点最保守,第三位点进化最快。4属中核苷酸多样性雉鹑属较低;cytb基因核苷酸替代中异义替代(nonsynonymous)比例最高的是雉鹑属(22.58%),但其ND2基因核苷酸异义替代却在4属中最低(17.14%);4属中Cytb、ND2基因转换颠换比(Ti/Tv)最高的都是雉鹑属。
     2、我国雉科鸟类应该划分为四个支系群:①雪鸡属、石鸡属和鹌鹑属支系,代表着典型的鹑族类;②雉属、锦鸡属、鹇属、长尾雉属、马鸡属、虹雉属和雉鹑属、角雉属、勺鸡属、血雉属以及山鹑属这一大的支系,作为雉族类群;③原鸡属、竹鸡属和鹧鸪属;④孔雀属和孔雀雉属支系。
     3、分类地位一直不太确定的血雉属和角雉属,其分子系统发生位置应该在雉族类群内的基部,是比较原始的雉类。系统发生不明的山鹧鸪属,其分子系统发生位于其它雉科鸟类支系之外,表明了这一类群物种的古老性。
     4、分子系统发生研究表明雉鹑属和虹雉属有很近的亲缘关系,并且这一姊妹群明确地归入雉族类群;从形态、习性及分布特征方面比较,二者一致性也较高。在青藏高原强烈隆升前,虹雉属祖先和雉鹑属祖先就已经在横断山地区分化形成;雉鹑属祖先在早更新世高原希夏邦马冰期被隔离于高原东部边缘的一些较低的山地盆地,分化形成雉鹑和四川雉鹑,目前两个种的分布区相接格局是冰期结束后的再扩散造成的。
     5、系统发生位置一直有争议的山鹑属应当置于雉族类群中。山鹑属内3种以及斑翅山鹑、高原山鹑种内亚种间的分子系统发生关系都表明,山鹑属的起源是在青藏高原。高原山鹑分歧形成时间为3.63-3.77百万年,在上新世中、末期广泛分布生活于青藏高原地区的山鹑属祖先物种在高原隆升过程中,存留于高原低洼盆地区域的祖先种群逐步适应高原环境的变迁,从冰期中存活下来而形成高原山鹑;被迫向北部扩散移动的种群,在中国中部因第二次大的冰期(大约2.05-1.28百万年)而迫使它们分裂成两大部分,向低的平原地区移动,西部支系演化成灰山鹑,东部支系进化为斑翅山鹑,地质环境的变化以及化石的记录都支持这一观点。
     6、藏雪鸡三个涉及到的亚种间无明显的系统地理结构,在高原经历中更新世末的大间冰期时,藏雪鸡的不同种群被隔离分化形成亚种,之后的各个冰期,各亚种间都有一定的再扩散和交流。喜马拉雅雪鸡的四个亚种间表现出较为明晰的系统发生关系,经历了沿塔里木盆地的西南缘山地向东扩散和亚种形成路线。从种内亚种间分子系统发生关系、喜马拉雅雪鸡与藏雪鸡分歧时间的估算以及高原及其周边地质环境演变方面可以认定,喜马拉雅雪鸡和藏雪鸡是在高原隆升前(也就是说在3.6百万年前)就已经分化形成了,在青藏高原隆升初期的多瑙河冰期(3.5-2.6百万年),淡腹组的一支由天山东部地区向东南扩散至青藏东部地区的一些高山,伴随着青藏高原的隆升而形成藏雪鸡;暗腹组雪鸡的一支形成喜马拉雅雪鸡后在高原隆升中期(大约0.88百万年前)开始向高原上扩散并形成各亚种。
     7、石鸡和大石鸡两种的分歧时间为2.76或2.82百万年,分子系统发生树表明,所涉及的5个石鸡亚种间无系统地理结构,石鸡的祖先种群在冰期被隔离在不同“避难所”,在间冰期从避难所向外扩散,后又被冰期隔离出一些小种群,经历遗传瓶颈,分化形成不同的亚种。在冰期结束后,不同的亚种间又有相互的扩散渗透,从而造成目前的混乱状态。
The alpine partridges in China consist of 5 genera,11 species and 29 subspecies of Galliformes taxonomic groups distributing mainly on and around Qingzang plateau. The samples we collected are composed of 4 genera,9 species and 23 subspecies of it, i.e.4 subspecies of Tetraogallus himalayensis,3 subspecies of T. tibetanus,5 subspecies of Alectoris chukar,2 subspecies of A. magna,1 subspecies of Perdix perdix,3 subspecies of P. dauuricae,3 subspecies of P. hodgsoniae,1 of Tetraophasis obscures and T. szechenyii. Together with other Phasianidae samples and the categories from Genebank, Taxa studied herein include 41 Phasianidae species and 20 of 21 phasianidae genera in China and 67 species and 30 genera in the world. The nuclear gene and several mitochondrial genes sequences, representing these Galliformes groups, were analyzed to (1) ascertain the evolutionary relationship between the alpine partridges and other related phasianid genera, (2) produce a molecular phylogeny of the extant species of the alpine partridges, and (3) correlate the inferred molecular phylogeny and extent of interspecific genetic divergence with Pliocene/Pleistocene biogeographical scenarios in the Qinghai-Tibet Plateau region to suggest speciational patterns in these alpine partridges.
     The different gene segments were separated and concatenated for analysis simultaneously. Congruence among the different DNA data sets was evaluated using the incongruence-length-difference (ILD) test. Each data set was subjected to maximum parsimony (MP) using PAUP*4.0b10 and Bayesian analyses using MrBayes 3.0. Bayesian analysis of combined data (c-mos+CYT B+ND2) and D-loop data were also used separately to estimate the divergence times for clades of these alpine partridges by software BEAST 1.4.8.
