用户名: 密码: 验证码:
亚热带常绿阔叶林植物幼叶虫食防御对策研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物与昆虫是森林生态系统的重要组成成分,它们通过长期的协同进化形成了密切的相互关系。两者在森林生态系统中发挥着承上启下的作用,连接初级生产和高级消费,是森林生态系统中重要的动态中心。由于营养丰富且较为脆弱,幼叶受到了食叶昆虫的广泛取食,面临巨大的取食压力,是植物叶片受损的主要时期。因此,幼叶期虽然短暂,却是了解植物与食叶昆虫相互关系的关键时期。植物的幼叶如何应对食叶昆虫的取食压力,一直是进化生物学和生态学研究关注的热点问题。
     要解决这一关键问题,则主要取决于下几个方面问题的回答:1)植物的幼叶面临怎样的虫食压力?2)面对虫食压力,植物幼叶又是如何进行防御,形成了怎样的防御对策?3)幼叶对虫食的防御对策受到哪些因素的影响?4)幼叶质量对食叶昆虫产生了怎样的影响,食叶昆虫如何与之适应?
     常绿阔叶林是我国亚热带地区的地带性植被,具有与热带森林和温带森林明显不同的种类组成和群落结构。论文选择位于我国亚热带南部的福建梅花山(116°45'25"--116°57'24",25°15'24"-25°35'44")和中北部的浙江天童(29°48'N,121°47'E)两地常绿阔叶林中代表植物作为研究对象,通过野外跟踪观测、室内属性分析、人工控制模拟、食叶昆虫调查和饲养等多种手段,研究了幼叶的物候特征、营养物质含量、物理特性、防御物质含量、叶片虫食强度以及食叶昆虫的多样性、生长发育和防御特征,以探讨亚热带常绿阔叶林中植物叶片的虫食特征、幼叶的综合防御对策、幼叶防御对策的影响因素以及幼叶质量对食叶昆虫的影响。主要研究结果如下:
     1.常绿阔叶林植物表现出介于热带雨林与温带落叶阔叶林之间的过渡性的叶片虫食特征,幼叶期是虫食发生的主要时期
     为了解亚热带常绿阔叶林植物面临怎样的虫食压力,本文对福建梅花山和浙江天童两地76种常绿阔叶林植物的叶片的虫食进行了调查,结果显示:76种植物平均虫食率为7.21%,虫食频度为32.95%,多数植物的叶片虫食率低于10%,叶片虫食频度主要分布在10-60%之间。乔木种与灌木种、优势植物与伴生植物之间的叶片虫食率和虫食频度均不存在显著差异(p>0.05)。超过60%的叶片虫食率和虫食频度发生在展叶期。福建梅花山常绿阔叶林植物的叶片虫食率(p=0.012)和虫食频度(p=0.74)均高于浙江天童。植物幼叶的虫食率随着海拔的升高而下降。
     以上结果表明,常绿阔叶林植物的叶片虫食强度介于热带雨林和温带森林之间,展叶期是叶片虫食发生的主要阶段,表现出过渡性特征;叶片的虫食在不同生活型和优势程度的植物间存在差异;叶片虫食率随纬度的升高和海拔的上升而降低。
     2.幼叶的不同属性之间存在相互关系,具有防御功能的属性共同作用,形成了三种综合防御对策
     为明确亚热带常绿阔叶林植物如何应对昆虫的取食压力,本文以浙江天童地区38种常绿阔叶林植物幼叶属性和虫食数据为基础,开展了幼叶对食叶昆虫的防御对策研究。结果显示,幼叶的物候、营养和次生代谢物含量等具有防御功能的属性之间存在相互关联,不同的属性常常共同发生变化,形成固定的防御属性组合。亚热带常绿阔叶林植物幼叶的综合防御对策可以分为以下三种:小叶片出叶时间早,植物叶片含氮量和含水量均很低,符合“低营养质量”对策;大叶片的植物出叶时间晚,但展叶速度快,叶片营养质量高,防御能力不强,采取“逃避”对策;较大叶面积的植物叶片营养质量虽然也很高但物理和化学防御能力明显较高,采用“高营养且防御”的对策。
     以上结果表明,亚热带常绿阔叶林植物幼叶中多种具有防御功能的属性之间存在相互关联,这些防御属性共同变化,形成集中的综合防御对策。不同的植物在面对类似的昆虫取食压力时形成了“低营养质量”、“逃避”和“高营养且防御”三种综合防御对策。
     3.幼叶的防御对策受到发育阶段、展叶阶段和早期虫食诱导的影响
     幼叶对食叶昆虫的防御能力受到多种因素的影响,本文以亚热带常绿阔叶林中的典型代表植物木荷(Schima superba)和栲树(Castanopsis fargesii)为研究对象,通过对不同发育阶段植株、不同展叶阶段和不同早期昆虫取食状况的幼叶的叶片属性和虫食的比较分析,探讨幼叶防御对策的影响因素。
     (1)植物的发育阶段会影响叶片的质量,从而造成植物在不同的发育阶段受到不同的虫食压力。为了解植物发育阶段对叶片质量的影响,本项研究对木荷幼树和成树叶片的营养和防御属性进行了测定。研究结果显示,幼树的食叶昆虫密度为成树的1.52倍,幼树的叶片虫食率(F1,29=6.7,p<0.01)和虫食频度(F1,29=8.2,p<0.01)均明显高于成树叶片。造成不同发育阶段叶片虫食不同的主要原因是由于叶片属性之间的差异,虽然两个发育阶段植株的叶片硬度、含水量和含氮量不存在显著差异,但是成熟植株叶片的出叶同步性(p=0.005)和总酚含量明显高于幼树(44%-4月;29.7%-8月)。研究结果表明,植物的发育阶段对植物的防御能力产生了影响:随着树龄的增加,木荷叶片的防御能力逐渐增强,从而导致成树受到的虫食率和虫食频度均明显低于幼树(p<0.01)。
     (2)栲树叶片展叶期虫食频度50.72%,叶片虫食率8.25%,展叶过程可分为折叠期和打开期两个阶段,不同展叶阶段的栲树叶片属性和虫食格局存在较大的差异:打开阶段的日虫食频度和日虫食率显著高于折叠阶段(F1,32=8.97p=0.0054;F1,32=12.38,p=0.0014)。折叠期叶片主要受到低强度的虫食,打开期叶片虫食则以较大强度的虫食为主。展叶期,昆虫对叶片的取食主要发生在夜间,夜间虫食率显著高于日间虫食率(t=2.51,p=0.017),变化趋势与每日平均虫食率一致。研究结果表明,栲树的展叶阶段可能影响植物的防御对策,栲树叶片在展叶的两个阶段分别采用“防御”和“逃避”两种不同的防御对策以应对植食性昆虫的取食。
     (3)诱导防御是植物用来降低昆虫取食偏好性和取食行为的普遍对策。昆虫的取食可以改变植物的物理属性、营养物质含量和化学防御属性,以降低未来可能受到的虫食伤害。研究结果显示:展叶阶段早期受到思茅新木蛾(Neospastos simaona)幼虫取食的木荷叶片,与对照组幼叶相比,表现出更高的硬度和单宁含量,但含水量和含氮量低于对照组叶片;同时,受早期虫食伤害的叶片在试验期间的虫食率也明显低于对照组。以上研究结果表明,食叶昆虫在展叶早期对木荷叶片的取食减低了叶片的营养含量并提高了叶片的防御能力,降低了叶片作为昆虫食物的质量并影响了昆虫的取食行为,从而降低了昆虫的进一步取食。
     4.叶片的营养和防御属性限制了食叶昆虫的多样性、生长和发育,并影响到食叶昆虫对天敌的防御
     本文通过对福建梅花山及浙江天童常绿阔叶林植物上食叶昆虫的多样性、取食行为、生活史过程和对天敌防御属性的研究,探讨了幼叶质量对食叶昆虫的影响及两者的相互适应关系。研究结果显示:1)昆虫与植物存在时空一致性,春季植物叶片昆虫密度最高,夏季密度虽然有所降低,但仍保持较高水平,进入秋季后由于昆虫密度快速降低,明显低于春、夏两季。2)植物叶片的营养和防御属性会影响到食叶昆虫幼虫的取食偏好性和生长率,以幼叶为食的幼虫生长率高于以成熟叶为食的幼虫(F1,43=13.50,p<0.001)。由于快速展叶植物叶片的高含氮量和含水量,幼虫生长速率与叶片展叶速率呈正相关(r2=0.64,p<0.001)。专食性幼虫的相对生长速率相对于广食性昆虫在以幼叶和成熟叶为食时分别提高了1.8倍和4.2倍。3)幼虫的防御属性与叶片质量相关,生长速度较慢的广食性昆虫由于发育历期长增加了暴露给天敌的风险,对天敌的防御能力比专食性昆虫更强。
     以上研究结果表明,食叶昆虫的多样性、生长和发育受到了叶片质量的限制,食叶昆虫为了获得最优的食物资源其发生的时间要与寄主植物物候保持一致,叶片的营养含量会对幼虫的生长速度和发育历期产生影响,进而影响到食叶昆虫对天敌的防御能力。
     本论文主要创新:
     (1)亚热带常绿阔叶林分布地区不仅气候条件和变化格局不同于温带与热带地区,植物的物种组成和群落结构具有明显的多样性和自身特点,本论文从时间和空间尺度上研究了亚热带常绿阔叶林植物叶片虫食规律。
     (2)研究综合野外跟踪观测、叶属性测定、室内培养、人工控制模拟等多种手段,系统研究了植物与食叶昆虫之间的相互关系,这种综合多种方法的系统研究尚不多见。
     (3)从群落水平总结归纳出亚热带常绿阔叶林植物幼叶对食叶昆虫的防御对策,是对现有植物防御对策理论的发展和补充。
     (4)本论文以常绿阔叶林代表植物木荷和栲树为研究对象,研究植物防御对策的影响因素,从而对亚热带常绿阔叶林植物的防御对策能够较为全面的认识和了解。
     (5)本论文结合植物叶片的营养和防御属性,分析测定食叶昆虫在多样性、取食行为、生长发育等方面与植物的相互适应,能够对亚热带常绿阔叶林种植物和食叶昆虫的关系有更为深刻的理解。
Plants and insect herbivores are integral to the forest ecosystem. They formed close relationships through a long term evolution process. They connect with primary production and consumption and play a major role on nutrient cycling and energy transfer in forest ecosystem. Young leaves are preferred by herbivores because they are more nutritious and tender in comparision with the mature leaves. The majority of damage occurs during the short window when leaves are young and expanding. Although young leaves are ephemeral, they are key for understanding the interaction relationship between plant and herbivore. We ask how the young leaves protect themselves from feeding by leaf-feeding insects?
     Before answering this problem, we need to address the following questions:(1) What are the herbivory patterns of young leaves? (2) Facing herbivory pressure, do young leaves present similar suits of traits that characterize defense sydromes and what are these syndromes? (3) What factors influence plant defense? (4) How do leaf defense syndromes affect insect herbivores? And how the insect herbivores adapt to it?
