用户名: 密码: 验证码:
电化学传感器检测堆肥微生物及几种典型环境污染物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电化学方法是现代环境污染物以及环境微生物检测技术中新兴起来的一种,它以其独特的优势吸引着众多研究者的关注和兴趣。随着各学科知识的不断融合以及各种各样化学修饰电极的出现,电化学传感器的应用领域越来越广泛。堆肥是固体废物处理方法中一种很有效的生物方法,而堆肥的主要影响因素就是微生物,因而研究堆肥过程中的微生物的有关参数对有效控制堆肥效率起着至关重要的作用。随着社会和经济的发展,进入环境中的污染物越来越多,给人类的生存发展乃至整个地球生态系统带来毁灭性的灾难;污染物的种类繁多,而其中的重金属和持久性有机污染物的危害尤其严重,因而迫切需要能够在环境污染现场快速且准确地对它们进行定性或定量的检测分析手段。
     论文根据铜绿假单胞菌16S rRNA的特异性序列设计了一种发夹形DNA探针,两端分别标记荧光基团和淬灭基团,利用荧光共振能量转移的原理对与探针互补的人工合成的核苷酸链进行了检测。该探针显示出良好的特异性,在最佳实验条件下,发现在FAM最大发射波长处测得的荧光值与目标核酸的浓度呈一定线性关系,该探针的检测范围为0.1-50nM,最低检测限为0.02nM。从铜绿假单胞菌中用试剂盒提取总RNA,与探针反应,检测其中的16S rRNA特异性片段,得到较为满意的结果。
     论文将源于铜绿假单胞菌16S rRNA的特异性序列设计的发夹形DNA探针通过自组装固定在金电极表面,并以链霉亲和素-辣根过氧化物酶(HRP-SA)做电化学活性指示剂构建电化学传感器。优化实验条件后,得到该电化学DNA传感器的检测范围为0.05~100nM,宽于荧光法的检测范围(0.1-50nM),最低检测限为0.002nM,比荧光法的检测限(0.02nM)要低。培养铜绿假单胞菌,提取其总RNA后预处理,用该传感器对RNA进行检测,检测结果与紫外分光光度法的检测结果基本一致。
     论文在较低温度下(80℃)合成纳米二氧化钛/GO (TiO2/GO)复合材料,扫描电镜(SEM)的结果显示了该复合物的结构特点。把该复合材料分散在0.05%Nafion中,然后修饰玻碳电极来构建电化学传感器,通过方波伏安法(SWV)检测了有机污染物五氯酚(PCP),该传感器在2.5×10-9~1.0×10-7M范围内和在5.0×10-7-2.5×10-5M范围内分别得到线性关系,对PCP浓度的检出限为1.0×10-10M。用该电化学传感器对从堆肥中提取的样品进行了检测,采用标准加入法,得到较好的结果。
     论文用天然鳞片石墨制备了氧化石墨,并通过超声作用得到氧化石墨烯胶体,采用电化学还原法对修饰在玻碳电极表面的氧化石墨烯胶体进行还原,得到石墨烯修饰的电极,再修饰Nafion膜,然后预镀一层铋膜,用微分脉冲阳极溶出伏安法(DPASV)检测了痕量重金属铅和镉。实验结果表明,铅和镉在石墨烯/Nafion铋膜电极上能显示出灵敏的溶出峰,在最佳实验条件下,铅和镉的检出限分别为0.02μg/L和0.01μg/L。对市售新鲜小白菜叶中含有的铅和镉进行了检测,将检测结果与原子吸收光谱法的结果进行了比对,二者表现出一致。
Electrochemical method is a modern kind of technology in environmental pollutants and environmental microbial detection, it have attracted growing interests owing to its inherent unique advantages. With the continued integration of academic knowledge and the emergence of a variety of chemically modified electrodes, electrochemical sensor became more and more common in many areas. Compost is an effective biological method of solid waste disposal, one of the main influencing factors is the microorganisms. Thus, if want to control of the composting effectively, it is very important to study the correlation parameter of microorganisms in the composting process. With the social and economic development, more and more pollutants enter in our environment, which created a devastating disaster to human survival and development, even the whole ecosystems in the earth. Heavy metals and persistent organic pollutants (POPs) are two of the typical in multitudinous environmental pollutants, therefore, it have an urgent call for methods to detect the pollutants qualitative or quantitative rapidly and accurately in the in situ measurement.