     We obtained the nucleotide sequences including partial c-mos gene (613bp), ND2 gene(1023bp), control region (1056bp) and complete CYT B gene (1143bp). The ILD test of different combined dataset were acceptable(>0.05). Among the alpine partridge genera, CYT B and ND2 showed similar composition of nucleotide pair and similar rates and types of nucleotide substitutions. The percentage of nonsynonymous substitution is comparatively higher in genus Tetraophasis on CYT B nucleotide sequences, but not on ND2. The transition to transversion ratio (Ti/Tv) is also higher in genus Tetraophasis.
     The genera of Phasianidae in China should be classified into 4 clades:(1) Tetraogallus/Alectoris/Coturnix, (2) Phasianus/Chrysolophus/Lophura/Syrmaticus/ Crossoptilon/Tetraophasis and Lophophorus, also including Ithaginis/Tragopan/ Pucrasia/Perdix, (3) Gallus/Bambusicola/Francolinus, (4)Pavo and Polyplectron.
     Blood Pheasant (genus Ithaginis) and Tragopan had uncertain positions in traditional classification but should been placed in tribe Phasianini in molecular phylogenetic analysis. Genus Arborophila was basal in whole Phasianidae clade, indicated it's age-old phylogenetic position.
     Tetraophasis was sister to genus Lophophorus doubtlessly and the clade should also been placed in pheasants. The divergence time between them indicated that the clade Tetraophasis and the clade Lophophorus had been formed in the region of Hengduan Mountains before the uplift of the Tibetan Plateau, and the ancestor populations of Tetraophasis had been segregated into two partitions by the early Pleistocene glaciation and then formed the two species of Tetraophasis.
     All three species of genus Perdix were grouped into a monophyletic cluster and should be placed into the pheasant group in our analyses. Tibetan partridges(Perdix hodgsoniae) were consistently placed basal to other Perdix species, and P. dauuricae przewalskii and P. hodgsoniae hodgsoniae, the subspecies distributed in main land of Tibet plateau, were basal to the other two subspecies in their own clade, respectively. These phylogenetic relationships suggested that the Perdix were originated from Tibet region. Divergence time estimates indicated that the Tibetan partridge split from the ancestor of Daurian partridge and gray partridge about 3.63 myr ago, we consider that the grassland-adapted ancestor of the typical partridges spread to the plateau during the middle Pliocene (4.52-2.75 myr ago). Throughout the course of the Qingzang Movement and the Pleistocene glaciations, some populations of the ancestor stayed in some basins, survived the glaciations and gave rise to Tibetan partridge. Other groups were forced to move north by rapid ascension of the Plateau, whereafter the big second glacier (approximately 2.05-1.28 myr ago) in central China compelled them to split into west and east branches, which now form the prey partridge in the west and the Daurian partridge in the east.
     The three subspecies of Tetraogallus tibetanus studied herein showed no significant phylogeographic structure, we suggested that it's resulted from the adaptation to the climatic conditions and glacial cycles on the Qinghai-Tibetan Plateau. The phylogeny of 4 subspecies within Tetraogallus himalayensis indicated their eastward dispersal course along the south margin of Tarim Basin during the medium-term uplift (approximately 0.88 myr ago) of Qingzang plateau. Our studies also suggested that divergence between T. tibetanus and T. himalayensis took place before the sudden uplift of the Plateau.
     Divergence time estimates between Alectoris chukar and A. magna indicated that the two species split away about 2.76 myr ago, and the molecular phylogenetic analysis showed no phylogeographic partitions among the 5 subspecies of A. chukar.
引文
1.仓决卓玛,饶刚等,2003.藏马鸡分类地位和马鸡属系统进化问题的探讨.动物分类学报,28(2):173-179.
    2.曹兴山,1996.甘肃第四纪气候期划分.干旱区研究.13(3):28-40.
    3.方小敏,吕连清,杨胜利等,2001.昆仑山黄土与中国西部沙漠发育和高原隆升.中国科学(D),31(3):177-184.
    4.方小敏,奚晓霞,李吉均,穆德芬,1997.中国西部晚中新世气候变干事件的发现及其意义.科学通报,42(23):2521-2524.
    5.宋春晖,方小敏,李吉均,高军平,孙东,范马洁,颜茂都,2003.青藏高原东北部贵德盆地沉积环境分析及其意义.第四纪研究23(1):92-102
    6.侯连海.1993.周口店更新世鸟类.古脊椎动物与古人类研究所集刊,北京:科学出版社,pp165-254.
    7.黄大卫,1996.支序系统学概论.北京:中国农业出版社.
    8.黄仁鑫,邵红光,未尔曼,1991.阿尔泰雪鸡生态的初步观察.四川动物,10(3):36.
    9.黄仁鑫,未尔曼,邵红光,1992.中国鸟类新纪录——阿尔泰雪鸡.动物分类学报,17(4):501-502.
    10.黄万波,方其仁.1991.巫山猿人遗址.北京:海洋出版社,p p 26-27.
    11.黄族豪,龙进,张立勋,刘重斌,刘乃发,2006.从线粒体DNA控制区基因探讨红腹锦鸡和白腹锦鸡的分类关系.江西师范大学学报(自然科学版),30(1):91-94.
    12.雷富民,屈延华,冯祚建,冉成中,2000.试用聚类方法探讨中国雪雀的分类地位.动物分类学报,25(4):467-473.
    13.雷富民,屈延华,尹祚华,2001.雪雀属系统发育关系的研究.动物分类学报,26(1):1-7.
    14.李吉均,文世宣,张青松等,1979.青藏高原隆起的时间、幅度和形式的探讨.中国科学(B),6:608-616.
    15.李吉均,方小敏,1998.青藏高原隆起与环境变化研究.科学通报,43(15):1569-1574。
    16.李吉均,1995.青藏高原隆起的三个阶段及夷平面的高度和年龄.见:中国地理学会地貌与第四纪专业委员会编,地貌·环境·发展.北京:中国环境科学出版社,1-5.
