用户名: 密码: 验证码:
熔盐介质中碳材料改性及微孔轻质材料制备的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对耐火材料工业广泛使用的含碳材料还需要改进和提高其亲水性和抗氧化能力、寻求新碳素材料替代不可再生的天然石墨、高温过程工业节能降耗对高性能轻质材料的需求,本文以熔盐的物理化学特性为基础,从材料的相组成和结构设计出发,一方面利用熔盐介质在天然石墨或木材炭化后的材料上原位反应生成碳化物或氮化物,解决天然石墨与水润湿性及抗氧化性的问题,同时为研发碳素替代材料提供新方向。另一方面利用熔盐的特性,将熔盐介质作为镁橄榄石轻质材料制备过程中的造孔剂和烧结助剂,利用熔盐与镁橄榄石之间化学反应活性成功制备了镁橄榄石轻质材料,且可有效去除杂质氧化铁,开发了轻质材料制备的新方法,拓展了熔盐的应用领域。
     (1)以NaF-NaCl为熔盐介质,在氩气保护下,1100-1400°C分别在天然石墨的表面成功地反应生成碳化硅纳米线或碳化钛层,改变了石墨原有的结构和性能,生成的纳米碳化硅或碳化钛起到了抗氧化作用,氧化后生成的氧化物层阻止了石墨的进一步氧化。在氮气气氛下,1100-1400°C在石墨表面生成了TiN晶须。TiN晶须以VLS的机制生长,其形貌分别有棒状、锥状和星型,其直径大约500-600nm。TiN晶须的生成提高了石墨的抗氧化性能。
     (2)在氩气保护下,900°C在KCl-KF熔盐介质中合成了保留木材天然多孔结构的TiC/C复合陶瓷,即在木材炭化的炭模板表面生成TiC层。生成的碳化钛的晶体形貌受到盐/钛摩尔比和反应温度的控制。同样在相同气氛和熔盐介质中,1250°C合成了SiC/C复合陶瓷,不仅保留了木材天然多孔结构,而且在炭模板表面以及孔隙内部形成了直径为10-100nm的SiC纳米线。TiC/C和SiC/C复合材料是耐火材料行业潜在的替代天然石墨的候选材料。
     (3)分别以NaCl和Na2CO3作为熔盐介质制备了镁橄榄石轻质材料,建立了轻质材料制备过程的动力学模型。NaCl作为熔盐时,适宜的制备温度为1100°C,合适的熔盐含量为40-50%。NaCl熔盐不参与化学反应,只提供镁橄榄石液相烧结环境,促进镁橄榄石的烧结和晶粒的长大。以Na2CO3为熔盐介质制备镁橄榄石轻质材料的合适温度是900-1100°C。Na2CO3熔盐的作用不仅提供镁橄榄石液相烧结环境,而且和镁橄榄石中的氧化铁反应,生成可溶于水的化合物和方镁石。含铁的化合物在溶水阶段排出,实现选择性去除铁的目的。生成的方镁石相有利于提高轻质材料的高温性能。
The refractory materials contained carbon widely used in refractory industry has thedemand which still should be improved its hydrophilicity and antioxidant capacity, and foundnew carbon materials as substitution of non-renewable natural graphite. The energy-saving andcost-reducing of the high-temperature process industry need more high-performance lightweightmaterials. Based on the physical and chemical characteristics of the molten salt and the designtheory of the material composition and structure, the carbides or nitrides were produced by themolten salt method in natural graphite or wood-carbonized material through in situ reaction, sothe wettability and oxidation resistance of natural graphite were improved. The new direction ofthe research and development of carbon alternatives was issued. On the other hand, takingadvantage of the character of molten salt medium, we used the molten salt as a pore former andsintering aid for forsterite, and the lightweight materials of forsterite was successfully producedby the chemical reactivity between molten salt medium and forsterite, which could effectivelyremove iron oxide impurity. It is a new way to prepare lightweight materials, and expanding theapplications of the molten salt method.
     (1) Used NaF-NaCl as a molten salt and Si or Ti powders as raw material in argon, siliconcarbide nanowires and titanium carbide layer were successfully synthesized on the surfaces ofnatural graphite in the temperature range of1100°C to1400°C, respectively. The synthesizedsilicon carbide nanowires and titanium carbide should change the original structure andproperties of the graphite, and the graphite contained SiC nanowires or TiC layer had goodwettability with water. SiC nanowires or TiC layer were the antioxidant, and their oxide layers ofoxidation product would prevent further oxidation of the graphite. In nitrogen atmosphere andother same experimental conditions, TiN whiskers were successfully formed on the surface ofgraphite from1100°C to1400°C. TiN whiskers with different appearances such as rod, coneand star-shaped have grown with VLS mechanism, and the diameter of TiN whisker was about500-600nm. The generation of TiN whiskers has improved the oxidation resistance of thegraphite.