     A hairpin-shaped DNA probe has been designed according to the special sequence of Pseudomonas aeruginosa16S rRNA gene. The probe modified a quencher (DABCYL) at its3'end and a carboxyfluorescein (FAM) at its5'end, then the probe detect its complementary strand based on the principle of fluorescence resonance energy transfer. The probe showed a good specificity, and also obtained a linear regression of fluorescence intensity vs. the logarithm of complementary strand concentration under the optimum condition. The detection range was0.1-50nM and detection limit was0.02nM. Total RNA isolated from Pseudomonas aeruginosa using the isolate kit, the16S rRNA was analyzed by this probe, showing a good result.
     An electrochemical DNA biosensor based on immobilizing the hairpin-shaped DNA probe on a gold electrode for Pseudomonas aeruginosa detection was developed, streptavidin-horseradish peroxidase (HRP) was used as electrochemical activity indicator. The probe modified with a biotin at its3'end and a thiol at its5'end was immobilized onto the gold electrode surface through self-assembly. Under the optimum condition, the detection range of the electrochemical sensor was0.05~100nM, and the detection limit was0.002nM, it is obviously better than the fluorescence method. The16S rRNA extracted from Pseudomonas aeruginosa was analyzed by this proposed sensor. The results were in agreement with the reference values deduced from UV spectrometric data. The biosensor was indicative of good precision, stability, sensitivity, and selectivity.
     TiO2-GO intercalated composite was prepared at a low temperature (80℃) with single and multi-layered graphite oxide mixture (GO) and titanium sulfate (Ti (SO4)2) as initial reactants. The surface morphology of TiO2-GO intercalated composite was characterized by Field Emission Scanning Electron Microscope (FE-SEM). TiO2-GO intercalated composite was dispersed in0.05%Nafion solution, for fabricating the electrochemical sensing platform to determine the pentachlorophenol (PCP) by square wave voltammetry (SWV). Under the optimum experiment conditions, the SWV oxidation peak current was linearly related to the concentration of PCP, ranging from2.5×10-9M to1.0×10-7M and from5.0×10-7M to2.5×10-5M, with a detection limit of1.0×10-10M. The practical application of the proposed methods was verified in the compost sample determination.
     Graphite oxide was prepared from natural flake graphite, and graphene oxide was obtained via sonication. The graphene was prepared from electrochemical reduction of graphene oxide on the glassy carbon electrode, and then the graphene/GCE was modified with Nafion. Bismuth film modified graphene/Nafion/GCE was prepared by ex-situ plating for the simultaneous determination of a trace level of Pb2+and Cd2+by differential pulse anodic stripping voltammetry (DPASV). Results showed that sensitive potential stripping peak was obtained for Pb2+and Cd2+with the proposed electrochemical sensor, under the optimum experiment conditions, the detection limit of Pb2+and Cd2+was0.02μg/L and0.01μg/L, respectively. The sensor was applied to determination of Pb2+and Cd2+in fresh cabbage leaves, comparing the result with that of atomic absorption spectrometry (AAS), the concordance of results was satisfactory.