    17.李吉均,方小敏,潘保田等,2001.新生代晚期青藏高原强烈隆起及其对周边环境的影响.第四纪研究,21(5):381-391.
    18.李吉均,1999.青藏高原的地貌演化与亚洲季风.海洋地质与第四纪地质,19(1):1-11.
    19.李吉均,康建成,1989.中国第四纪冰期、地文期和黄土记录.第四纪研究.
    20.李吉均,1963.祁连山山地近期年龄及第四纪冰期探讨.兰州大学学报(自然科学版)
    21.李吉均,郑本兴,杨锡金,1986.西藏冰川[C].科学出版社.北京.pp238-242.
    22.李庆伟,1993.鸡形目鸟类核型及其种系发生研究.卢汰春,张万福主编,中国珍稀濒危鸟类—雉科、松鸡科鸟类生活史与保育,中台科技出版社,台湾:490-498.
    23.李庆伟,李爽,田春宇,2002.雀形目10种鸟类线粒体的DNA变异及分子进化.动物学报,48(5):625-632.
    24.李湘涛,1996.中国鸡形目鸟类种与亚种的分布和生存现状.动物学报,42(增刊):25-30.
    25.刘东生,丁仲礼1二百五十万年来季风环流与大陆水量变化的阶段性耦合过程1第四纪研究,1992,(1):12-23
    26.刘廼发,黄祖豪,2007。中国石鸡生物学
    27.刘迺发,黄族豪,文陇英.2004.大石鸡的亚种分化和一新亚种描述(鸡形目,雉科).动物分类学报,29(3):600-605.
    28.刘迺发.1984.大石鸡分类地位研究.动物分类学报,9(2):212-217.
    29.刘逎发1998.雪鸡的系统发生.第三届海峡两岸鸟类学术讨论会论文集,P 235-246.台湾.
    30.刘迺发,黄族豪,2007.中国石鸡生物学.中国科学技术出版社.北京.
    31.卢欣,郑光美,顾滨源,1998.马鸡的分类、分布及演化关系的初步探讨.动物学报44(2):131-137.
    32.马鸣,周永恒,马力,1991.新疆雪鸡的分布及生态观察.野生动物(4):15-16.
    33.潘巧娃,,雷富民,尹祚华,赵洪峰,高学斌,王洪建,Anton Kristin,2006.基于核基因c-mos的鸫亚科部分鸟类系统发生关系.动物分类学报,31(4):686-691
    34.沈孝宙,王家骏,1963.中国雪鸡的分类、地理分布和生态.动物学杂志5(2):67-68
    35.施雅风,郑本兴1青藏高原进入冰冻圈的时代、高度及其对周围地区的影响1见:青藏高原形成演化、环境变迁与生态系统研究1北京,科学出版社,1996:136-145
    36.施雅风,李吉均,李炳元,等.晚新生代青藏高原的隆升与东亚环境变化[J].地理学报,1999,54(1):10-21.
    37.汤懋苍。青藏高原隆升引发气候突变的原因分析,见:青藏高原形成演化、环境变迁与生态系统研究1北京,科学出版社,1995:181-187
    38.王开发,杨蕉文,李哲等,1975。根据孢粉组合推论西藏伦坡拉盆地第三纪地层时代及其古地理。地质科学,(4):366-374
    39.卫明,侯鹏,黄族豪,刘逎发.2002.环境因子对大石鸡遗传结构的影响.生态学报,22(4):528-536.
    40.文陇英,阮禄章,刘迺发,2006.角雉属分类地位的探讨.动物分类学报,31(3):467-474.
    41.文陇英,张立勋,刘迺发,2005.以mtDNA细胞色素b基因探讨斑翅山鹑的分类地位.动物学研究,26(1):69-75.
    42.文陇英,包新康,金园庭,刘廼发,以线粒体DNA Cytb确立红喉雉鹑和黄喉雉鹑的分类地位。动物分类学报,2009年2期,265-268
    43.吴爱平,丁炜,张正旺,詹祥江,2005.马鸡属鸟类的系统发育关系.动物学报,51(5):898-90.
    44.向余劲攻,杨岚,张亚平,2000.白腹锦鸡和红腹锦鸡的遗传分化.遗传,22(4):225-228.
    45.徐仁,1981。大陆漂移与喜马拉雅上升的古植物学证据。见:中国科学院青藏高原综合科学考察队,1981,青藏高原隆升的时代、幅度和形式问题。北京:科学出版社。
    46.叶祥奎,1977.中新世鸟类在我国的首次发现.古脊椎动物与古人类,15:244-248.
    47.詹祥江,张正旺,吴爱平,陶玉静,2003.基于线粒体细胞色素b基因序列的虹雉属鸟类的系统发育关系.动物学研究,24(5):337-342.
    48.张荫荪,梁拴柱,陈容伯.1989.石鸡的一新亚种——鄂尔多斯石鸡.动物分类学报,14(4):496-499.
    49.张荣祖,1999.中国动物地理.科学出版社,北京.
    50.张淑霞,杨岚,杨君兴。2004,近代鸟类分类与系统发育研究进展,动物分类学报,29(4):675-682
    51.张原,张正旺,郑楠,2003.雉科基部类群分子钟的标定.北京师范大学学报(自然科学版),39(4),525-530.
    52.张正旺,丁长青,丁平,郑光美,2003.中国鸡形目鸟类的现状与保护对策.生物多样性,11(5):414-421.[创刊10周年纪念特刊]
    53.郑光美,2002.世界鸟类的分类与分布名录.科学出版社,北京.
    54.郑光美,2005.中国鸟类分类与分布名录.科学出版社, 北京.
    55.郑作新等1978.中国动物志鸟纲第四卷鸡形目.科学出版社,北京.
    56.郑作新.1983.西藏鸟类志.北京:科学出版社.
    57.郑作新.1994.中国鸟类种和亚种分类名录大全.北京:科学出版社.
    58.郑作新.2000.中国鸟类种和亚种分类名录大全(第二版).北京:科学出版社.