     Evergreen broad-leaved forest is the regional vegetation of subtropical area in eastern China, and differs from tropical and temperate forests in both species diversity and community structure. To understand the plant-insect interactions, the study was conducted in Mt. Meihuashan, Fujian province (116°45'25"-116°57'24" 25°15'24"-25°35'44") and Tiantong National Forest Park, Zhejiang province (29°48'N,121°47'E). Through field monitoring, traits analyzing, artificial simulating and leaf-feeding insect larvae feeding, herbivory pattern diversity, leaf phenology, leaf traits, insect diversity, larvae growth and defense traits were record. We analyzed the characteristics of leaf herbivory, plant defense syndromes and the effects of plant quality on leaf-feeding insects. The results and conclusions were as follows:
     1. The leaf damage of leaves in evergreen broad-leaved forest is between those in tropical rain forest and temperate deciduous forest. The majority of damage occurs during the short window when leaves are young and expanding.
     To determine the patterns of herbivory in subtropical evergreen broad-leaved forest, the study investigated herbivory rate and frequency on leaves of 76 evergreen plant species in Mt. Meihuashan, Fujian province and Tiantong National Forest Park, Zhejiang province. In this study, herbivory on leaves was 7.21% and herbivory frequency was 32.95%. Leaf herbivory rate in shrub species (7.52%) was significantly higher than that of tree species (7.02%). With herbivory frequency between 10% and 60%, herbivory rates of most species were less than 10%. Herbivory rate on leaves of companion species (7.23%) was higher than dominant species (6.94%), there were no significant difference between them (p>0.05). Over 60% of the lifetime damage occurs during the few weeks that leaves are expanding. More herbivory occurs at lower latitudes. The herbivory rate of young leaves in the same specie decrease along latitudinal gradient.
     The results indicated that, the leaf damage of leaves in evergreen broad-leaved forest is between those in tropical rain forest (11.1%) and deciduous forest (7.1%). Life form and dominance affected herbivory on leaves. Rates of leaf damage reduced with the rising of latitude and altitude gradient. The majority of damage occurs during the short window when leaves are young and expanding.
     2. Young leaves have traits against herbivory that may occur together and increase defense efficiency. The plant defense traits grouped into three syndromes for plants.
     To test whether there are defense syndomes in evergreen broad-leaved forest, we measured defense traits and leaf herbivory on 38 plants in Tiantong, Zhejiang province. Our research showed that most pairwise correlations of traits were complementary. The defense syndromes of these species clusters in evergreen broad-leaved forest are associated with either low nutritional quality, or a balance of higher nutritional quality coupled with defense or escape:(1) The small area species with lower leaf nutrients content and water content might employ'low nutritional quality'strategy to reduce leaf losses. (2) The large area species that leafed out later with higher leaf nutrients content, low chemical defense and toughness but high leaf expansion rate might employ'escape'strategy to reduce insect attack. (3) The species that leafed out with larger area, higher leaf nutrients content and higher defense material and lower leaf expansion rate, might employ'nutrition and defense'strategy to reduce leaf losses.
     The results suggested that, plant defense are composed of multiple traits, they might be organized into coadapted complexes. The defense syndromes of these species clusters in evergreen broad-leaved forest are associated with'low nutritional quality','nutrition and defense'or'escape'.
     3. Defense strategies of young leaves were influenced by ontogenetic stages, expansion stages and early-season insect attack.
     Many factors may influence the defense of young leaves against leaf-feeding insects. We carried out studies on the typical evergreen broad-leaved forest plants—Schima superba and Castanopsis fargesii to understand the effect factors of plant defense.
     (1) Leaf traits influencing plant quality as food and/or shelter for herbivores may change during plant ontogeny, and as a consequence, influence the amount of herbivory that plants receive as they develop. To assess plant ontogenetic differences in foliage quality as food for herbivores, nutritional and defensive traits were evaluated in saplings and reproductive trees of S. superba. Herbivore density was 1.52 times higher and herbivory was significantly greater in saplings than in reproductive trees (p<0.01). Accordingly, concentrations of total foliar phenols were higher in reproductive trees than in saplings (44%-April;29.7%-August), whereas leaf toughness, water and nitrogen concentration did not vary between ontogenetic stages. The results indicated that ontogenetic changes in traits influencing plant defense capability. With increasing defense capability, leaf damage was lower for reproductive trees than for saplings (p<0.01).