     (2) With the protection of argon, TiC/C composite ceramics which maintained natural porous structure of wood have successfully synthesized in KCl-KF molten salt at900°C, andTiC layer is formed on the surface of the charring carbon template. The morphology of thetitanium carbide crystals was controlled by the salt/Ti molar ratio and reaction temperature.Similarly, in the same atmosphere and molten salt system, the SiC/C composite ceramics havebeen compounded at1250°C, and retained the natural porous structure of wood. The diameter ofthe formed of SiC nanowires was from10nm to100nm on the surface of charring carbontemplate and inside its pores. The composite material of TiC/C or SiC/C was the potentialcandidate alternative material of natural graphite in the refractory industry.
     (3) Used NaCl and Na2CO3as molten salt medium respectively, the forsterite lightweightmaterials were prepared, and the dynamical models of the preparation process of the lightweightmaterials were issued. When NaCl acted as the molten salt, the proper temperature of preparationof the lightweight materials was1100°C, and the suitable content of the molten salt was40%to50%. NaCl didn’t participate in chemical reactions, and it just provided the environment for thesintering mechanism of the forsterite as liquid-phase sintering model, to promote the sinteringand grain growth of the forsterite material. The proper temperature to prepare forsteritelightweight materials in Na2CO3molten salt medium was900-1100°C. Na2CO3molten salt notonly provided the environment for forsterite sintering by the liquid phase model, but also reactedwith the iron oxide in forsterite and then generated a water-soluble compound and periclase.Iron-containing compound could be discharged when it dissolved in the water, which to achievethe purpose of removing iron selectively. The generated periclase phase is beneficial to improvethe refractory performances of the forsterite lightweight materials.
引文
[1]李红霞.中国耐火材料行业的发展与资源、能源和环境[J].耐火材料,2010,44(6):401-403.
    [2]李楠.保温保冷材料及其应用[M].上海:上海科学技术出版社;1985.
    [3]张建玲.资源、能源和环境约束下的效率评价指标体系[J].科技管理研究,2009,11:164-168.
    [4]杜景云,王国海,张久梅.隔热不定形耐火材料的开发与应用[J].冶金能源,2001,20(1):34-37.
    [5]李言荣,恽正中.电子材料导论[M].北京:清华大学出版社,2001.
    [6]卢灿辉,陈晓.利用木材介孔结构制备新型复合材料研究进展[J].高分子材料科学与工程,2003,19(6):32-33.
    [7]乔冠军,金志浩.用木材制备生物结构陶瓷[J].材料导报,2003,17(4):66-67.
    [8]邹学红.建筑保温隔热材料性能研究[D].东北大学硕士学位论文,2008.
    [9]段淑贞,乔芝郁.熔盐化学-原理和应用[M].北京:冶金工业出版社,1990.
    [10]李楠,顾华志,赵惠忠.耐火材料学[M].北京:冶金工业出版社,2010.
    [11]沈钟,王果庭.胶体与表面化学[M].北京:化学工业出版社,1997.290-328.
    [12]李葵英.界面与胶体的物理化学[M].哈尔滨:哈尔滨工业大学出版社,1998:113-119.
    [13]宋林喜,王林俊,张积礼.石墨微粒对MgO-MgO·Al2O3-C浇注料性能的影响[J].耐火材料,2004,38(2):79-81.
    [14]王周福,庞业华,孙加林等.表面包覆Al(OH)3改性石墨的研究[J].耐火材料,2002,36(5):266-267.
    [15]王周福,汪厚植,孙加林等.氧化铝包覆石墨复合粉体的制备及性能研究[J].功能材料,2004,35:3128-3131.
    [16]杨志红,张文杰,王周福.石墨的水解共沉积法表面改性处理[J].耐火材料,2001,35(2):66-88.
    [17]邹伶俐,吴芸芸,梁永和.非均匀成核法在石墨表面改性研究中的应用[J].武汉科技大学学报,2001,24(4):342-344.
    [18]曹冉,李红霞.非均匀成核法石墨表面改性的研究[J].耐火材料,2006,40(3):161-164.
    [19]魏明坤,肖辉,刘利. Al2O3包覆石墨颗粒的制备及表征[J].硅酸盐学报,2004,32(8):77-79.
    [20]伍勇.碱金属在石墨表面化学吸附的EHT研究[J].复旦学报,2000,39(2):167-173.
    [21]张东升.竹炭及SiC陶瓷材料的结构及性能研究[D].中国林业科学研究院博士学位论文,2005.
    [22]林兰英,陈志林,傅峰.木材炭化与炭化物利用研究进展[J].世界林业研究,2007,20(5):22-25.