    59.郑作新.2002.中国鸟类系统检索(第三版)。北京:科学出版社.
    60.中国科学院青藏高原综合科学考察队,1981,青藏高原隆升的时代、幅度和形式问题。北京:科学出版社。
    61.周浙昆,杨青松,夏珂,2007。栎属高山栎组植物化石推测青藏高原的隆起,52(3):249-257
    62.朱弟成,潘桂棠,莫宣学,段丽萍,廖忠礼,2004.印度大陆和欧亚大陆的碰撞时代.地球科学进展,4:564-571.
    63.杨岚和徐延恭(1987)
    64. An, B., Zhang, L.X., Browne, S., Liu N.F., Ruan, L.Z., Song, S.2009. Phylogeography of Tibetan snowcock (Tetraogallus tibetanus) in Qinghai-Tibetan Plateau. Molecular Phylogenetics and Evolution 50:526-533.
    65. Avise, J. C., Arnold, J., Ball, R. M. et al.1987. Intraspecific phylogeography:the mitochondrial DNA bridge between population genetics and systematics. A nnual Review of Ecology and Systematics,18:489-522.
    66. Avise, J. C.1996. Toward a regional conservation genetic perspective:phylogeography of faunas in the southeastern United States. In:Conservation Genetics:Case Histories from Nature(eds Avise J.C. and J. L. Hamrick), Chapman & Hall, New York. pp.431-470.
    67. Avise, J. C.1998. The history and preview of phylogeograhy:a personal reflection. Molecular Ecology,7:371-379.
    68. Avise J C. Chapman and Hall.,1994. New York:Molecular Markers, Natural History, and Evolution.
    69. Avise,J.C. and Walker,D.,1998b. Pleistocene phylogeographic effects on avian populations and the speciation process. Proc.R.Soc.Lond.B 265:457-463.
    70. Avise,J.C.,2009. Phylogeography:retrospect and prospect. Journal of Biogeography,36:3-15.
    71. Armstrong, M.H., Braun, E.L., Kimball, R.T.,2001. Phylogenetic utility of avian ovomucoid intron G:a comparison of nuclear and mitochondrial phylogenetics in Galliformes. Auk,118,799-804.
    72. Bloomer, P., Crowe, T.M.,1998. Francolin phylogenetics:molecular, morpho-behavioral and combined evidence. Mol. Phylogenet. Evol.,8:236-254.
    73. Brom, T., Dekker, R.W.R.J.,1992. Current studies on megapode phylogeny. Zool. Vehandlingen 278:7-17.
    74. Baker, E.C.Stuart,1928, Fauna of British India, including Coylon and Buruna. Taylor and Francis, London
    75. Baziev, D.K.,1978. The snowcocks of Caucasus. Ecology, Morphology, Evolution. Nauka, Leningrad, P 123(In Russian).
    76. Bianki, V.L.,1898. The review of the species of genus Tetraogallus Gray. Proceedings of 2001. Museum, Empertor's Academy of Sciences, St. Petersburg,3:113-123.
    77. Bowie, R.C.K. and Fjeldsa, J.,2005. Genetic and morphological evidence for two species in the Udzungwa forest partridge Xenoperdix udzungwensis. J. East Afr. Nat. Hist.,94 (1),191-201.
    78. Bensasson D, Zhang DX, Hartl DL and Hewitt GM.2001. Mitochondrial pseudogenes:evolution's misplaced witnesses. Trends in Ecology and Evolution,16:314-321
    79. Berger,A.,1984. Accuracy and frequency stability of the Earth's orbital elements during the Quaternary. In Milankovitch and climate, part1(ed.A.Berger,J.Imbrie,J.Hays,G. Kukla and B. Saltzmann), pp 527-537. Reidel:Dordrecht.
    80. Brown, W. M., George J r, M. and Wilson, A. C.1979. Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences,76:1967-1971.
    81. Brown WM.1983. Evolution of mitochondrial DNA. In:Nei M and Keohn RK (eds). Evolution of genes and proteins. Sinaver:Sunderland Mass,62-68.
    82. Bush, K.L., Strobeck, C.,2003. Phylogenetic relationships of the Phasianidae reveals possible non-pheasant taxa. J. Hered.,94,472-489.
    83. Cooper, A. and Penny, D.1997. Mass survival of birds across the K-T boundary:molecular evidence. Science,275:1109-1113.
    84. Coleman M., Hodges K.,1995. Evidence for Tibetan Plateau uplift before 14 Myr ago from anew minimum age for east-west extension. Nature 374:49-52.
    85. Cracraft, J.,1981. Toward a phylogenetic classification of the Recent birds of the world (class Aves). Auk,98:25-36.
    86. Cracraft J., Barker, F.K., Braun, M., Harshman, J., Dyke, G.., Feinstein, J., Stanley, S., Cibois, A., Schikler, P., Beresford, P., Garcia-Moreno, J., Sorenson, M.D., Yuri, T., Mindell, D.P..2004. Phylogenetic relationships among modern birds:(Neornithes):towards an avian tree of life. In: Cracraft J, Donoghue MJ, eds. Assembling the tree of life. New York:Oxford University Press, 468-489.
    87. Crowe, T.M., Harley, E.H., Jakutowicz, M.B., Komen, J., Crowe, A.A.,1992. Phylogenetic, taxonomic and biogeographical implications of genetic, morphological, and behavioral variations in francolins (Phasianidae:Francolinus). Auk 109:24-42.
    88. Crowe,T.M.,Bowie,R.C.K.,Bloomer,P.,Mandiwana,T.G.,Hedderson,T.A.J.,Randi,E.,Pereira,S.L., and J. Wakeling,2006. Phylogenetics, biogeography and classification of, and character evolution in, gamebirds (Aves:Galliformes):effects of character exclusion, data partitioning and missing data. Cladistics,22,495-532
    89. Cunningham, C.W.,1997. Can three incongruence test predict when data should be combined? Mol. Biol. Evol.14,733e740.
    90. Darlu, P., Lecointre, G.,2002. When does the incongruence length difference test fail? Mol. Biol. Evol.19,432e437.
    91. Delacour, J.,1977. The pheasants of the world.2nd ed. World Pheasant Association and Spur Publications, Hindhead, U.K.
