用户名: 密码: 验证码:
强震下180m跨三心圆钢管空间拱桁架动力弹塑性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大跨度钢管拱桁架因其结构形式灵活多样、造型优美、受力合理、用钢量省等优点,被广泛应用于火车站、飞机场、体育馆、会展中心等大型公共建筑中,在大震发生后还可以作为临时避难场所。然而目前针对大跨度钢管拱桁架在强震作用下的动力响应理论研究成果较少,因此本文对钢管拱桁架结构进行强震作用下的动力弹塑性分析,得出该结构的塑性发展规律和失效机制,为今后该体系的抗震性能研究提供参考。
     本文以跨度180m矢跨比0.2三心圆钢管拱桁架结构为研究对象,在已有钢管拱桁架动力响应研究成果基础上,主要展开了以下几方面工作:
     首先,采用有限元分析软件SAP2000分别选用宁和波、LOMA波、上海人工波对模型进行动力弹塑性分析,研究中通过逐渐增加结构的地震加速度峰值,并对结构模型最大节点的位移、杆件进入塑性的比率、杆件的塑性变形程度全过程进行了详细的考察,确定结构在每种地震波作用下的破坏界限加速度峰值和位移延性系数,得出结构的失效机理和破坏形态。
     其次,选用Q345、Q390和Q420三种不同强度钢材对结构进行动力弹塑性分析,对比它们在相同设防烈度下设计所需用钢量、在地震作用下的弹塑性界限加速度峰值、破坏界限加速度峰值和位移延性系数等,总结这些数据随着钢材强度提高的变化趋势。
     研究所得结论主要有以下几点:
     1、钢管拱桁架在地震作用下,最大节点位移随着地震加速度峰值增大缓慢增加,最终结构发生强度破坏。
     2、选用不同地震波对钢管拱桁架进行动力弹塑性分析,得出结构在X向地震作用下的弹塑性界限加速度峰值相差9.68%-98%,在Z向地震作用下相差12.5%-47.54%,在X+Z向地震作用下相差14.81%-93.75%;结构在X向地震作用下得到的破坏界限加速度峰值相差20%-65.52%,在Z向地震作用下相差1.56%-30%,在X+Z向地震作用下相差10%-35.8%;结构在X向地震作用下得到的位移延性系数相差1.53%-14.5%,在Z向地震作用下相差9.92%~16.41%,在X+Z向地震作用下相差5.78%-44.91%;表明采用不同的地震波对结构进行动力弹塑性分析结果相差较大
     3、对采用不同钢材强度的钢管拱桁架进行动力弹塑性分析,结构采用Q390钢材单榀用钢量比Q345减少6.74%,采用Q420钢材比Q345减少11.75%;结构采用Q390钢材弹塑性界限加速度峰值比Q345提高20%左右,采用Q420比Q345提高30%左右;结构采用Q390钢材破坏界限加速度峰值比Q345提高15%左右,采用Q420比Q345提高25%左右;上述数据表明随着钢材强度的提高,钢管拱桁架用钢量逐渐减少,而其弹塑性界限加速度峰值和破坏界限加速度峰值显著增大,说明采用高强度钢材可显著提高结构的抗震水平。
Large-span steel pipe arch truss is flexible and elegant, reasonable force and the less amount of steel and so on, so it has been widely used in train stations, airports, stadiums, exhibition centers and other large public buildings, as well as to provide a safe refuge after strong earthquake. However, there is the less dynamic response research results on large-span steel arch truss under strong earthquake. In this paper, the dynamic elasto-plastic analysis on steel arch truss under strong earthquake is investigated, and the law of plastic development and collapse mechanism of the structure are given, which provide research theory about structural seismic performance.
     In this paper, the180m-span and0.2-rise to span ratio steel arch truss is studied. Based on the existing dynamic response research results on steel arch truss, the paper launched the following work:
     Firstly, the dynamic elasto-plastic analysis was taken by inputing NH wave, LOMA wave and Shanghai RG wave with finite element analysis software SAP2000. Maximum displacement of nodes, the plastic element ratio of structure, the plastic deformation of element in pace with the increasing seismic input are investigated to gain failure critical acceleration, Maximum yield-displacement ratio, failure mechanism and failure modes of structure.
     Secondly, the dynamic elasto-plastic analysis was taken with three different strength steel of the Q345, Q390and Q420. The data such as amount of steel designed in the same fortification intensity, the elastic-plastic critical peak acceleration, failure critical peak acceleration and displacement ductility index are compared, and the trend of these data with the increased strength of steel are summed up.
     By calculation and analysis, it takes the following conclusions:
     1. The Maximum displacement of nodes increases slowly with earthquake peak acceleration increasing, and the steel arch truss under the earthquake occurs strength failure finally.