     (2) In this study, we measured damage throughout the whole leaf expansion to understand the herbivory pattern and the defense strategy on young leaves of C. fargesii. Leaf herbivory frequency and herbivory rate on young leaves in unfolded stage were significantly higher than in folded stage (F1,32=8.97, p=0.0054;F1,32=12.38, p=0.0014). The herbivory of leaves in folded stage consisted with large amount of low proportion herbivory, while the leaves in folded stage were mainly occupied by high proportion herbivory. Leaves were intensively grazed in the nighttime (t=2.51, p=0.017), which accounted for about 85% of the total leaf herbivory. Young leaves of C.fargesii might follow different strategies in the two expansion stages.
     (3) Induced defense is a principal response of plants to herbivory. Induced responses to herbivory are physical, nutritional, and chemical traits that change in plants following damage or stress, and that reduce the performance of herbivores. The result showed that young leaves that were damaged by Neospastos simaona in the beginning of the leaf expansion had higher toughness and concentration of tannins, but lower water content and nitrogen content when compared with the control leaves. As a result, the damaged shoots had lower rates of herbivory than control shoots. The results may imply that early-season herbivory on the leaves of S. superba reduced the nutritional quality of leaves and increased the amount of secondary compounds, therefore influencing later-season herbivory through the induction of plant responses that may act to reduce plant quality as food for herbivores.
     4. Diversity, growth and defensive traits of caterpillars were correlated with the nutritional and defensive traits of their hosts.
     A survey of leaf-feeding insect larvae feeding on plants was carried out in Tiantong, Zhejiang province. The results showed that:(1) There were temporal and spatial consistence on insects and young leaves. The greatest caterpillar density related to high leaf quality on spring, and maintained high density during summer. Then insect density decreased rapidly form autumn. (2) Growth and defensive traits of caterpillars were correlated with the nutritional and defensive traits of their hosts. Growth rates were faster on young than mature leaves (F1,43=13.50, p<0.001), reflecting the higher nitrogen and water content of the former. Growth was also positively correlated with leaf expansion rate (r2=0.51, p<0.001), because of higher nitrogen and water contents of fast-expanding young leaves. Specialists grew faster than generalists, with average growth of 1.8 times on young leaves and 4.2 on mature leaves. Generalists with low growth rate had more defense traits than specialists. Because slow growth for caterpillars increased their risk to natural enemies, generalists had more defense traits than specialists.
     These results suggested that diversity, growth and defensive traits of caterpillars were limited by leaf quality of host plants. For getting appropriate food resource, it is crucial for caterpillars to be synchronized with their host plants phenology. Growth and larva period of caterpillars were correlated with the nutritional and defensive traits of their hosts, which influenced the defensive traits against natural enemies indirectly.
     Innovations of this PhD dissertation are mainly:
     (1) Evergreen broad-leaved forest is the regional vegetation of subtropical area in eastern China, and differs from tropical and temperate forest in both species composition and community structure. We summarized the patterns of leaf herbivory in subtropical evergreen broad-leaved forest from space and time level.
     (2) Interactions between plant and leaf-feeding insects were studied systemically by field investigating, leaf traits analying, insects rearing and artificial simulating. The research system of multiple methods is rare.
     (3) Defense syndromes of young leaves were studied at the community level. It could be useful to add further insights to defense syndrome theory.
     (4) The factors which affect defense syndromes of young leaves were evaluated in the two typical evergreen broad-leaved forest plants—Schima superba and Castanopsis fargesii. Thus defense syndromes of young leaves in subtropical evergreen broad-leaved forests can be comprehensive known and understanded.
     (5) The relationships how host nutrition and defense traits affect in herbivore diversity, growth rates and defenses against natural enemies were determined. It is capable of deeper understanding on the interaction relationship between plant and leaf feeding insects
引文
1. 国家自然科学基金项目(30570329):亚热带常绿阔叶林昆虫食叶动态及防御机制的研究(2006-2008)
    2. 上海市启明星跟踪项目(10QH1400700):常绿阔叶林食叶昆虫与寄主植物物候同步性格局及其对气候变化的响应(2010-今)
    3.上海市自然科学基金项目(06ZR14129):亚热带常绿阔叶林昆虫食叶动态格局(2006-2008)
    4.上海市崇明专项课题项目(10DZ1200602):崇明岛湿地碳通量监测和管理平台关键技术集成(2010-今)
    1. Liu Z.G., Cai Y.L., Fang Y., Jing J.& Li K. (2010) Induced response in Schima superba:Effects of earlyseason herbivory on leaf traits and subsequent insect attack. African Journal of Biotechnology 9 (51):8731-8738 (SCIE)
    2. Liu Z.G., Cai Y.L.& Li K. (2010) Effects of simulated herbivory on leaf quality and subsequent insect attack during leaf expansion in Schima superba (Theaceae) in subtropical China. Phyton-international Journal of Experimental Botany 79: 81-86 (SCIE)
    3. Liu Z.G., Cai Y.L., Li K.& Guo J.G. (2010) Studies on the leaf size-twig size spectrum of evergreen broad-leaved woody species along an altitudinal gradient. African Journal of Biotechnology 9 (23):3392-3387 (SCIE)
    4. Liu Z.G., Cai Y.L., Li K.& Fang Y. (2011) Correlations between leaf emergence and traits for woody species and the ecological significances in evergreen broad-leaved forests in subtropical China. Polish Journal of Ecology (2011 SCIE Accepted)
    5.刘志国,蔡永立,李恺,杨乐&孙灿(2009)常绿阔叶林中栲树展叶期叶片的虫食格局.植物生态学报33(5):919-925.
    6. 刘志国,蔡永立,李恺&孙灿(2009)鹿角杜鹃展叶期叶片发育与虫食动态.生态环境学报18(4):1443-1448.
    7.刘志国,蔡永立&李恺(2008)亚热常绿阔叶林植物叶-小枝异速生长研究.植物生态学报32(2):363-369.
    8. 刘志国&蔡永立(2007)安徽大别山野生藤本植物区系与生活型分析.亚热带植物科学36(1):5-9.
    9. 孙灿,蔡永立,刘志国&杨乐(2010)浙江天童亚热带常绿阔叶林栲树叶片发育动态.农村生态环境学报26(3):215-219.
    10.孙灿,蔡永立&刘志国(2010)浙江天童常绿阔叶林栲树爆芽物候格局研究.武汉植物学研究28(2):179-185.
    11.杨乐,蔡永立,刘志国&孙灿(2009)浙江天童常绿阔叶林主要木本植物爆芽研究.中南林业科技大学学报29(3):38-44.
    12.郭纪光,蔡永立,罗坤,左俊杰,刘志国&倪静雪(2009)基于目标种保护的生态廊道的构建——以崇明岛为例.生态学杂志28(8):1668-1672.
    13.叶倩,刘志国,蔡永立,陈凌,王宏伟&田玉鹏(2008)福建梅花山57种常绿树叶片叶绿素特征分析.亚热带植物科学37(2):11-16.
    14.陈庆,蔡永立,刘志国,左俊杰,李华,杨乐&罗坤(2007)三汉河湿地植物和鸟类资源现状及保护对策研究.安徽农学通报13(5):43-45.