    [23]钱军民,金志浩,乔冠军.木材陶瓷研究进展[J].无机材料学报,2003,18(4):716-723.
    [24]赵广杰.木材中的纳米尺度、纳米木材及木材-无机纳米复合材料[J].北京林业大学学报,2002,24(5/6):204-205.
    [25] Pulido LL, Hata T, Kajimoto T. Removal of mercury by carbonized wood materials fromaqueous solutions of different types of meroury compounds[J]. Resource ProcessingTechnology,1999,46(1):3-8.
    [26] Pulido LL, Yurimoto Y, Aoyama M. Adsorption of mercury by sugi wood carbonized at1000℃[J]. Journal of Wood Science,2001,47:159-162.
    [27] Pulido LL, Hata T, Imamura Y. Removal of mercury and other metals by carbonized woodpowder from aqueous solutions of their salts[J]. Journal of Wood Science,1998,44:237-243.
    [28] Rambo CR, Cao J, Rusnia O. Manufacturing of biomorphic(Si, Ti, Zr)-carbide ceramics bysol-gel processing[J]. Carbon,2005,43:1174-1183.
    [29]汤爱涛.用钛铁矿制备基Ti(C,N)复合材料的组织控制和工艺优化[D].重庆大学博士学位论文,2004.
    [30]日本化学会编.无机化合物合成手册[M].北京:化学工业出版社,1983.
    [31] Zhang Jie. Combustion synthesis of titanium carbide used as abrasive[J]. Advances inMetallurgy,1992,9(7):21-26.
    [32] Rasit K. Sintering properties of submicron TiC powders from carbon coated titaniaprecursor[J]. Journal of Materials Science,2000,35(12):3131-3141.
    [33] Mishra SK. Self-propagating high temperature synthesis (SHS) of titanium carbide [J].Journal of Material Science Letters,1997,16(2):965-967.
    [34] Alexandrescu K. Synthesis of TiC and SiC/TiC nanocrystalline powder by gas-phaselaser-induced reaction[J]. Journal of Materials Science,1997,32(21):5629-5635.
    [35] Cliche G. Synthesis of TiC and (Ti, W)C insolvent metals[J]. Material Science andEngineering A,1991,148(2):319-328.
    [36] Husu MS. Synthesis of nanocrystalline titanium carbide by spark erosion[J]. ScriptMetallurgical of Materialia,1995,32(6):805-808.
    [37] Ye L. Synthesis of nanocrystalline TiC powders by mechanical alloying [J]. NanostructuredMaterials,1995,5(1):25-31.
    [38]罗锡山.氢化钛直接反应合成氮化钛的研究[J].粉末冶金工业,1997,7(3):28-30.
    [39]刘兵海.微波碳热还原法制备TiN [J].金属学报,1996,32(9):920-925.
    [40]刘志坚,曲选辉.机械合金化反应合成TiN [J].粉末冶金技术,1997,15(2):110-112.
    [41] W Yang, H Araki, S Thaveethavorn, H Suzuki, T Noda. In situ synthesis andcharacterization of pure SiC nanowires on silicon wafer[J], Applied Surface Science,2005,24:236-406.
    [42] B Babic, D Bucevac, A Radosavljevic-Mihajlovic, A Dosen, J Zagorac, J Pantic, B Matovic.New manufacturing process for nanometric SiC[J], Journal European Ceramic Society,2012,32:1901-1906.
    [43] HJ Li, ZJ Li, AL Meng, KZ Li, XN Zhang, YP Xu. SiC nanowire networks[J], Journal ofAlloys Compounds,2003,352:279-282.
    [44] Y Baek, Y Ryu, K Yong. Structural characterization of SiC nanowires synthesized by directheating method[C]. Materials Science and Engineering,2006,26:805-808.
    [45] WS Shi, YF Zheng, HY Peng, N Wang, CS Lee, ST Lee. Laser ablation synthesis andoptical characterization of silicon carbide nanowires[J], Journal of the American CeramicSociety,2000,83:3228-3230.
    [46] JZ Guo, Y Zuo, ZJ Li, WD Gao, JL Zhang. Preparation of SiC nanowires with fins bychemical vapor deposition[J]. Physica,2007,39:262-266.
    [47] ZS Wu, SZ Deng, NS Xu, J Chen, J Zhou, J Chen. Needle-shaped silicon carbide nanowires:Synthesis and field electron emission properties[J]. Applied Physics Letters,2002,80:3829-3831.
    [48] YB Li, SS Xie, WY Zhou, LJ Ci, YS Bando. Cone-shaped hexagonal6H-SiC nanorods[J],Chemical Physics Letters,2002,356:325-330.
    [49] XW Du, X Zhao, SL Jia, YW Lu, JJ Li, NQ Zhao. Direct synthesis of SiC nanowires bymultiple reaction VS growth[J]. Materials Science and Engineering,2007,136:72-77.