    92. del Hoyo, J., Elliott, A., Sargatal, J.(Eds.),1994. Handbook of the Birds of the World, Vol.2. New World Vultures to Guineafowls. Lynx Edicions, Barcelona.
    93. Dementiev, G..T. and N.A. Gladkov,1967. Birds of the Soviet union. Vol 4:198-221. Jerusalen: Irael Program for Scientific Thansatlations.
    94. Deng, T.,2004. Evolution of the Late Cenozoic mammalian faunas in the Linxia Basin and its background relevant to the uplift of the Qinghai-Xizang Plateau. Quaternary Sciences,24,413-420.
    95. Dyck, J.1992, Reflectance spectra of plumage areas colored by green feather pigments. Auk 109: 293-301.
    96. Dyke, G.J., Gulas, B.E., Crowe, T.M.,2003. Suprageneric relationships of galliform birds (Aves, Galliformes):a cladistic analysis of morphological characters. Zool. J. Linn. Soc.,137: 227-244.
    97. Drovetski,S.V., 2002. Molecular phylogeny of grouse:individual and combined performance of W-linked, autosomal, and mitochondrial loci. Syst. Biol.51 (6),930-945
    98. Desjardins, P., Morais, R.,1990. Sequence and gene organization of the chicken mitochondrial genome. A novel gene order in higher vertebrates. J. Mol. Biol.212,599-634.
    99. Dimcheff, D.E., Drovetski, S.V., Mindell, D.P.,2002. Phylogeny of Tetraoninae and other galliform birds using mitochondrial 12S and ND2 genes. Mol. Phylogenet. Evol.,24,203-215.
    100. Drummond, A.J., Rambaut, A.,2007, BEAST:Bayesian evolutionary analysis by sampling trees. MC Evol. Biol.,7:214.
    101. Edwards SV, Arctander P and Wilson AC.1991. Mitochondrial resolution of a deep branch in the genealogical tree for perching birds. Proc. R. Soc. London B,243:99-107.
    102. Ellsworth, D. L., Honeycutt, R. L. and Silvy N.J.,1995. Phylogenetic relationgships among North American grouse inferred from restriction endonuclease analysis of mitochondrial DNA. The Condor,97:1492-502
    103. Fang, X.M., LI, J. J., R VAN der Voo. Paleomagnetic/rock magnetic and grain evidence for the intensified atmospheric circulation since 800 kyrs[J]. Earth and Planetary Science Letters, 1999,165:129-144.
    104. Farris, J.S., Kallersjo, M, Kluge, A.G., Bult, C.,1995. Constructing a significance test for incongruence. Systematic Biology,44:570-572.
    105. Felsenstein, J.,1985. Confidence limits on phylogenies:an approach using the bootstrap. Evolution, 39,783-791.
    106. Fumihito, A., Miyake, T., Takada, M., Ohno, S., Kondo, N.,1995. The genetic link between the Chinese bamboo partridge (Bambusicola thoracica) and the chicken and junglefowls of the genus Gallus. Proc. Natl Acad. Sci. USA,92(24):11053-11056.
    107. Garcia-Moreno, J., Sorenson, M.D. and Mindell, D.P.,2003. Congruent avian phylogenies inferred from mitochondrial and nuclear DNA sequences. J. Mol. Evol.,57 (1),27-37.
    108. Gradstein, F.M., Ogg, J.G., Smith, A.G., Bleeker, W., and Lourens, L.J.,2004. A new Geologic Time Scale, with special reference to Precambrian and Neogene. Episodes,27,83-100.
    109. Groth, J.G., and Barrowclough, G.J.,1999. Basal divergences in birds and the phylogenetic utility of the nuclear RAG-1 gene. Mol. Phylogenet. Evol.12,115-123.
    110. Gradstein, F.M., Ogg, J.G., Smith, A.G., Bleeker, W., and Lourens, L.J.,2004. A new Geologic Time Scale, with special reference to Precambrian and Neogene. Episodes,27: 83-100.
    111. Guerrini,M., Panayides,P., Hadjigerou,P., Taglioli,L., Dini,F. and Barbanera,F.2007. Lack of genetic structure of Cypriot Alectoris chukar (Aves,Galliformes) populations as inferred from mtDNA sequencing data. Anim Biodivers Conserv 30 (1),105-114.
    112. Hackett, S.J., Kimball, R.T., Reddy, S., et al.,2008. A phylogenomic study of birds reveals their evolutionary history. Science 320,1763-1767.
    113. Harison, T.M., Copeland, P., Kidd, W.S.F., An, Yin. Raising Tibet. Science,1992, 255:1663-1670
    114. He, L., Dai, B., Zeng, B., Zhang, X., Chen, B., Yue, B. and Li, J.,2009. The complete mitochondrial genome of the Sichuan Hill Partridge (Arborophila rufipectus) and a phylogenetic analysis with related species. Gene,435 (1-2),23-28.
    115. Hedges, S.B. and Poling, L.L.1999. A molecular phylogeny of reptiles. Science,283:998-1001.
    116. Hewitt, G..M.,1996. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol. J. Linn. Soc.58:247-276.
    117. Hou, L.H.,1982. Fossil birds of Pleistocene from Chou-kou-tien. Vertebrata Palasiatica,20,366-367.
    118. Hudson, G.E., Lanzillotti, P.J., Edwards, G.D.,1959. Muscles of the pelvic limb in galliform limb in galliform birds. Am. Midi. Nat.,61:1-67.