    15.田玉鹏,蔡永立,王宏伟,刘志国,丘云兴&陈兆凤(2007)福建梅花山51种常绿阔叶植物叶片寿命特征及其影响因素.业热带植物科学36(2):4-8.
    Aide T.M. (1991) Synchronous leaf production and herbivory in juveniles of Gustavia superba. Oecologia 88:511-514.
    Aide T.M.(1992)Dry season leaf production:an escape from herbivory. Biotropica 24: 532-537.
    Aide T.M. (1993) Patterns of leaf development and herbivory in a tropical understory community. Ecology 74 (2):455-466.
    Aide T.M.& Londono E.C. (1989) The effects of rapid leaf expansion on the growth and survivorship of a lepidopteran herbivore. Oikos 55:66-70.
    Adler F.R.& Karban R. (1994) Defended fortesses or moving targets. Another model of induceible defenses inspired by military metaphors. American naturalist 144: 813-832.
    Agrawal A.A. (1998) Induced responses to herbivory and increased plant performance. Science 279:1201-1202.
    Agrawal A. A. (1999) Induced responses to herbivory in wild radish:effects on several herbivores and plant fitness. Ecology 80:1713-1723.
    Agrawal A.A. (2000) Benefits and costs of induced plant defense for Lepidium virginicum (Brassicaceae). Ecology 81:1804-1813.
    Agrawal A. A. (2007) Macroevoltion of paint defense strategies. Trends in Ecology and Evolution 22:103-109.
    Agrawal A.A.& Karban R. (1999) Why induced defenses may be favored over constitutive strategies in plants. Princeton Univ. Press, USA.
    Agrawal A.A.& Fishbein M. (2006) Plant defense syndromes. Ecology 87:132-149.
    Andrew N.R.& Hughes L. (2005) Arthropod community structure along a latitudinal gradient:Implications for future impacts of climate change. Austral Ecology 30: 281-297.
    Arguedas T.B., Horton M.W., Coley P.D., Lokvam J.& Rachel A.W. (2006) Contrasting mechanisms of secondary metabolite accumulation during leaf development in two tropical trees with defferent leaf expansion strategies. Oecologia 149:91-100.
    Awmack C.S.& Leather S. R. (2002) Host plant quality and fecundity in herbivorous insects. Annual Review of Entomology 47:817-844.
    Baldwin I.T. (1988) The alkaloidal response of wild tobacco to real and simulated herbivory. Oecologia 77:378-381.
    Basset Y. (2001) Communities of insect herbivores foraging on saplings versus mature trees of Pouruma bicolor (Cecropiaceae) in Panama. Oecologia 129:253-260.
    Bazzaz F.A., Chiariello N.R., Coley P. D.& Pitelka L.F. (1987) A llocating resources to reproduction and defenses. Bioscience 37:57-58.
    Belsky A.J. (1986) Does herbivory benefit plants? A review of the evidence. The American Naturalist 127:870-892.
    Benrey B.& Denno R.F. (1997) The slow-growth high-mortality hypothesis:a test using the cabbage butterfly. Ecology 78:987-999.
    Berembaum M.R. (1995) Turnabout is fair play:secondary roles for primary compounds. Journal of Chemical Ecology 21:925-940.
    Berenbaum M.R. (2001) Chemical mediation of coevolution:phylogenetic evidence for Apiaceae and associates. Annals of the Missouri Botanical Garden 88:45-59.
    Berenbaum M.R., Nitao J.K.& Zangerl A.R. (1991) Adaptative significance of furanocoumarin diversity in Pastinaca sativa (Apiaceae). Journal of Chemical Ecology 17:207-215.
    Bergstom R., Skaipe, C.& Danell, K. (2000) Plant responses and herbivory following simulated browsing and stem cutting of Combretum apiculatum. Journal of Vegetation Science 11:409-414.
    Bigger D.S.& Marvier M.A. (1998) How different would a world without herbivory be? A search for generality in ecology. Integrative Biology 1:60-67.
    Boege K. (2004) Induced response in three tropical dry forest plant species-direct and indirect effects on herbivory. Oikos 107:541-548.
    Boege K. (2005) Herbivore attack in Casearia nitida influenced by plant ontogenetic variation in foliage quality and plant architecture. Oecologia 143:117-125
    Boege K.& Marquis R.J. (2005) Facing herbivory as you grow up:the ontogeny of resistance in plants. Trends in Ecology and Evolution 20:441-448.
    Bowers M.D.& Stamp N.E. (1993) Effects of plant age, genotype and herbivory on Plantago performance and chemistry. Ecology 76:1778-1791.
    Berenbaum M.R., Nitao J.K., Zangerl A.R. (1991) Adaptative significance of furanocoumarin diversity in Pastinaca sativa (Apiaceae). Journal of Chemical Ecology 17:207-215.
    Brenes-Arguedas T., Horton M.W., Coley P.D., Lokvam J., Waddell R.A., Meizoso-O'Meara B.E.& Kursar T.A. (2006) Contrasting mechanisms of secondary metabolite accumulation during leaf development in two tropical in two tropical tree species with different leaf expansion strategies. Oecologia 149: 91-100.
    Bryant J.P., Chapin Ⅲ F.S.& Klein D.R. (1983) Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40:357-368.
    Bryant J. P.& Julkunen-Tiitto R. (1995) Ontogenetic development of chemical defense by seedling resin birch:energy cost of defense production. Journal of Chemical Ecology 21:883-896.
    Bryant J. P.& Wieland G. D. (1983) Pinosylvin methyl ether deters snowshoe hare feeding on green alder. Science 222:1023-1025.
    Bustamante R.O., Chacon P.& Niemeyer H.M. (2006) Patterns of chemical defences in plants:an analysis of the vascular flora of Chile. Chemoecology 16,145-151.
    Craine J. (2009) Resource strategies of wild plants. Princeton University Press, Princeton, USA.
    Carson W.P.& Root R.B. (2000) Herbivory and plant species coexistence:community regulation by an outbreaking phytophagous insect. Ecological Monographs 70: 73-99.
    Chase T.N., Pielke R.A., Kittel T.G., Nemani R.R.& Running S.W. (2000) Simulated impacts of historical land cover changes ion globe chimate in northern winter. Climate Dynamics 16:2-3.
    Clausen T.P, Reichardt P.B., Bryant J.P.& Provenza F. (1992) Condensed tannins in plant defense:a perspective on classical theroies. Plenum Press, New York, USA.
    Coley P.D. (1983) Herbivory and defense characteristics of tree species in a lowland tropical forest. Ecological Monographs 53:209-233.
    Coley P.D. (1985) Resouce availability and plant antiherbivore defense. Science 230: 895-899.
    Coley P.D. (1988) Effects of plant growth rate and leaf lifetime on the amount and type of anti-herbivore defense. Oecologia 74:31-536.
    Coley P.D.& Aide T.M. (1991) Comparison of herbivory and plant defenses in temperate and tropical broad-leaved forests. Wiley& Sons, New York, USA.
    Coley P.D.& Barone J.A. (1996) Herbivory and plant defenses in tropical forests. Annual Review Ecology System 27:305-335.
    Coley P.D., Bryant J.P.& Chapin F.S. (1985) Resource availability and plant antiherbivore defense. Science 230 (4728):895-899.
    Coley P.D.& Kursar T.A. (1996) Anti-herbivore defenses of young tropical leaves: physiological constrains and ecological tradeoffs. Chapman & Hall, New York, USA.
    Coley P.D.& Kursar T.A. (1997) Anti-herbivore defenses of young tropical leaves: physiological constraints and ecological trade-offs. Chapman & Hall, New York, USA.