    [50] LP Xin, Q Shi, JJ Chen, WH Tang, NY Wang, Y Liu, YX Lin. Morphological evolution ofone-dimensional SiC nanomaterials controlled by sol-gel carbothermal reduction[J].Materials Characterization,2012,65:55-61.
    [51]徐维忠.耐火材料[M].北京:冶金工业出版社,1990.
    [52]张亿增,李成燕.化学发泡法制备隔热耐火砖[J].耐火材料,2000,34(5):279-280,285.
    [53] Svinka R,Svinka V,Juettner T. Krolin based light-weight thermal insulating materials[J].InterCeram: International Ceramic Review,2005,54(4):258-261.
    [54]张世英,周武艺,裴邵裘.高强度轻质多孔隔热砖的研制[J].耐火材料,2003,37(2):119-120.
    [55]王艳杰.高温窑炉用新型隔热耐材-刚玉莫来石轻质砖的研制与应用[J].河北冶金,2006,增刊:48-50.
    [56]吴爱军,王晗,李栓明.氧化镁对氧化铝空心球隔热制品性能的影响[J].工业炉,2010,32(2):44-47.
    [57]裴锐.粘土质隔热耐火板的研制[J].辽宁建材,2001,2:14.
    [58]张国富.无机废弃物生产隔热耐火材料的研发[J].耐火与石灰,2010,35(3):30-32.
    [59]倪文,张春艳.莫来石隔热耐火浇注料的研制[J].矿物岩石,2000,20(1):90-94.
    [60]蔡振哲,阮玉忠,于岩.利用铝厂废渣和废聚苯乙烯研制轻质隔热耐火材料[J].硅酸盐通报,2007,26(4):670-672.
    [61]裴春秋,石干,徐建峰.六铝酸钙新型隔热耐火材料的性能及应用[J].工业炉,2007,29(1):45-48.
    [62]徐平坤,魏国钊.耐火材料新工艺技术[M].北京:冶金工业出版社[M],2005.
    [63]霍素珍.具有发展前景的耐火原料—镁橄榄石[J].耐火材料,2001:35(2):79-80.
    [64]李晨旭.镁橄榄石-蛭石复合材料的制备研究[D].武汉科技大学硕士学位论文,2010.
    [65]王维邦.耐火材料工艺学[M].北京:冶金工业出版社,2003年.
    [66]程兆侃,任德和,张用宾.优质镁橄榄石砖的研制[J].硅酸盐通报,1997,1:27-30.
    [67]张斯博,汪琦.用铁尾矿和菱镁石尾矿制备镁橄榄石轻质隔热耐火材料工艺方法[J].科技信,2009,3:132-133.
    [68]李晓明,刘宏伟.镁橄榄石不烧砖的研究[J].四川冶金,1992,4:63-66.
    [69]徐建峰,石干,马明军. MgO加入量和煅烧温度对镁橄榄石材料相组成的影响[J].耐火材料,2008,42(5):354—356,361.
    [70]张显.增孔剂对镁橄榄石质隔热耐火材料结构和性能的影响[J].硅酸盐通报,2001,5:56-59.
    [71]张显,马林,杨兴华.料浆稠度对镁橄榄石制品性能的影响[J].耐火材料,2001,35(2):79-80.
    [72]李雪冬.熔盐法合成莫来石粉体和氧化锆-莫来石复合粉体研究[D].武汉科技大学博士学位论文,2010.
    [73]柯行飞.熔盐法制备无机纳米材料及其性能研究[D].南京航空航天大学硕士学位论文,2010.
    [74]赵萱.熔盐法制备锂电池正极材料的影响因素与性能[D].武汉理工大学硕士学位论文,2010.
    [75] JK Ye, SW Zhang, WE Lee. Novel low temperature synthesis and characterisation of hollowsilicon carbide spheres[J]. Microporous and Mesoporous Materials,2012,152:25-30.
    [76] W Xie, G Mobus, SW Zhang. Molten salt synthesis of silicon carbide nanorods usingcarbon nanotubes as templates[J]. Journal of Materials Chemistry,2011,21:18325-18330.
    [77] X Liu, S Zhang. Low-temperature preparation of titanium carbide coatings on graphiteflakes from molten salts[J]. Journal of the American Ceramic Society,2008,91(2):667-670.
    [78] DD Jayaseelan, SW Zhang, SB Hashimoto, WE Lee. Template formation of magnesiumaluminate (MgAl2O4) spinel microplatelets in molten salt[J]. Journal of the EuropeanCeramic Society,2007,27:4745-4749.
    [79] JK Ye, SW Zhang, WE Lee. Molten salt synthesis and characterization of SiC coated carbonblack particles for refractory castable applications[J]. Journal of the European CeramicSociety,2013,13:2023-2029.