    119. Hudson, G.E., Lanzillotti, P.J.,1964. Muscles of the pectoral limb in galliform birds. Am. Midl. Nat.71:1-113.
    120. Hudson, G.E., Parker, R.A., Van den Berge, Lanzillotti, P.J.,1966. A numerical analysis of the modifications of the appendicular muscles in the various genera of gallinaceous birds. Am. Midl. Nat.,76:1-73.
    121. Huelsenbeck, J.P., Ronquist, F.,2001. MRBAYES:Bayesian inference of phylogenetic trees. Bioinformatics,17,754-755.
    122. Irwin, D. M., Kocher, T. D., Wilson, A. C.,1991. Evolution of the cytochrome b gene in mammals.J.Mol.Evol.,32:128-144.
    123. Johnsgard, P.A.,1988. The Quails, Partridges, and Francolins of the World. Oxford University Press, Oxford.
    124. Johnsgard, P.A.,1999. The Pheasants of the World,2nd edn. Smithsonian Institution Press, Washington, DC.
    125. Johnson, K.P. and Sorenson, M.D.,1998. Comparing Molecular Evolution in Two Mitochondrial Protein Coding Genes (Cytochromeb and ND2) in the Dabbling Ducks (Tribe:Anatini). Mol. Phylogenet. Evol.,10,82-94.
    126. Johnsgard, P.A.,1986. The Pheasants of the World. Oxford University Press, Oxford.
    127. Kimball, R.T., Braun, E.L., Ligon, J.D.,1997. Resolution of the phylogenetic position of the Congo peafowl, Afropavo congensis:a biogeographic and evolutionary enigma. Proc. R. Soc. London B Biol. Sci.,264:1517-1523.
    128. Kimball, R.C., Braun, E.L., Zwartjies, P.W., Crowe, T.M., Ligon, J.D.,1999. A molecular phylogeny of the pheasants and partridges suggests that these lineages are not monophyletic. Mol. Phylogenet. Evol.,11:38-54.
    129. Kimball,R.T., Braun,E.L., Ligon,J.D.,Lucchini,V. and Randi,E.,2001. A molecular phylogeny of the peacock-pheasants (Galliformes:Polyplectron spp.) indicates loss and reduction of ornamental traits and display behaviors,Biol. J. Linn. Soc. Lond.73,187-198.
    130. Kimball, R.C., Braun, E.L., Ligon, J.D., Randi, E. and Lucchini, V.,2006. Using molecular phylogenetics to interpret evolutionary changes in morphology and behavior in the Phasianidae. Acta Zoologica Sinica 52(Supplement):362-365.
    131. Kimball, R.T. and Braun, E.L.,2008. A multigene phylogeny of Galliformes supports a single origin of erectile ability in non-feathered facial traits. J.Avian Biol.,39,438-445.
    132. Koslova, E.V.,1952. Avifauna of Tibetan Plateau its family ties and history. Proc.2001. Inst. AC. Sci. birsk,91 P.(In russian).
    133. Kornegay, J.R., Kocher, T.D., Williams, L.A., Wilson, A.C.,1993. Pathways of Lysozyme Evolution Inferred from the Sequences of Cytochrome b in Birds. J. Mol. Evol.,37,367-379.
    134. Kumar, S., Hedges, S.B.,1998. A molecular timescale for vertebrate evolution. Nature 392, 917-920.
    135. Li, J.J.,Wen, S.X.,Zhang, Q.S.,1979. A discussion on the period,amplitude and type of the uplift of the Qinghai-Xizang Plateau. Scientia Sinica,22,1314-1328.
    136. Li, B.Y., Li, J.J.,1991. Quaternary Glacial Distribution of the Tibet Plateau. Science Press, Beijing.
    137. Li, J., Fang, X., Ma, H., Zhu, J.J., Pan, B.T., Chen, H.L.,1996. Geomorphological and environmental evolution in the upper reaches of the Yellow River during the late. Cenozoic. Science in China Series D,39,380-390.
    138. Li, J.J., Fang, X.M., Pan, B.T., Zhao, Z.J., Song, Y.G.,2001. Late Cenozoic intensive uplift of Qinghai-Xizang Plateau and its impacts on environments in surrounding area. Quaternary Sciences, 21,381-391.
    139. Lucchini, V., Randi, E.,1999. Molecular evolution of the mtDNA control-region in galliform birds. In: Adams, N.J., Slotow, R.H. (Eds.), Proceedings of the 22 International Ornithological Congress, Durban. Birdlife South Africa, Johannesburg, pp.732-739.
    140. Liukkonen-Anttila, T., Uimaniemi, L., Orell, M., Lumme, J.,2002. Mitochondrial DNA variation and the phylogeography of the grey partridge (Perdix perdix) in Europe:from Pleistocene history to present day populations. J. Evol. Biol.,15,971-982.
    141. Lu, T., He, F.& Liu, R. (1990) Studies on ecology of Tetraophasis. Sinozoologia.,8,39-44.
    142. Lucchini, V., Randi, E.,1998. Mitochondrial DNA sequence variation and phylogeographical structure of rock partridge(Alectoris graeca)populations.Heredity,81:528-536.
    143. Lucchini, V., Randi, E.,1999. Molecular evolution of the mtDNA control-region in galliform birds. In: Adams, N.J., Slotow, R.H. (Eds.), Proceedings of the 22 International Ornithological Congress, Durban. Birdlife South Africa, Johannesburg, pp.732-739.
    144. Lucchini, V., Hoglund, J., Klaus, S., Swenson, J., Randi, E.,2001. Historical biogeography and a mitochondrial DNA phylogeny of grouse and ptarmigan. Mol. Phylogenet. Evol.,20:149-162.
    145. Liu, D.S., Zhang, X.S., Yuan, B.Y.,1998. The impact of plateau uplifting on surrounding areas. In: Formation, Evolution and Development of Qinghai-Xizang (Tibetan) Plateau (eds Sun HL Zheng D). Guangdong Science and Technology Press, Guangdong, China.