    Coley P.D., Lokvam J.& Rudolph K. (2005) Divergent defensive strategies of young leaves in two species of Inga. Ecology 86:2633-2643.
    Coley P.D., Bateman M.L.& Kursar T.A. (2006) The effects of plant quality on caterpillar growth and defense against natural enemies. Oikos 115:219-228.
    Close D.C.& McArthur C. (2002) Rethinking the carbon-nutrient balance hypothesis-is herbivory the cause or a consequence? Oikos 99:166-172.
    Cooper S.M., Owen-Smith N.& Bryant J.P. (1988) Foliage acceptability to browsing ruminants in relation to seasonal changes in the leaf chemistry of wood plants in a South African savanna. Oecologia 75:336-342.
    Cornelissen J.H.C.(1993)Growth, morphology and leaf characteristics after simulated herbivory in Chinese subtropical evergreen saplings. Ecological Research 8: 143-150.
    Cornelissen T.G.& Fernandes G.W. (2001) Induced defenses in the neotropical tree Bauhinia brevipes(Vog.)to herbivory:effects of damage-induced changes on leaf quality and insect attack. Tree 15:236-241.
    Danilo M.& Marco A.B. (2011) Defense syndrimes against herbivory in a cerrado plant community. Plant Ecology (Online first)
    Dajoz R. (2000) Insects and Forests:The Role and Diversity of Insects in the Forest Environment. Lavoisier, Paris.
    Dangerfield J.M.& Modukanele B. (1996) Overcompensation by Acacia erubescens in response to simulated browsing. Journal of Tropical Ecology 12:905-908.
    Del-Val E.& Dirzo R.(2003)Does ontogeny cause changes in the defensive strategies of the myrmecophyte Cecropia peltata? Plant Ecology 169:35-41.
    Dicke M.& Agrawal A.A. (2003) Plant talk, but are they deaf? Trends in plant science 8:403-405.
    Dick M., Agrawal A. A.& Bruin J. (2003) Multitrophic effects of herbivore-induced plant volatiles in an evolutionary context. Entomologia Experimentalis Et Applicata 97:237-249.
    Domi'nguez C.A., Dirzo R.& Bullock S.H. (1989) On the function of floral nectar in Croton suberosus Euphorbiaceae. Oikos 56:109-114.
    Dudt J.F.& Shure D.J. (1994) The influence of light and nutrients on foliar phenolics and insect herbivory. Ecology 75:86-98.
    Dyer L.A. (1997) Effectiveness of caterpillar defenses against three species of invertebrate predators. Journal of Research on the Lepidoptera 34:48-68.
    Ehrlich P.R.& Raven P.H. (1964) Butterflies and plants:a study in coevolution. Evolution 18:586-608.
    Ericsson A., Hellqvist C., Langstrom B., Larsson S.& Tenow O. (1985) Effects on growth of simulated and induced shoot pruning by Tomicus piniperda as related to carbohydrate and nitrogen dynamics in Scots pine. Journal of Applied Ecology 22:105-124.
    Ernest K.A. (1994) Resistance of creosote bush to mammalian herbivory:temporal consistency and browsing-induced changes. Ecology 75:1684-1692.
    Faeth S.H. (1986) Indirect interactions between temporarily separated herbivores mediated by the host plant. Ecology 67:479-494.
    Feener D.H.& Schupp E.E. (1995) Effect of tree fall gaps on the patchiness and species richness of neotropical ant assemblages. Ecology 31:321-328.
    Feeny P.P. (1968) Effect of oak leaf tannins on larval growth of the winter moth Operopthera brumata. Journal of Insect Physiology 14:805-807.
    Feeny P.P. (1970) Seasonal changes in Oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology 51 (4):565-581.
    Feeny P.P. (1976) Plant apparency and chemical defense. Plenum Press, New York, USA.
    Feeny P.P. (1992) The evolution of chemical ccology:contributions from the study of herbivorous insects. Academic Press.Orlando, Florida, USA.
    Fenner M., Hanley M. E.& Lawrence, R (1999) Comparison of seedling and adult palatabilityin annual and perennial plants. Functional Ecology 13:546-551.
    Fine P.V.A., Mesones I.& Coley P.D. (2004) Herbivores promote habitat specialization by trees in Amazonian forests. Science 305:663-665
    Fine P.V.A., Muller Z.J., Mesones I., Irazuzta S., Appel H.M., Henry M., Stevens H., Saaksjarvi I., Schultz J.C.& Coley P.D. (2006) The growth-defense trade-off and habitat specialization by plants in Amazonian forests. Ecology 87:S150-S162.
    Forkner R.E., Marquis R.J.& Lill J.T. (2004) Condensed tannins as anti-herbivore defences in leaf-chewing herbivore communities of Quercus. Ecological Entomology 29:174-187.
    Fowler S.V. (1984) Foliage value, apparency and defense investment in birch seedlings and trees. Oecologia 62:387-392.
    Fowler S.V. (1984) Foliage value, apparency and defence investment in birch seedlings and trees. Oecologia 62:387-392.
    Fritz R.S., Hochwender C.G., Lewkiewicz D.A., Bothwell S.& Orians C.M. (2001) Seedling herbivory by slugs in a willow hybrid system:developmental changes in damage, chemical defense, and plant performance. Oecologia 129:87-97.
    Futuyma D.J. (2000) Some current approaches to the evolution of plant herbivore interactions. Plant Species Biology 15:1-9.
    Gentry G.L.& Dyer L.A. (2002) On the conditional nature of Neotropical caterpillar defenses against their natural enemies. Ecology 83:3108-3119.
    Gershenzon J.& M urtagh G. J. (1993) A bsence of rapid terpene turnover in several diverse species of terpene2ac2cumulating plants. Oecologia 96:583-592.
    Givnish T.J. (1988) Adaptation to sun and shade:a whole-plant perspective. In:Evans JR, Caemmerer SV, Adams WW eds. Ecology of Photosynthesis in Sun and Shade Ⅲ. Melbourne, CSIRO, AUS.
    Gilbert G.S. (1995) Rainforest plant diseases:the canopy understory connection. Selbyana 16:75-77.
    Gilbert L.E.& Singer M.C. (1975) Butterfly ecology. Annual Review of Ecology Ecolution and Systemmatics 6:365-97.
    Gross P. (1993) Insect behavioral and morphological defenses against parasitoids. Annual Review of Entomology 38:251-273.
    Hagerman A.E. (1987) Radial diffusion method for determining tannin in plant extracts. Journal of Chemical Ecology 13:437-449.
    Hagerman A.E.& Robbins C.T. (1993) Specificity of tannin-binding salivary proteins relative to diet selection by maramals. Canadian Journal of Zoology 71: 628-633.
    Hanley M.E., Lamont B.B, Fairbanks M.M.& Rafferty C.M. (2007) Plant structural traits and their role in anti-herbivore defence. Perspectives in Plant Ecology Evolution Systematics 8:157-178.
    Hartley S.E & Jones C.G. (1997) Plant chemistry and herbivory, or why the world is green. In:Crawley M J. Blackwell Science Ltd., Oxford, UK.
    Hartley S.E.& Jones T.H. (2003) Plant diversity and insect herbivores:Effects of environmental change in contrasting model systems. Oikos 101:6-17.
    Hattori K., Ishida T.A., Miki K., Suzuki M.& Kimura T. (2004) Differences in response to simulated herbivory between Quercus crispula and Quercus dentate. Ecological Research 19:323-329.
    Haukioja E.& Neuvonen S. (1985a) Induced long-term resistance of birch foliage against defoliators:defensive or incidental. Ecology 66:1303-1308.