引文
[1]Yogeswaran U, Chen S M. A review on the electrochemical sensors and biosensors composed of nanowires as sensing material. Sensors,2008,8: 290-313
    [2]刘灿,谢更新,汤琳,等.基因传感器在环境微生物功能基因检测中的应用.微生物学通报,2008,35(3):1-7
    [3]杨卫身,杨凤林,周集体.环境电化学:一个新的领域.见:中国化学会第六届应用化学学术会议论文集.常州:1999
    [4]Brett C M A. Electrochemical sensors for environmental monitoring. Strategy and examples. Pure and Applied Chemistry,2001,73:1969-1977
    [5]易清风,李东艳.环境电化学研究方法.北京:科学出版社,2006:11-12
    [6]常艳兵,何琼.预镀铋膜阳极溶出伏安法测定废水中微量铅和镉.分析科学学报,2010,26(4):423-426
    [7]Chen L J, Zeng G M, Zhang Y, et al. Trace detection of picloram using an electrochemical immunosensor based on three-dimensional gold nanoclusters. Analytical Biochemistry,2010,407(2):172-179
    [8]王舒然,公维磊,杜晓燕.预镀铋膜修饰铂电极差分脉冲溶出伏安法测定痕量铅、镉.分析化学研究报告,2008,36(2):177-181
    [9]Tang L, Zeng G M, Shen G L, et al. Sensitive detection of lip genes by electrochemical DNA sensor and its application in polymerase chain reaction amplicons from Phanerochaete chrysosporium. Biosensors and Bioelectronics, 2009,24(5):1474-1479
    [10]Liu C, Zeng G M, L T, et al. Electrochemical detection of pseudomonas aeruginosa 16s rRNA using a biosensor based on immobilized stem-loop structured probe. Enzyme and Microbial Technology,2011,49:266-271
    [11]Mao X, H J J, Xu X M, et al. Enzymatic amplification detection of DNA based on "molecular beacon" biosensors. Biosensors and Bioelectronics,2008,23(10): 1555-1561
    [12]章毅,曾光明,汤琳,等.基于磁性纳米粒子固定技术的漆酶传感器用于垃圾堆肥中邻苯二酚的检测.环境科学,2007,28(10):2320-2325
    [13]单联刚.用于纳米材料修饰的玻碳电极预处理方法的研究.科技创新导报,2006,36:26
    [14]谢友斌,刘红英,邓湘辉.二茂铁甲酸/L-半胱氨酸修饰金电极的制备及对抗坏血酸的电催化测定.安徽师范大学学报(自然科学版),2006,29(3):259-261
    [15]Economou A, Fielden P R. Mercury film electrodes:developments, trends and potentialities for electroanalysis. Analyst,2003,128:205-213
    [16]Orge E O, Neto M M M, M R M. A mercury-free electrochemical sensor for the determination of thallium (I) based on the rotating-disc bismuth film electrode. Talanta,2007,72(4):1392-1399
    [17]Economou A. Bismuth-film electrodes:recent developments and potentialities for electroanalysis. TrAC Trends in Analytical Chemistry,2005,24(4):334-340
    [18]Wang J. Stripping Analysis at Bismuth Electrodes:A Review. Electroanalysis, 2005,17:1341-1346
    [19]Xu H, Zeng L P, D H. A Nafion-coated bismuth film electrode for the determination of heavy metals in vegetable using differential pulse anodic stripping voltammetry:An alternative to mercury-based electrodes. Food Chemistry,2008,109(4):834-839
    [20]Wu Y H. Nano-TiO2/dihexadecylphosphate based electrochemical sensor for sensitive determination of pentachlorophenol. Sensors and Actuators B: Chemical,2009,137:180-184
    [21]Watkins B F, Behling J R, Miller L L, et al. Chiral electrode. Journal of the American Chemical Society,1975,97(12):3549-3550
    [22]Moses P R, Wier L, Murray R W. Chemically modified tin oxide electrode. Analytical Chemistry,1975,47(12):1882-1886
    [23]董绍俊,车广礼,谢远武.化学修饰电极.修订版.北京:科学出版社,2003
    [24]Kamau G N. Surface preparation of glassy carbon electrodes. Analytica Chimica Acta,1988,207:1-16
    [25]Stulik K. Activation of solid electrodes. Electroanalysis,1992,4(9):829-834
    [26]Kolthoff I M, Tanaka N. Rotated and stationary platinum wire electrodes. Analytical Chemistry,1954,26(4):632-636