    [80] W Xie, Z Mirza, G M bus, S Zhang. Novel synthesis and characterization of high qualitysilicon carbide coatings on carbon fibers[J]. Journal of the American Ceramic Society,2012,95(6):1878-1882.
    [81] JJ Chen, Q Shi, WH Tang. Field emission performance of SiC nanowires directly grown ongraphite substrate[J]. Materials Chemistry Physics,2011,126:655-659.
    [82] JW Liu, DY Zhong, FQ Xie, M Sun, EG Wang, WX Liu. Synthesis of SiC nanofibers byannealing carbon nanotubes covered with Si[J]. Chemical Physics Letters,2001,348:357-360.
    [83] S Yilmaz, Y Kutmen-Kalpakli, E Yilmaz. Synthesis and characterization of boehmiticalumina coated graphite by sol-gel method[J]. Ceramics International,2009,35:2029-2034.
    [84] Q Li, GZ Zeng, WF Zhao, GH Chen. Preparation and characterization of nickel-coatedgraphite nanosheets[J]. Synthetic Metals,2010,160:200-202.
    [85] A Saberi, F Golestani-Fard, M Willert-Porada, R Simon, T Gerdes, H Sarpoolaky.Improving the quality of nanocrystalline MgAl2O4spinel coating on graphite by a prioroxidation treatment on the graphite surface[J]. Journal of the European Ceramic Society,2008,28:2011-2017.
    [86] J Ding, CJ Deng, WJ Yuan, HX Zhu, J Li. The synthesis of titanium nitride whiskers on thesurface of graphite by molten salt media[J]. Ceramics International,2013,39:2995-3000.
    [87] H Simunkova, P Pessenda-Garcia, J Wosik, P Angerer, H Kronberger, G Nauer. Thefundamentals of nano-and submicro-scaled ceramic particles incorporation intoelectrodeposited nickel layers: Zeta potential measurements[J]. Surface and CoatingsTechnology,2009,203:1806-1814.
    [88] R Wasche, M Naito. Vincent A Hackley, Experimental study on zeta potential and streamingpotential of advanced ceramic powders[J], Powder Technology,2002,123:275-281.
    [89] M Castellote, I Llorente, C Andrade. Influence of the composition of the binder and thecarbonation on the zeta potential values of hardened cementitious materials[J]. Cement andConcrete Research,2006,36:1915-1921.
    [90] A Wiacek. Investigations of DPPC effect on Al2O3particles in the presence of (phospho)lipases by the zeta potential and effective diameter measurements[J]. Applied SurfaceScience,2011,257:4495-4504.
    [91] P Leroy, C Tournassat, Mohamed Bizi. Influence of surface conductivity on the apparentzeta potential of TiO2nanoparticles[J]. Journal of Colloid Interface Science,2011,356:442-453.
    [92] Y Zeng, A Zimmermann, F Aldinger, DL Jiang. Effect of organic additives on the zetapotential of PLZST and rheological properties of PLZST slurries[J]. Journal of the EuropeanCeramic Society,2008,28:2597-2604.
    [93] QS Zhu, XL Qiu, CW Ma. Oxidation resistant SiC coating for graphite materials[J]. Carbon,1999,37:1475-1484.
    [94]王焕荣,叶以富. TiC价电子结构及其性质分析[J].科学通报,2001,46(3):215-218.
    [95]刘平安,曾令可.超细碳化钛粉体的制备及应用研究进展[J].兵器材料科学与工程,2006,05:82-85.
    [96] Thorne K, Ting S, Chu CJ. Synthesis of TiC via polymeric titanates:the preparation of fibresand thin films[J]. Journal of Materials Science,1992,27(16):4406-4414.
    [97] Lee DW. Novel synthesis of substoichiometric ultrafine titanium carbide[J]. MaterialsLetters,2004,58:1471-1474
    [98] Tong L, Reddy RG. Synthesis of titaniumcarbide nano-powders by thermal plasma[J].Scripta Materialia,2005,52:1253-1258.
    [99]胡晓力,刘阳,尹虹等.微波合成碳化钛的研究[J].中国陶瓷工业,2002,19(1): l2-l5.
    [100] Feng X. Easy synthesis of TiC nanocrystallite[J]. Journal of Crystal Growth,2004,264:316-319.
    [101]房娜,崔立山.高温熔盐合成TiC-NiTi复合粉末体系的研究[J].石油机械,2006,34(8):10-12.
    [102]贾丽改,熊代余.冲击波方法合成TiC的影响因素[J].有色色属,2002,54(4):1-4.
    [103]胡晓力,刘阳,尹虹等.微波合成TiC的研究[J].中国陶瓷工业,2002,9(1):12-15.
    [104]朱心昆,程抱昌,张修庆等.固态反应法合成TiC[J].粉末冶金技术,2001,19(6):335-338.