     2. The dynamic elasto-plastic analysis was taken under three different seismic waves. The elastic-plastic critical peak acceleration is different from9.68%to98%under X direction seismic waves,12.5%to47.54%under Z direction seismic waves and14.81%to93.75%under X+Z direction seismic waves. The failure critical peak acceleration is different from20%~65.52%under X direction seismic waves,1.56%~30%under Z direction seismic waves and10%~35.80%under X+Z direction seismic waves. The displacement ductility index is different from1.53%~14.50%under X direction seismic waves,9.92%~16.41%under Z direction seismic waves and5.78%~44.91%under X+Z direction seismic waves.
     3. The dynamic elasto-plastic analysis was taken with three different strength steel. The amount of Q390and Q420steel is reduced respectively by6.74%and11.75%compared with Q345. The elastic-plastic critical peak acceleration of Q390and Q420steel is increased respectively by about20%and30%compared with Q345. The failure critical peak acceleration of Q390and Q420steel is increased respectively by about15%and25%compared with Q345. It is indicated that the amount of steel is reduced gradually, but the elastic-plastic critical peak acceleration and failure critical peak acceleration increases greatly with the improvement of the strength of steel. Therefore, the seismic level of steel pipe arch truss is improved by high-strength steels.
引文
[1]Li Haiwang,Zhao Hongsheng,Zhao Yanjing, Study on Planning for the Indoor-earthquake-shelter in City and Town.《Advanced Science Letters》,USA,2011,10.
    [2]陆新征,叶列平,缪志伟.建筑抗震弹塑性分析——原理、模型与在ABAQUS, MSC.MARC和SAP2000上的实践[M],中国建筑工业出版社,2009
    [3]李建仙.单榀钢管拱桁架在地震作用下的动力响应研究[D],太原理工大学,2007.7
    [4]Budiansky B, ROTH R S, Axi-symmetric dynamic buckling of clamped shallow spherical shells, Collected Papers on Instability of Shell Structures, NASATND-1510,1962,597-606
    [5]HsuCS.On dynamic stability of elastic badies with prescribed initial condition, IntJEngSci, 1966,4:1-21
    [6]HsuCS. Stability of shallow Arches Against Snap-Through under Time wise Step loads.JAM,1968,35:31-39
    [7]巩俊松.动力失稳的能量判别准则在杆系结构中的推广及应用[D],同济大学,2010.7
    [8]李忠学,沈祖炎,邓长根.杆系钢结构非线性动力稳定性识别与判定准则[J].同济大学学报,2000,28(6):148—151
    [9]吴恒立.拱式体系稳定计算[M].人民交通出版社,1979.
    [10]李国豪,石洞,黄东洲.拱桁梁侧倾稳定分析的有限元法[J].同济大学学报,1983(1).
    [11]黄东洲.拱桁梁组合体系桥侧倾稳定研究[D].同济大学,1985.
    [12]金伟良.大跨度拱桥的横向稳定性研究[D].大连理工大学,1988.12.
    [13]李国豪.桥梁结构稳定与振动(M).中国铁道出版社.1992.
    [14]钱莲萍,项海帆.桥梁结构第一类弹塑性稳定分析及实用计算法.中国土木工程学会第一次城市桥梁学术会议论文集[C].1987,(11):
    [15]沈祖炎,孙密,陈杨骥,陈学潮.钢网架结构极限承载力的非线性分析[C],空间网格结构论文集,同济大学出版社,1991,4
    [16]曹资,张毅刚.单层球面网壳地震反应特征分析[J],建筑结构,1998,8,40-43
    [17]叶继红,沈祖炎.单层穹顶网壳在地震作用下的动力稳定分析[J].工程力学增刊,1998
    [18]范峰.空间网壳结构弹塑性地震响应及抗震性能分析[J],哈尔滨建筑大学学报,1999,32(1):132-37
    [19]曹资,张毅刚等.各类常用网壳结构的地震反应规律[R],国家自然基金重大项目专题年度研究报告,1999,5
    [20]赵雷,王志强,杜正国.大跨度结构而内外失稳的判别方法[J].四川建筑,1995.