    [27]Feng J X, Brazell M, Renner K, et al. Electrochemical pretreatment of carbon fibers for in vivo electrochemistry:effects on sensitivity and response time. Analytical Chemistry,1987,59(14):1863-1867
    [28]Mattusch J, Hallmeier K, Stulik K, et al. Pretreatment of glassy carbon electrodes by anodic galvanostatic pulses with a large amplitude. Electroanalysis,1989,1(5):405-412
    [29]李佳,徐金瑞,孙向英.壳聚糖共价键合化学修饰电极测定亚硝酸根.分析化学研究简报,2002,30(2):206-209
    [30]王志贤,王赪胤,胡效亚.O-羧甲基壳聚糖共价键合化学修饰电极的制备及伏安法测定多巴胺.南昌大学学报(理科版),2006,30:788-789
    [31]Quan D, Kim Y, Shin W. Characterization of an amperometric laccase electrodecovalently immobilized on platinum surface. Journal of Electroanaly-tical Chemistry,2004,561:181-189
    [32]Ligaj M, Jasnowska J, Musial M F. Covalent attachment of single-stranded DNA to carbon paste electrode modified by activated carboxyl groups. Electrochimica Acta,2006,51(24):5193-5198
    [33]郑浩.硫杂杯芳烃LB膜修饰电极的研究及分析应用:[郑州大学硕士学位论文].郑州:郑州大学分析化学,2006
    [34]董慧民.对烯丙基杯芳烃LB膜电流传感器的制备与电分析应用:[郑州大学硕士学位论文].郑州:郑州大学分析化学,2006
    [35]王非,魏笑晗,冶保献.Langmuir膜硫杂杯[4]芳烃修饰电极测定痕量银:第十届全国点分析化学学术会议,福州,2008
    [36]李清军,焦奎,孙伟,等.巯基自组装修饰恒电位共价键合法固定基因电化学传感器的制备与表征.青岛科技大学学报(自然科学版),2005,26(3):193-196
    [37]Ye Q, Zhou F, Liu W M. Bioinspired catecholic chemistry for surface modification. Chemical Society Reviews,2011,40:4244-4258
    [38]金灿灿.电化学DNA生物传感器的原理及应用.淮北职业技术学院学报,2006,5(3):81
    [39]Varela E, Martinez A T, Martinez M J. Southern blot screening for lignin peroxidase and aryl-alcohol oxidase genes in 30 fungal species. Journal of Biotechnology,2000,83:245-251
    [40]Gilligan K, Shipley M, Stiles B, et al. Identification of Staphylococcus aureus enterotoxins A and B genes by PCR-ELISA. Molecular and Cellular Probes, 2000,14:71-78
    [41]Li X M, Ju H Q, Du L P, et al. A nucleic acid biosensor for the detection of a short sequence related to the hepatitis B virus using bis (benzimidazole) cadmium(Ⅱ) dinitrate as an electrochemical indicator. Journal of Inorganic Biochemistry,2007,101:1165-1171
    [42]Lin X H, Wu P, Chen W, et al. Electrochemical DNA biosensor for the detection of short DNA species of Chronic Myelogenous Leukemia by using methylene blue. Talanta,2007,72:468-471
    [43]Niu S Y, Zhang S S, Wang L, et al. Hybridization biosensor using di (1,10-phenanthroline) (imidazo[f] 1,10-phenanthroline) cobalt(II) as electroche-mical indicator for detection of human immunodeficiency virus DNA. Journal of Electroanalytical Chemistry,2006,597:111-118
    [44]Cleuziat P, Robert B J. Specific detection of Escherichia coli and Shigella species using fragments of genes coding for β-glucuronidase. FEMS Micro-biology Letters,1990,72(3):315-322
    [45]Nagayama K, Bi Z, Oguchi T. Use of an alkalinephosphatase-conjugated oligonucleotide probe for the gene encoding the bundle-formingpilus of enteropathogenic Escherichia coli. Journal of Clinical Microbiology,1996,34: 2811-2821
    [46]Milcic-Terzic J, Lopez-Vidal Y, M V M, et al. Detection of catabolic genes in indigenous microbial consortia isolated from a diesel2contaminated soil. Bioresource Technology,2001,78:47-54
    [47]Siciliano S D, Germida J J, Banks K, et al. Changes in microbial community composition and function during a polyaromatic hydrocarbon phytoremediation field trial. Applied and Environmental Microbiology,2003,69:483-489