    [105]李劲风,张昭,郑子樵等.燃烧合成(Ti, W)C的形成过程[J].稀有金属与硬质合金,2001,147:1-6.
    [106] Koc R, Folmer JS. Carbothermal synthesis of titanium carbide using ultrafine titaniapowders[J]. Materials Science,1997,32:3101-3110
    [107]刘阳,曾令可.碳化钛陶瓷及应用[M].北京:化学工业出版社,2008.
    [108]陈文怡,周建.高能球磨法制备不锈钢-TiC纳米复合粉末的研究[J].功能材料,2007,38(4):669-671.
    [109]李奎,潘复生,汤爱涛. TiC、TiN、Ti(C、N)粉末制备技术的现状及发展[J].重庆大学学报,2002,25(6):135-138.
    [110] Gu Yunle, Chen Luyang, Li Zhefeng. A simple protocol for bulk synthesis of TiC hollowspheres from carbon nanotubes[J]. Carbon,2004,42(1):235-238.
    [111] SW Ip, R Sridhar, JM Toguri, TF Stephenson, AEM Warner. Wettability of nickel coatedgraphite by aluminum[J]. Material Science Engineering A,1998,244:31-38.
    [112] X Chen, YB Li, YW Li, J Zhu, S Jin, L Zhao, Z Lei, X Hong. Carbothermic reductionsynthesis of Ti(C, N) powder in the presence of molten salt[J]. Ceramics International,2008,34:1253-1259.
    [113] H Zhang, F Li, Q Jia. Preparation of titanium nitride ultrafine powders by sol-gel andmicrowave carbothermal reduction nitridation methods[J]. Ceramics International,2009,35:1071-1075.
    [114] J Wagner, C Mitterer, M Penoy, C Michotte, W Wallgram, M Kathrein. The effect ofdeposition temperature on microstructure and properties of thermal CVD TiN coatings[J].International Journal of Refractory Metals and Hard Materials,2008,26:120-126.
    [115] J Pan, R Cao, Y Yuan. A new approach to the mass production of titanium carbide, nitrideand carbonitride whiskers by spouted bed chemical vapor deposition[J]. Materials Letters,2006,60:626-629.
    [116] MH Staia, ES Puchi, DB Lewis, J Cawley, D Morel. Microstructural characterization ofchemically vapor deposited TiN coating[J]. Surface and Coating Technology,1996,86:432-437.
    [117] CE Bamberger, LF Allard, DW Coffey, MR Bennett. Whiskers of TiN by topochemicalreaction[J]. Journal of Crystal Growth,1991,112:47-54.
    [118] A Kato, N Tamari. Some common aspects of the growth of TiN, ZrN, TiC and ZrCwhiskers in chemical vaporv deposition[J]. Journal of Crystal Growth,1980,49:199-203.
    [119] V Gottschalch, G Wagner, J Bauer, H Paetzelt, M Shirnow. VLS growth of GaN nanowireson various substrates[J]. Journal of Crystal Growth,2008,310:5123-5128.
    [120] H Yumoto, T Sako, Y Gotoh, K Nishiyama, T Kaneko. Growth mechanism ofvapor-liquid-solid (VLS) grown indium tin oxide (ITO) whiskers along the substrate[J].Journal of Crystal Growth,1999,203:136-140.
    [121] N Ahlen, M Johnsson, A Larsson, B Sundman. On the carbothermal vapour-liquid-solid(VLS) mechanism for TaC, TiC, and TaxTi1-xC whisker growth[J]. Journal of the EuropeanCeramic Society,2002,20:2607-2618.
    [122] SQ Feng, DP Yu, HZ Zhang, ZG Bai, Y Ding. The growth mechanism of silicon nanowiresand their quantum confinement effect[J]. Journal of Crystal Growth,2092000,209:513-517.
    [123] B Xiao, Y Xu. VLS synthesis of disordered CdSe nanowires and optical properties of anindividual CdSe nanowire[J]. Physica E,2011,24:696-699.
    [124] J Bae, NN Kulkarni, J Zhou, JG Ekerdt, C Shih. VLS growth of Si nanocones using Gaand Al catalysts[J]. Journal of Crystal Growth,2008,310:4407-4411.
    [125] E Park, S Shim, R Ha, E Oh, BW Lee, H Choi. Reassembling of Ni and Pt catalyst in thevapor-liquid-solid growth of GaN nanowires[J]. Materials Letters,2011,65:2458-2461.
    [126] I Milosev, HH Strehblow, B Navinsek, M Metikos-Hukovic. Electrochemical and thermaloxidation of TiN coatings studied by XPS[J]. Surface and Interface Analysis,1995,23:529-539.
    [127]谢志鹏.结构陶瓷[M].北京:清华大学出版社,2011.