    146. Liu NF.1992. Ecology of Przewalski's Rock Partridge (Alectoris magna), Gibier Faune Sauvage,9: 605-615.
    147. Liu NF.1996. Ecological investigation of chukar partridge in Northwest China. Annual Review of WPA,1994/1995:44-48.
    148. Lovette, I.J. and Bermingham, E.2000. c-mos Variation in Songbirds:Molecular Evolution, Phylogenetic Implications, and Comparisons with Mitochondrial Differentiation. Mol. Biol. Evol., 17(10):1569-1577.
    149. Mayr G.2007. The fossil record of galliform birds:comments on Crowe et al. (2006) Cladistics 23, 1-3.
    150. Marks BD, Hackett SJ, Capparella AP,20041 Historical relationships among Neotropical lowland forest areas of endemism as determined by mitochondrial DNA sequence variation within the Wedgebilled Woodcreeper (Aves:Dendrocolaptidae:Glyphorynchus spirurus). Molecular Phylogenetics and Evolution,24:153-1671
    151. Meng, Y., Dai, B., Ran, J.H., Li, J., Yue, B.S.,2008. Phylogenetic position of the genus Tetraophasis (Aves,Galliformes, Phasianidae) as inferred from mitochondrial and nuclear sequences. Biochemical Systematics and Ecology,36,626-637.
    152. Moulin, S., Randi, E., Tabarroni, C., Hennache, A.,2003. Mitochondrial DNA diversification among the subspecies of the Silver and Kalij Pheasants, Lophura nycthemera and L. leucomelanos. Phasianidae.lbis,145:E1-E11.
    153. Nadeau, N.J., Burke, T. and Mundy, N.I.,2007. Evolution of an avian pigmentation gene correlates with a measure of sexual selection. Proc. Biol. Sci.,274 (1620),1807-1813.
    154. Near TJ, Pesavento JJ, Cheng CHC,2003, Mitochondrial DNA, morphology, and phylogenetic relationships of Antarctic icefishes(Notothenioidei:Channichthyidae). Molecular Phylogenetics and Evolution,28:87-981
    155. Nei M.& S. Kumar.,2000. Molecular evolution and phylogenetics. New York:Oxford University.
    156. Nishibori,M., Tsudzuki,M., Hayashi,T., Yamamoto,Y. and Yasue,H.2002. Complete nucleotide sequence of the Coturnix chinensis (blue-breasted quail) mitochondrial genome and a phylogenetic analysis with related species J. Hered.93 (6),439-444.
    157. Nishibori, M., Shimogiri, T., Hayashi, T., Yasue, H.,2005, Molecular evidence for hybridization of species in the genus Gallus except for Gallus varius. Anim. Genet.,36:367-375.
    158. Nylander JAA (2008) MRMODELTEST, version 2.3. Program distributed by the author. Available from http://www.ebc.uu.se/staff/nylander.html. Dept. Systematic Zoology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
    159. Overton, L.C. and Rhoads, D.D.2004. Molecular phylogenetic relationships based on mitochondrial and nuclear gene sequences for the Todies (Todus, Todidae) of the Caribbean. Mol. Phylogenet. Evol.,32:524-538.
    160. Olson, S.L.,1980. The significance of the distribution of the Megapodiidae. Emu,80:21-24.
    161. Omland K E, Lanyon S M, Fritz S J.,1999. A molecular phylogeny of the New World orioles(lcterus): the importance of dense taxon sampling. Mol.Phylogenet Evol.,12(2):224-239.
    162. Pereira, S.L., Baker, A.J.,2006. A molecular timescale for galliform birds accounting for uncertainty in time estimates and heterogeneity of rates of DNA substitutions across lineages and sites. Mol. Phylogenet. Evol.,38,499-509.
    163. Potapov, R.L.,1992. Adaptation to mountain conditions and evolution in snowcocks (Tetraogallus Sp.). Gibier Faune Sawage,9:647-660.
    164. Potapov, R.L.,1987. Order Galliformes. In:Birds of the U.S.S.R., Galliformes-Gruigormes. Nauka, Leuingrad:7-260.
    165. Potapov, R. (2002) Distribution, biology and phylogeny of genus Tetraophasis (Elliot,1872). Russ. J. Ornithol.,11,1051-1066
    166. Pereira, S.L., Baker, A.J.,2006. A molecular timescale for galliform birds accounting for uncertainty in time estimates and heterogeneity of rates of DNA substitutions across lineages and sites. Mol. Phylogenet. Evol.,38:499-509.
    167. Peters, J.L.,1934.Check-List of the Birds of the World.2.1-401, Harvard University Press, Cambridge, MASS. U.S.A.
    168. Randi, E., Fusco, G., Lorenzini, R., Timothy, M.C.,1991. Phylogenetic relationships and rates of allozyme evolution with the Phasianidae. Biochemical Systematics and Ecology,19,213-221.
    169. Randi, E.,1996. A mitochondrial cytochrome b phylogeny of the Alectoris partridges. Mol. Phylogenet. Evol.,6:214-227.
    170. Randi, E. and Lucchini, V.,1998. Organization and evolution of the mitochondrial DNA control-region in the avian genus Alectoris. J. Mol. Evol.,47,449-462.
    171. Randi, E., Lucchini, V., Armijo-Prewitt, T., Kimball, R.T., Braun, E.L., Ligon, J.D.,2000. Mitochondrial DNA phylogeny and speciation in the tragopans. Auk,117,1003-1015.
    172. Randi, E., Lucchini, V., Hennache, A., Kimball, R.T., Braun, E.L. and Ligon, J.D.,2001. Evolution of the mitochondrial DNA control region and cytochrome b genes and the inference of phylogenetic relationships in the avian genus Lophura (Galliformes). Mol. Phylogenet. Evol.19 (2),187-201.
    173. Randi, E., Tabarroni, C., Rimondi, S., and et al.,2003. Phylogeography of the rock partridge (Alectoris graeca) [J]. Molecular Ecology,12:2201-2214.