    Haukioja E.& Neuvonen S. (1985b) The relationship between size and reproductive potential in male and female Epirrita autumnata(Lep., Geometridae). Ecological Entomology 10:267-270.
    Haukioja E., Ossipov V., Koricheva J., Honkanen T. Larsson S & Lempa K. (1998) Biosynthetic origin of carbon-based secondary compounds:cause of variable responses of woody plants to fertilization? Chemoecology 8:133-139.
    Heil M. Koch T., Hilpert A., Fiala B., Wilhelm B.& Linsenmair K.E. (2001) Extrafloral nectar production of the ant-associated plant, Macaranga tanarius, is an induced, indirect defensive response elicited by jasmonic acid. Proceedings of National Academy of Science of the United States of America 98:1083-1088.
    Herms D.A.& Mattson W.J. (1992) The dilemma of plants:to grow or defend. Quarterly Review of Biology 67:283-335.
    Herrera C.M.& Pellmyr O. (2002) Plant-Animal Interactions-An Evolutionary Approach. Blackwell Science Ltd., Oxford, UK.
    Hespenheide H.A.& Hartshorn G.S. (1994) La Selva:ecology and natural history of a Neotropical rain forest Chicago/London:Univ. Chicago Press, USA.
    Holton M.K., Lindroth R.L.& Nordheim E.V. (2003) Foliar quality influences tree-herbivore-parasitoid interactions:effects of elevated CO2, O3, and plant genotype. Oecologia 137:233-244.
    Honkanen T., Haukioja E.& Suomela J. (1994) Effects of simulated defoliation and debudding on needle and shoot growth in Scots pine Pinus sylvestris implications of plant source-sink relationships for plant-herbivore studies. Functional Ecology 8:631-639.
    Jachmann H. (1989) Food selection by elephants in the Miobbo biome, in relation to leaf chemistry. Biochemical Systematics and Ecology 17:15-24.
    Jones C.G.& Hartley S.E. (1999) A protein competition model of phenolic allocation. Oikos 86:27-44.
    Jurik T.W.& Chabot B.F. (1986) Leaf dynamics and profitability in wild strawberries. Oecologia 69:296-304.
    Karban R.& Baldwin I.T. (1997) Induced Responses to Herbivory. University of Chicago Press, Chicago, USA.
    Karban R.& Thaler J. (1999) Plant phase change and resistance to herbivory. Ecology 80:510-517
    Karowe D.N(1989) Differential effect of tannic acid on two tree-feeding Lepidoptera: implications for theories of plant antiherbivore chemistry. Oecologia 80: 507-512.
    Kazda M., Salzer J.& Reiter I. (2000) Photosynthetic capacity in relation to N in the canopy of a Quercus robur, Fraxinus angustifolia and Tilia cordata flood plain forest. Tree Physiology 20:1029-1037.
    Keeling C.I.& Bohlmann J. (2006) Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. New phytologist 170:657-675.
    Kranthi S., Krathi K.R.& Wanjari R.R. (2002) Influence of semilooper damage on cotton host-plant resistance to Helicoverpa armigera (Hub). Plant science 164: 157-163.
    Kruess A., Eber. S, Kluth. S.& Tscharntke T. (2004) Plant-Insect-Pathogen interactions on local and regional scales. Ecological Studies 173:155-173.
    Kudo G. (1996) Herbivory pattern and induced responses to simulated herbivory in Quercus mongolica var. grosseserrta. Ecological Research 11:283-289.
    Kursar T.A.& Coley P.D. (2003) Convergence in defense syndromes of young leaves in tropical rainforsts. Biochemical Systematics and Ecology 31:929-949.
    Kursar T.A., Coley P.D., Corley D.G., Gupta M.B., Harrison L.A., Ortega-Barria E.& Windsor D.M. (1999) Ecologically guided bioprospecting in Panama. Journal of Pharmaceutical Biology 37:114-126.
    Langenheim J.H., Macedo C.A., Ross M.K.& Stubblebine W.H. (1986) Leaf development in the tropical leguminous tree Copaifera in relation to microlepidopteran herbivory. Biochemical Systematics and Ecology 14:51-59.
    Leather S.R. (2001) Herbivory, phenology, morphology and the expression of sex in trees:who is in the driver's seat? Oikos 90:194-196.
    Leather S.R.& Awmack C.S. (2002) Does varation in offspring size reflect strength of preference performance index in herbivorous insects. Oikos 96:192-195.
    Lehtila K.& Strauss S.Y. (1999) Effects of foliar herbivory on male and female reproductive traits of wild radish, Raphanus raphanistrum. Ecology 80:116-124.
    Lokvam J.& Kursar T.A. (2005) Dovergence in structure and activity of phenolic defenses in young leaves of two co-occurring Inga species. Journal of Chemical Ecology 31:2563-2580.
    Lowman M.D. (1982) Seasonal variation in insect abundance among three Australian rain forests, with particular reference to phytophagous types. Australian Journal of Ecology 7:353-361.
    Lowman M.D. (1985) Temporal and spatial variability in insect grazing of the canopies of five Australian rainforest tree species. Australian Journal of Ecology. 10:7-24.
    Lowman M.D. (1992a) Herbivory in Australian rain forests, with particular reference to the canopies of Doryphora sassafras(Monimiaceae). Biotropica 24:263-272.
    Lowman M.D. (1992b) Leaf growth dynamics and herbivory in five specoes of Australian rain forest canopy trees. Journal of Ecology 80:433-447.
    Lowman M.D.& Box J.D. (1983) Variation in leaf toughness and phenolic content among five species of Australian rain forest trees. Australian Journal of Ecology, 8:17-25.
    Lowman M.D.& Heatwole H. (1987) The impact of defoliating insects on the growth of eucalypt sapling. Australian Journal of Ecology 12:175-181.
    Macedo C.A.& Langenheim J.H. (1989) Microlepidopeteran herbivory in relation to leaf sesquiterpens in Copaifera langsdorfii adult trees and their seedling progeny in a Brazilian woodland. Biochemical Systematics and Ecology 17:217-224.
    Martin J.S.& Martin M.M. (1982) Tannin assays in ecological studies:lack of correlation between phenolics, proanthocyanidins and protein-precipitating constituents in mature and foliage. Oecologia 54:205-211.
    Mattson J.W.(1980)Herbivory in relation to plant nitrogen content. Annual Review of Ecology and Systematics 11:119-161.
    Marquis R.J. (1984) Leaf herbivores decrease fitness of a tropical plant. Science 226: 537-539.
    Marquis R.J.(1991)Herbivore fauna of Piper(Piperaceae)in a Costa Rican wet forest: diversity, specificity, and impact. John Wiley & Sons, London, UK
    Marquis R.J.& Braker H.E. (1994) Plantherbivore interactions:diversity, specificity, and impact. Chicago/London:Univ. Chicago Press, USA.
    Martinsen G.D., Driebe E.M.& Whitham T.G. (1998) Indirect interactions mediated by changing plant chemistry:beaver browsing benefits beetles. Ecology 79:192-200
    Mckey D.D. (1992) Interaction between ants and leguminous plants. A dvances in L egume Biology. Missouri Botanical Gardens, USA.
    McNaughton S.J.(1986)On plants and herbivores. American Naturalist 128:765-770.
    Mendoza A., Pinero D.& Sarukhan J. (1987) Effects of experimental defoliation on growth, reproduction and survival of Astrocaryum mexicanum. Journal of Ecology 75:545-554.
    Meyer G.A.& Whitlow T.H. (1992) Effects of leaf and sap feeding insects on photosynthetic rates of goldenrod. Oecologia 12:480^489.