    [128] Ehrburger P, Lahaye J, Wozniak E. Effect of carbonization on the porosity ofbeechwood[J]. Carbon,1982,20(5):433-439.
    [129] Sun BH, Fan TX, Zhang D. Porous TiC ceramics derived from wood template[J]. Journalof Porous Materials,2002,9:275-277.
    [130] Sieber H, Kaindl A, Greil P. Biostructure derived ceramics[J]. Ceramic Engineering andScience Proceedings,2000,21(4):53-60.
    [131] Fan TX, Hirose T, Okabe T, Zhang D. Surface area characteristics of woodceramics[J].Journal of Porous Materials,2001,8:211-215.
    [132] JM Qian, JP Wang, GJ Qiao, ZH Jin. Preparation of porous SiC ceramic with a woodlikemicrostructure by sol-gel and carbothermal reduction processing[J]. Journal of the EuropeanCeramic Society,2004,24:3251-3259.
    [133] Hata T, Yamane K. Microstructural investigation of wood charcoal made by spark plasmasintering[J]. Journal of Wood Science,1998,44:332-334.
    [134] Hata T, Imamura Y, Kobayashi E, et al. Onion-like graphitc particles observed in woodcharcoal[J]. Journal of Wood Science,2000,46:89-92.
    [135] Kurosaki F, Ishimaru K. Microstructure of wood charcoal prepared by flash heating[J].Carbon,2003,41:3057-3062.
    [136] Peter Greil, Thoma Lifka, Annette Kaindl. Biomorphic cellular silicon carbide ceramicsfrom wood:I.Processing and microstructure[J]. Journal of the European Ceramic Society,1998,18(14):1961-1973.
    [137] Qian JM, Wang JP, Jin ZH. Preparation of biomorphic SiC ceramic by carbothermalreduction of oak wood charcoal[J]. Materials Science and Engineering,2004,371:229-235.
    [138] C Vix-Guterl, P Ehrburger. Effect of the Properties of a Carbon Substrate on Its Reactionwith Silica for Silicon Carbide Formation[J]. Carbon,1997,35(10-11):1587-1592.
    [139] K Senthil, K Yong. Enhanced field emission from density-controlled SiC nanowires[J].Materials Chemistry Physics,2008,112:88-93.
    [140] YF Chen, XZ Liu, XW Deng. Factors Affecting the growth of SiC nano-whiskers[J].Journal of Materials Science and Technology,2010,26(11):1041-1046.
    [141] YJ Wu, JS Wu, W Qin, D Xu, ZX Yang, YF Zhang. Synthesis of h-SiC nanowhiskers byhigh temperature evaporation of solid reactants[J]. Materials Letters,2004,58:2295-2298.
    [142]谢文丁.绝热材料与绝热工程[M].北京:国防工业出版社,2006.
    [143]邹宁宇,鹿成滨,张德信.绝热材料应用技术[M].北京:中国石化出版社,2005.
    [144] Golunov SA. Fixed thermal insulation systems: Efficient technology for energy saving[J].Stroitelnye Materialy,2005,9:11-14.
    [145] Schwab H, Heinemann U, Beck A, Ebert H. Dependence of thermal conductivity on watercontent in vacuum insulation panels with fumed silica kernels[J]. Journal of ThermalEnvelope and Building Science,2005,28(4):319-326.
    [146] Evseeva LE, Tanaeva SA. Influence of impregnation on the thermal properties ofheat-insulating fibrous materials[J]. Journal of Engineering Physics and Thermophysics,2004,77(2):368-371.
    [147] Caruso KS, Hogue P, Monib KM. Thermally conductive electrically insulating aromaticsilicone film adhesive for the New Horizons mission[J]. Proceedings of SPIE-TheInternational Society for Optical Engineering,2004,55(26):79-90.
    [148]邹学红.建筑保温隔热材料性能研究[D].东北大学硕士学位论文,2008.
    [149] Svinka R,Svinka V,Juettner T. Krolin based light-weight thermal insulating materials[J].InterCeram: International Ceramic Review,2005,54(4):258-261.
    [150]张世英,周武艺,裴邵裘.高强度轻质多孔隔热砖的研制[J].耐火材料,2003,37(2):119-120.
    [151]王艳杰.高温窑炉用新型隔热耐材-刚玉莫来石轻质砖的研制与应用[J].河北冶金,2006,增刊:48-50.
    [152]吴爱军,王晗,李栓明.氧化镁对氧化铝空心球隔热制品性能的影响[J].工业炉,2010,32(2):44-47.
    [153]裴锐.粘土质隔热耐火板的研制[J].辽宁建材,2001,2:14.
    [154]倪文,张春艳.莫来石隔热耐火浇注料的研制[J].矿物岩石,2000,20(1):90-94.