    174. Ruan, L.Z., Zhang, L.X., Wen, L.Y., Sun, Q.W., Liu, N.F.,2005. Phylogeny and Molecular Evolution of Tetraogallus in China. Biochemical Genetics,43(9/10),507-518
    175. Rannala B, HuelsenbeckJ P, Yang Z H, Nielson R.1998. Taxon sampling and the accuracy of large phylogenies. Syst. Biol.,47(4):702-710.
    176. Rambaut, A., Drummond, A.J.,2004. Tracer v1.3. [http://tree.bio.ed.ac.uk/software/tracer].
    177. Rozas, J., Sa'nchez-DelBarrio, J., Messeguer, X.& Rozas, R. (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics,19,2496-2497.
    178. Sagata, N., Oskarsson, M., Copeland, T., Brumbaugh, J. and. Vande Woude, G.F.1988. Function of c-mos proto-oncogene product in meiotic maturation in Xenopus oocytes. Nature,335:519-525.
    179. Saint, KM., Austin, C.C., Donnellan, S.C. and Hutchinson, M N.1998. C-mos, a nuclear marker useful for squamate phylogenetic analysis. Mol. Phylogenet. Evol.,10:259-263.
    180. Shen,X.J., Tsudzuki,M. and Nakamura,T.,1999 Primer Design and Sequence Information for Cytochrome b Gene in the Chinese Painted Quail (Excalfactoria chinensis) Anim. Sci. J.70 (4), 251-253.
    181. Shen,Y.Y., Shi,P., Sun,Y.B. and Zhang,Y.P., 2009. Relaxation of selective constraints on avian mitochondrial DNA following the degeneration of flight ability Genome Res.19 (10),1760-1765.
    182. Shi, Y.F., Li, J.J., Li, B.Y.,1999. Uplift of the Qinghai-Xizang (Tibetan) Plateau and east Asia environmental changes during late Cenozoic. Acta Geographica Sinica,54 (1),10-21(in Chinese)
    183. Shibusawa, M., Nishibori, M., Nishida-Umehara, C., Tsudzuki, M., Masabanda, J., Griffin, D.K. and Matsuda, Y.,2004. Karyotypic evolution in the Galliformes:an examination of the process of karyotypic evolution by comparison of the molecular cytogenetic findings with the molecular phylogeny. Cytogenet. Genome Res.,106 (1),111-119.
    184. Sibley, C.G., Ahlquist, J.E.,1990. Phylogeny and Classification of Birds. Yale University Press, New Haven.
    185. Sibley, C.G., Ahlquist, J.E.,1972. A comparative study of egg-white proteins of non-passerine birds. Bull. Peabody Mus. Nat. Hist.39,1-276.
    186. Sibley, C. G. and Monroe, B. L.1990. Distribution and taxonomy of birds of the world. Yale University Press, New Heaven and London.
    187. Sibley, C.G.,1994. On the phylogeny and classification of living birds. J. Avian Biol.25,87-92.
    188. Sorenson, M.D., Ast, J.C., Dimcheff, D.E., Yuri, T, Mindell, D.P.,1999. Primers for a PCR-based approach to mitochondrial genome sequencing in birds and other vertebrates. Mol. Phylogenet. Evol.12,105-114.
    189. Spicer R A, Harris N B W, Widdowson M, et al. Constant elevation of southern Tibet over the past 15 million years. Nature,2003,421:622-624
    190. Swofford, D.L. 2003. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4. Sunderland, MA:Sinauer Associates.
    191. Short, L.L., Medina, J.R.,1967. A review of the genera of grouse (Aves, Tetraoninae). Amer. Mus. Novitates 2289:1-39.
    192. Tapponnier P, Xu Z Q, Roger F, et al. Oblique stepwise rise and growth of the Tibet plateau. Science,2003,294:1671-1677
    193. Thompson, J.D., Jeanmougin, F., Gouy, M., Higgins, D.G., Gibson, T.J.,1997. Multiple sequence alignment with Clustal X. Trends Biochem. Sci.23,403-405.
    194. van Tuinen, M., Hedges, S.B.,2001. Calibration of avian molecular clocks. Mol. Biol. Evol.18, 206-213.
    195. van Tuinen, M., Dyke, G.J.,2004. Calibration of galliform molecular clocks using multiple fossils and genetic partitions. Mol. Phylogenet. Evol.30,74-86.
    196. Vaurie, C.,1966. The birds of the Palearctic Fauna.1-765. H. F. G. Witherby Limited, Landon.
    197.Vaurie, C.,1972. Tibet and its birds. H.F.& G. Witherby Limited, London.1-407
    198. Watson GE.1962a. Three sibling speices of Alectoris partridge. Ibis,104:353-367.
    199. Watson GE.1962b. Sympatry in palearetic Alectoris partridge. Evolution,16:11-19.
    200. Wen, L.Y. and Liu, N.F.,2010. Cytochrome b gene based phylogeny and genetic divergence of Tetraophasis of China. Animal Biology,60:133-144.
    201. Wetmore, A.,1960. A classification for birds of the world. Smithsonian Miscellaneous Collections No.139.
    202. Wilson A C, Cann R L Carr S M.,1985. Mitochondrial DNA and tow perspectives on evolutionary genetics. Biology,26:375-400.
    203. Zardoya R, Meyer A. Phylogenetic performance of mitochondrial protein coding genes in resolving relationships among vertebrates [J]. Mol Biol Ecol,1996,13 (7):933-942.
    204. Zhan, X.J. and Zhang, Z.W.,2005. Molecular phylogeny of avian genus Syrmaticus based on the mitochondrial cytochrome B gene and control region. Zool. Sci.,22 (4),427-435.
    205. Zhang DX and Hewitt GM.1996. Nuclear integrations:challenges for mitochondrial DNA markers. Trends in Ecology and Evolution,11:247-251.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700