    Miller J.S.& Feeny P. P. (1983) Effects of benzylisoquinoline alkaloids on the larvae of polyphagous Lepidoptera. Oecologia 85:332-339.
    Moles A.T.& Westoby M.(2000)Do small leaves expand faster than large leaves, and do shorter expansion times reduce herbivore damage? Oikos 90:517-524.
    Mole S., Rogler J.C., Morell C.J.& Butler L.G. (1990) Herbivore growth reduction by tannins:use of Waldbauer ratio techniques and manipulation of salivary protein production to elucidate mechanisms of action. Biochemical Systematics and Ecology 18:183-97.
    Murali K.S.& Sukumar R.(1993) Leaf flushing phenology and herbivory in a tropical dry deciduous forest, southern India. Oecologia 94:114-119.
    Murakami M., Yoshida K., Hara H.& Toda M. (2005) Spatio-temporal variation in Lepidopteran larval assemblages associated with oak, Quercus crispula:the importance of leaf quality. Ecological Entomology 30:521-531.
    Myers J.H.& Williams K.S. (1987) Lack of short or long term inducible defenses in the red alder-western tent caterpillar system. Oikos 48:73-78.
    O'Donnell D.J. (1996) Ethylene as a signal mediating the wound response of tomato plants. Science 274:1914-1917.
    Ohmart C.P., Stewart L.G.& Thomas J.R. (1985) Effects of food quality, particularly nitrogen concentrations, of Eucalyptus blakelyi foliage on the growth of Paropsis atomaria larvae (Coleoptera:Chrysomelidae). Oecologia 65:543-549.
    Osier T.L.& Lindroth R.L. (2001) Effects of genotype, nutrient availability and defoliation on aspen phytochemistry and insect performance. Journal of Chemical Ecology 27:1289-1313.
    Pavia H., Toth G.B.& Aberg P. (2002) Optimal defense theory:Elasticity analysis as a tool to predict intraplant variation in defense. Ecology 83:891-897.
    Pellmyr O.& Leebens-Mack J. (2000) Reversal of mutualism as a mechanism for adaptive radiation in yucca moths. American Naturalist 156:60-76.
    Piene, H.& Percy, K.E. (1984) Changes in needle morphology, anatomy, and mineral content during the recovery of protected balsam fir trees initially defoliated by the spruce budworm. Canadian Journal of Forest Research 14:238-245.
    Pimentel D. (1988) Herbivore population feeding pressure on plant hosts:feedback evolution and host conservation. Oikos 53:289-302.
    Prince P.W., Bouton C.E., Gross P., McPheron B.A., Thompson J.N.,& Weis A.E. (1980) Interactions among three trophic levels:influence of plants on interactions between insect herbivores and natural enemies. Annual Review of Ecology System 11:41-65.
    Raffa K.F. (1991) Induced defensive reactions in conifer-bark beetle system In: Tallamy DW. Academic Press, New York, USA.
    R DevelopmentCore Team (2009) R:a language and environment for statistical computing. Version 2.10.1. R Foundation for Statiscal Computing, Vienna. http://www.r-project.org.
    Rausher M.D. (1981) Host plant selection by Battus philenor butterflies:the roles of predation, nutrition, and plant chemistry. Ecological Monographs 51:1-20.
    Rausher M.D. (2001)Coevolution and plant resistance to natural enemies. Nature 411: 857-864.
    Rausher M. D., Iwao K., Simms E.L., Ohsaki N.& Hall D. (1993) Induced resistance in Ipomoea purpurea. Ecology 74:20-29.
    Rehr S.S., Feeny P.P.& Jazen D.H. (1973) Chemical defence in Central American non-antacacias.Journal of Ecology 42:405-416.
    Reich P.B., Uhl C., Walters M.B.& Ellsworth D.S. (1991) Leaf lifespan as a determinant of lef structure and function among 23 Amazonian tree species. Oecologia86:16-24.
    Retuerto R.,Fernandez-Lema B.& Obeso J.R. (2006) Changes in photochemical efficiency in response to herbivory and experimental defoliation in the dioecious tree Ilex aquilium. International Journal of Plant Science 167 (2):279-289.
    Ribeiro S.P. (2003) Insect herbivores in the canopies of savannas and rainforests. Cambridge University Press, Cambridge, UK.
    Robinson S.K.& Holmes R.T. (1984) Effects of plant species and foliage structure on the foraging behavior of forest birds. Auk 101:672-684.
    Rosati A., Esparza G., De Jong T.M.& Pearcy R.W. (1999) Influence of canopy light environment and N availability on leaf photosynthetic characteristics and photosynthetic nitrogen-use efficiency of field-grown nectarine trees. Tree Physiology 19:173-180.
    Rosenthal G.A.& Berenbaum M.R. (1991) Herbivores:their interactions with secondary plant metabolites,2nd ed. Academic Press, USA.
    Rudgers, J.A., Strauss S.Y.& Wendel J.F. (2004) Trade-offs among anti-herbivore resistance traits:insights from Gossypieae (Malvaceae). American Journal of Botany 91:871-880.
    Schowalter, T.D. (2000) Insect Ecology:An Ecosystem Approach. Academic Press, San Diego, USA.
    Schultz. J.C. (1989) Tannin-insect interactions. Plenum Press, New York, USA.
    Schultz J.C.& Baldwin I.T. (1982) Oak leaf quality declines in response to defoliation by moth larve. Science 80:149-151.
    Schupp E.W.& Feener D.H. (1991) Phylogeny, lifeform and habitat dependence of ant-defended plants in a Panamanian forest. Oxford University Press, Oxford,UK.
    Scriber J.M. (1977) Limiting effects of low leaf-water content on the nitrogen utilization, energy budget, and larval growth of Hyalophora cecropia (Lepidoptera: Saturniidae). Oecologia 28:269-287.
    Scriber J.M.& Slansky F.J. (1981) The nutritional ecology of immature insects. Annual Review of Entomology 26:183-211.
    Scriber J.M.& Ayres M.P. (1988) Leaf chemistry as a defense against insects. ILI Atlas of Science, Plant and Animal Section 1:117-123.
    Silvertown J.& Dodd M. (1996) Comparing plants and connecting traits. Philosophical Transactions:Biological Sciences 351:1233-1239.
    Smith C.W., McCarthy J.C., Altamiro T.P., Lege K.E., Schuster M.F., Phillips J.R.& Lopez J.D. (1992) Condensed tannins in cotton and bollworm-budworm (Lepidoptera:Noctuidae) resistance. Journal of Economic Entomology 85: 2211-2217.
    Stapley L. (1998) The interaction of thorns and symbiotic ants as an effective defence mechanism of swollen-thorn acacias. Oecologia 115:401-405.
    Steppuhn A.& Baldwin I.T. (2007) Resistance management in a native plant:nicotine prevents herbivores from compensating for plant protease inhibitors. Ecology Letters 10:499-511.
    Steward, J.L.& Keeler, K.H. (1988) Are there trade-offs among antiherbivore defenses in Ipomoea (Convolvulaceae)? Oikos 53:79-86
    Stinchcombe J.R. (2002) Can tolerance traits impose selection on herbivores. Evolutionary Ecology 15:595-602.
    Strauss S.Y.& Agrawal A.A. (1999) The ecology and evolution of plant tolerance to herbivory. Trends in Ecology and Evolution 14:179-185.
    Swihart R.K.& Bryant J.P.(2001) Importance of biogeography and ontogeny of woody plants in winter herbivory by mammals. Journal of Mammalogy 82: 1-21.