    [21]叶继红,沈祖炎.在地震作用下初始缺陷对网壳结构动力稳定性能的影响阴[J].建筑结构,1997,27(6)
    [22]李海旺.空间钢管拱桁架强震作用下的弹塑性动力响应研究[J].工程抗震与加固改造增刊.2009
    [23]郑宇淳.大跨度拱形立体桁架结构的推倒分析[D],天津大学,2007
    [24]王秀丽,沈世钊,朱彦鹏等.轻型钢管拱形屋盖结构体系的优化设计[J],建筑结构,2002
    [25]傅学怡,顾磊,杨先桥,余卫江,陈贤川.国家游泳中心结构设计与研究[J],空间结构,2005.9
    [26]沈世钊,陈听.网壳结构稳定性[J],北京:科学出版社,1999
    [27]周笋,朱忠义,丁志鹃,张世碧,王雪生,秦凯.绵阳新体育馆屋盖结构设计[J].建筑结构,2006.6
    [28]丁洁民,沈忠贤,陆秀丽,虞终军.复旦大学正大体育馆钢屋盖结构设计[J].建筑结构,2008.2
    [29]王策,沈世钊.球面网壳阶跃荷载作用动力稳定性[J].建筑结构学报,2001,22(1)
    [30]张顺强,杨琦,陶唏暝.西安咸阳国际机场航站楼屋盖钢结构设计[J].建筑钢结构进展,2005.4
    [31]李桢章,梁志,李恺平等.广州新白云国际机场航站楼钢结构设计[J].建筑结构学报,2002.10
    [32]金建民.某机场航站楼三角形立体钢桁架设计[J].特种结构,2002.12
    [33]汪大绥,周健,刘晴云,张富林.浦东国际机场T2航站楼钢屋盖设计研究[J].建筑结构,2007.5
    [34]陈务军,付功义,熊宏钧,王中伟.井冈山机场航站楼屋面工程设计[J].空间结,2005.3
    [35]刘文.南京国际展览中心钢管拱架的设计研究[J].建筑结构,2001.8
    [36]范重,王春光,董京.宁波国际会展中心屋盖管桁架结构设计[J].建筑结构,2003.6
    [37]熊猛,郭磊.郑州国际会展中心T6钢管衍架结构设计[J].工程建设与设计,2004.7
    [38]周德良.武汉国际会展中心主楼大跨度钢桁架设计[J].建筑结构,2001.8
    [39]秦美珠.组合空间钢管拱桁架结构在地震作用下的动力响应研究[D],太原理工大学,2008.6
    [40]庞文忠.强震下60m跨倒三角形截面钢管拱桁架工作性能研究[D],太原理工大学,2009.6
    [41]陈兴刚.鸟巢形网架结构的静动力性能研究[D],浙江大学,2004.6
    [42]李光辉.大跨度连续刚构桥空间地震反应分析[D],西南交通大学,2005.6
    [43]徐国林,张令心.巨型钢框架结构的三维非线性分析模型[J],世界地震工程,2009.3
    [44]许秀颖.鸟巢型索网结构的力学分析[D],河北大学,2010.5
    [45]黄鑫Push—over分析的研究及应用[D],青岛理工大学,2007.6
    [46]王蕊.大跨度空间结构弹塑性时程分析[D],天津大学,2007.6
    [47]AL-Hassani,S.T.S et al. Large-deformation response of deep circular arches to radial magneto motive forces. J.Mech.Engng.Sci.,1978,20(6):335-343
    [48]Hakano, T.et al.The dynamic response of arches under impact load.In:Proc.30 Japan National Cong.for Appl.Mech.1980:303-312
    [49]Malla R, Wang B. Response of space structures under sudden local damage[C]// Engineering, Construction and Operations in Space III. Reston:ASCE,1992
    [50]Murtha-Smith E, Anural of Structural Engineering,1988,114(9):1978'1999
    [51]梅志强.地震作用下空间钢管拱桁架的弹塑性动力响应研究[D],太原理工大学,2008.05
    [52]ButterTA,BakerWE,BabcockCD. Structural dynamics Impact and Vibration, Bulltion: 1986,157-165
    [53]GoodierJN.Dynamic plastic buckling. In:HerrmannGed. Dynamic stability of structure,1976,189-211
    [54]LeeLHN.Quasi-bifurcationin dynamic so felastic plastic continua. JAM, 1977,44:413-418
    [55]John,S.Humphreys. On dynamic snap buckling of shallow arches. AIAA J., 1966.4(5):878-886
    [56]Peng PAN, Makoto OHSAKI. Nonlinear nulti-modal Pushover analysis method for spatial structures
    [57]陆燕.强震作用下大跨度拱形立体桁架结构动力强度破坏研究[D],天津大学,2009.5
    [58]宋天霞,邹时智,杨文兵.非线性结构有限元计算[M],华中理工大学出版社,1996.4
    [59]北京金土木软件技术有限公司,中国建筑标准设计研究院.SAP2000中文版使用指南[M],人民交通出版社
    [60]周晓琳.框架结构静力与动力弹塑性抗震性能分析[D],西南交通大学,2009.12
    [61]王伟.120m跨带下部结构钢管拱桁架的基础隔震性能及失效机理分析[D].太原理工大学,2010.7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700