    [155]蔡振哲,阮玉忠,于岩.利用铝厂废渣和废聚苯乙烯研制轻质隔热耐火材料[J].硅酸盐通报,2007,26(4):670-672.
    [156]裴春秋,石干,徐建峰.六铝酸钙新型隔热耐火材料的性能及应用[J].工业炉,2007,29(1):45-48.
    [157]徐平坤,魏国钊.耐火材料新工艺技术[M].北京:冶金工业出版社[M],2005.
    [158] F Tavangarian, Emadi R. Synthesis of nanocrystalline forsterite (Mg2SiO4) powder bycombined mechanical activation and thermal treatment[J]. Materials Research Bulletin,2010,45:338-391.
    [159] Grishin NN, Belogurova OA, Ivanova AG. Experimental and theoretical study of heatconsumption and its influence on heat resistance of forsterite refractories[J]. Ogneupory iTekhnicheskaya Keramika,2003,12:4-15.
    [160]丁军,邓承继,祝洪喜等.熔盐介质中制备镁橄榄石轻质材料的机理[J].硅酸盐通报,2012,31(1):123-128.
    [161]柯行飞.熔盐法制备无机纳米材料及其性能研究[D].南京航空航天大学硕士学位论文,2010.
    [162] Li ZS, Zhang SW, Lee WE. Molten salt synthesis of LaAlO3powder at lowtemperatures[J]. Journal of the European Ceramic Society,2007,27(10):3201-3205.
    [163] Akdogan EK, Brennan RE, Allahverdi M. Effects of molten salt synthesis (MSS)parameters on the morphology of Sr3Ti2O7and SrTiO3seed crystals[J]. Journal ofElectroceramics,2006,16(2):159-165.
    [164] Yang R S, Xing T Y, Xu R B. Molten salt synthesis of tungsten carbide powder using amechanically activated powder[J]. International Journal of Refractory Metals and HardMaterials,2011,29:138-140.
    [165] Arendt RH. Molten salt synthesis of single magnetic domain BaFe12O19and SrFe12O19crystals[J]. Journal of Solid State Chemistry,1973,8(4):339-347.
    [166] Saadi L, Moussa, R, Samdi, A. Synthesis of mullite precursors in molten salts influence ofthe aluminum source of salt[J]. Key Engineering Materials,1997,132-136(1):228-231.
    [167] Zhao ZQ, Ma J F, Xin LJ. A low-temperature molten salt synthesis of LiNiNO4cathodematerial for lithium ion batteries[J]. Journal of the American Ceramic Society,2005,88(9):2622-2644.
    [168]张柯,黄金亮,李丽华.熔盐法合成片状SrBi4Ti4O15粉体[J].人工晶体学报,2006,35(4):809-811,708.
    [169] Li C, Chiu C, Desu SB. Formation of Lead Niobates in Molten Salt Systems[J]. Journal ofthe American Ceramic Society,1991,74:42-47.
    [170]李雪冬,朱伯铨,汪厚植.熔盐法在无机材料粉体制备中的应用[J].材料导报,2006,20(3):44-46.
    [171]孙晓琴.熔盐法合成BaTiO3以及片状SrTiO3的研究与机制[D].武汉理工大学硕士学位论文,2004.
    [172]周亮.天然镁橄榄石制备新型隔热材料[D].武汉科技大学硕士学位论文,2011.
    [173]杨志远.铝质电瓷断口分形研究与分维测量[J].绝缘材料,2002,5:18-20.
    [174]王洪霞.球形孔泡沫铝孔结构的分形特性和有关性能的有限元法研究[D].南京,东南大学,2006.
    [175]刘立营,王秀峰,章春香.分形理论及其在无机材料研究中的应用[J].陶瓷,2008,6:22-31.
    [176]葛世荣,索双富.表面轮廓分形维数计算方法的研究[J].摩擦学学报,1997,17(4):354-362.
    [177]杨志远,刘转年.普通混凝土断口分形维数测定与影响因素研究[J].西安建筑科技大学学报,2008,40(2):280-283.
    [178]曹睿,马勤,陈剑虹.材料断口分形研究现状及发展前景[J].材料工程,2007,7:78-82.
    [179]江来珠,崔昆.应用分形几何研究钢的冲击韧性与易切削相参数的相关性[J].金属学报,1992,28(1):A27-A33.
    [180]李静,尹衍升,马来鹏.分形理论在陶瓷材料断裂行为中的应用[J].稀有金属材料与工程,2007,36(增刊1):707-710.
    [181]张联盟,黄学辉,宋晓岚.材料科学基础[M].武汉:武汉理工大学出版社,2004:470-473.
    [182]饶明军.红土镍矿制取镍铁合金原料的新工艺及机理研究[D].中南大学硕士学位论文,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700