    Tang J.Y., Zielinski R.E., Zangerl A.R., Crofts A.R., Berenbaum M.R.& Delucia E.H. (2006) The differential effects of herbivory by first and fourth instats of Trichoplusia ni (Lepidoptera:Noctuidae) on phptosynthesis in Arbidopsis thaliana. Journal of experimental Botany 57 (3):527-536.
    ter Braak C.J.F.& Smilauer P. (2002) Canoco reference manual and CanoDraw for Windows:user's guide:Software for Canonica Community Ordination (version 4.5). Microcomputer Power. Ithaca, New York, USA.
    Thomas D.W., Samson C.& Bergeron J.M.(1988)Metabolic costs associated with the ingestion of plant phenolics by Microtus pennsylvanicus. Journal of Mammalogy 69 (3):512-515.
    Thompson J.N. (1999) The evolution of species interactions. Science 284:2116-2118.
    Tiffin P. (2000) Are tolerance, avoidance, and antibiosis evolutionarily and ecologically equivalent response of plants to herbivores. American Naturalist, 155:128-138.
    Traw M.B.& Dawson T.E. (2002) Reduced oerformance of two specialist herbivores (Lepidoptera:pieridae, Coleoptera chrysomelidae) on new leaves of damaged balck mustard plants. Environmental Entomology 31 (4):714-722.
    Valentine J.F.& Heck K.L. (2001) The role of leaf nitrogen concentration in determining turtlegrass (Thalassia testudinum) grazing by a generalized herbivore in the northeastern Gulf of Mexico. Journal of Experimental Marine Biology and Ecology 258:65-86.
    van Alstyne K.L. (1988) Herbivore grazing increases polyphenolic defenses in the intertidal brown algae Fucus distichus. Ecology 69:655-663.
    van Asch M.& Visser M.E. (2007) Henology of forest caterpillar and their host tree trees:the importance of synchrony. Annual Review of Entomology 53:37-55.
    van Bael S.A., Brawn J.D., Robinson S.K. (2003) Birds defend trees from herbivores in a Neotropical forest canopy. Proceedings of the National Academy of Sciences of the United States of America 100:8304-8307.
    van der Meijden E. (1996) Plant defence, an evolutionary dilemma:contrasting effect of (specialist and generalist) herbivores and natural enemies. Entomologia Experimentalis et Applicata 80:307-310.
    van der Meijden E., Wijin M.& Verkaar H.J.(1988)Defense and regrowth, alternative plant strategies in the struggle against herbivores. Oikos 51:355-363
    Wagner M.R. (1988) Induced defenses in ponderosa pine against defoliating insects. In:Mattson, W. J., Levieux, J. and Bernard-Dagan, C. (eds), Mechanisms of woody plant defenses against insects. Search for pattern. Springer Verlag, pp. 141-155.
    Waltz A.M.& Whitham T.G. (1997) Plant development affects arthropod communities: opposing impacts of species removal. Ecology 78:2133-2144.
    Weiner J. (2004) Allocation, plasticity and allometry in plants. Perspectives in Plant Ecology Evolution and Systematics 6:207-215.
    Whalley P.& Jarzembowski E.A. (1981) A new assessment of Rhyntella, the earliest known insect, from the Devonian of Rhynie, Scotland. Nature 11:291-317.
    Whelan C.J. (2001) Foliage structure influences foraging of insectivorous forest birds: an experimental study. Ecology 82:219-231.
    Wirf L. (2006) Using simulated herbivory to predict the efficacy of biocontrol agent: the effect of manual defoliation and Macaria pallidata Warren (Lepidoptera: Geometridae) herbivory on Mimosa pigra seedings. Australian journal of entomology 45:324-326.
    Wold E.N.& Marquis R.J. (1997) Induced defense in white oak:effects on herbivores and consequences for the plant. Ecology 78:1356-1369.
    Wolf A., Kozlov M.V.& Callaghan T.V. (2008) Impact of non-outbreak Insect damage on vegetation in northern Europe will be greater than expected during a changing Climate. Climatic Change 87 (1/2):91-106.
    Young T.P., Stanton M.L.& Christian C.E. (2003) Effects of natural and simulated herbivory on spine lengths of Acacia drepanolobium in Kenya. Oikos 101: 171-179.
    Zangerl A.R. (2003) Evolution of induced plant response to herbivores. Basic and applied Ecology 4:91-103.
    Zangerl A.R.& Bazzaz F.A. (1992) Theory and pattern in plant defense allocation. University of Chicago Press, Chicago, USA.
    Zangerl A.R.& Nitao J.K. (1998) Optimal defense, kin conflict and the distribution of furanocoumarins among offspring of wild parsnip. Evolutionary Ecology 12: 443-457.
    蔡志全&曹坤芳(2002)热带植物幼叶抗虫食防卫方式研究的现状与进展.广西植物22(5):474-480.
    江红,蔡永立,李恺,王红&王亮(2005)浙江天童常绿阔叶林石栎叶片昆虫虫食状类型和虫食强度研究.生态学杂志24:989-993.
    李镇宇&王燕(1999)赤松毛虫危害对小油松针叶内物质含量的影响.北京林业大学学报21(5):41-45.
    刘勇,陈巨莲,倪汉祥&胡萃(2001)茉莉酸诱导小麦幼苗对麦蚜取食行为的影响.植物保护学报28(4):325-330.
    刘志国,蔡永立,李恺,杨乐&孙灿(2009) 常绿阔叶林中栲树展叶期叶片的虫食格局.植物生态学报33(5):919-925.
    娄永根&程家安.(1997)植物的诱导抗虫性.昆虫学报40(3):320-331.
    汤德良,王武刚&谭维嘉(1997)棉铃虫为害诱导棉花内物质含量变化.昆虫学报40(3):332-333.
    钦俊德(1987)昆虫与植物之间的关系.科学出版社,北京.
    钦俊德(1996)昆虫月寄主植物的适应性及协调进化.生物学通报31:1-3.
    钦俊德&王琛柱(2001)论昆虫与植物的相互作用和进化的关系.昆虫学报,44(3):360-65.
    宋永昌&王祥荣(1995)浙江天童国家森林公园的植被和区系.上海科学技术文献出版社,上海.
    田玉鹏,蔡永立,王宏伟,刘志国,丘云兴&陈兆凤(2007)福建梅花山51种常绿阔叶植物叶片寿命特征及其影响因素.亚热带植物科学36(2):4-8.
    王宏伟(2007)亚热带常绿阔叶林植物叶片虫食及其影响因素研究.博士论文,华东师范大学,上海.
    王宏伟,蔡永立,李恺,江红&田玉鹏(2006)浙江天童常绿阔叶林中11种常绿乔灌木叶片虫食状分析.生物多样性14(2):145-151.
    王琛柱&钦俊德(2007)昆虫与植物的协同进化:寄主植物-铃叶蛾-寄生蜂相互作用.昆虫知识44(3):311-319.
    徐汝梅&成新跃(2005)昆虫种群生态学——基础与前言.科学出版社,北京:
    于晓东,周红章&罗天宏(2001)辽东栎叶片昆虫取食形状多样性及其变化模式.植物生态学报25:553-560.
    袁红娥,严善春,佟丽丽,高璐璐&王艳军(2009)剪叶损伤与昆虫取食对兴安落叶松(Larix gmelinii)针叶中缩合单宁诱导作用的差异.生态学报29:1415-1420.
    张大勇(2004)植物生活史进化与繁殖生态学.科学出版社,北京.
    郑征,陈旭东,毛红卫,郑荃&俞帆(2001)西双版纳热带季节雨林林窗内幼树叶生长与虫食动态.植物生态学报25(6):676-686.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700