    [48]Aitichou M, Henken R, Sultana A M, et al. Detection of Staphylococcus aureus enterotoxin A and B genes with PCR-EIA and a hand-held electrochemical sensor. Molecular and Cellular Probes,2004,18:373-377
    [49]Baeumner A J, Cohen R N, Miksic V, et al. RNA biosensor for the rapid detection of viable Escherichia coli in drinking water. Biosensors & Bioelectronics,2003,18:405-413
    [50]Tercier M L, Buffle J. In situ voltammetric measurements in natural waters: future prospects and challenges. Electroanalysis,1993,5:187-200
    [51]Wang J. Stripping Analysis. New York:VCH Publishers,1985
    [52]Jorge E O, Neto M M M, Rocha M M. A mercury-free electrochemical sensor for the determination of thallium (Ⅰ) based on the rotating-disc bismuth film electrode. Talanta,2007,72:1392-1399
    [53]许春萱,吴志伟,曹凤枝,等.羧基化石墨烯修饰玻碳电极测定水样中的痕量铅和镉.冶金分析,2010,30(8):30-34
    [54]Li J, Guo S J, Zhai Y M, et al. Nafion-graphene nanocomposite film as enhanced sensing platform for ultrasensitive determination of cadmium. Electrochemistry Communications,2009,11:1085-1088
    [55]Braven J, Ebdon L, Frampton N C, et al. Mechanistic aspects of nitrate-selective elec-trodes with immobilised ion exchangers in a rubbery membrane. Analyst, 2003,128:1067-1072
    [56]Goff T L, Braven J, Ebdon L, et al. Automatic continuous river monitoring of nitrate using a novel ion-selective electrode. Journal of Environmental Monitoring,2003,5:353-358
    [57]Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science,2004,306:666-669
    [58]Fu C P, Kuang Y F, Huang Z Y, et al. Electrochemical co-reduction synthesis of graphene/Au nanocomposites in ionic liquid and their electrochemical activity. Chemical Physics Letters,2010,499:250-253
    [59]中国环境保护产业协会固体废物处理利用专业委员.我国固体废物处理利用行业2008年发展综述.中国环保产业,2009,9:19-23
    [60]王文安,杨萍,林桂英.城市固体废物处理现状与发展策略.河北建筑工程学院学报,2004,22(4):83-87
    [61]曾光明,黄国和,袁兴中,等.堆肥环境生物与控制.北京:科学出版社,2006
    [62]李国学,张福锁.固体废物堆肥化与有机复混肥生产.北京:化学工业出版社,2000:98-132
    [63]汤琳.环境污染控制过程高灵敏生物传感技术研究及其检测体系构建:[湖南大学博士学位论文].长沙:湖南大学环境科学与工程学院,2009
    [64]沈德中.污染环境的生物修复.北京:化学工业出版社,2002:48-49.
    [65]Miller R M. Bioremediation science and applications. Madison:Soil Science Special Publication,1995:33-54.
    [66]Desai J D, Banat I M. Microbial production of surfactants and their commercial potential. Microbiology and Molecular Biology Reviews,1997,61(1):47-64
    [67]Zhang B Y, Huang G H, Chen B. Production of biosurfactants in batch reactor for food waste composting. In:Almorza D, Brebbia CA, Sales D. Spain:Waste Management and the Environment,2003:131-140
    [68]Rosenberg E, Ron E Z. High- and low-molecular-mass microbial surfactants. Applied Microbiology and Biotechnology,1999,52(2):154-162
    [69]Mulligan C N, Yong R N, Gibbs B F. Surfactant-enhanced remediation of contaminatedsoil:A review. Engineering Geology,2001,60(1-4):371-380
    [70]Lang S. Biological amphiphiles (microbial biosurfactants). Current Opinion in Colloid & Interface Science,2002,7(1-2):12-20
    [71]曹斌,何松洁,夏建新.重金属污染现状分析及其对策研究.中央民族大学学报(自然科学版),2009,18(1):29-33
    [72]张宝杰.城市生态与环境保护.哈尔滨:哈尔滨工业大学出版社,2002
    [73]刘耀驰,高栗,李志光,等.湘江重金属污染现状、污染原因分析与对策探讨.环境保护科学,2010,36(4):26-29
    [74]尚英男,倪师军,张成江,等.成都市河流表层沉积物重金属污染及潜在生态风险评价.生态环境,2005,14(6):827-829
    [75]黄奕龙,王仰麟,岳隽.深圳市河流沉积物重金属污染特征及评价.环境污染与防治,2005,27(9):711-715
    [76]夏立江,李淑芹,朱瑞卫,等.环境化学.北京:中国环境科学出版社,2003
    [77]龙永珍,戴塔根,邹海洋.长沙、株洲、湘潭地区土壤重金属污染现状及评价.地球与环境,2008,36(3):231-236
    [78]蔡立梅,马瑾,周永章,等.东莞市农田土壤和蔬菜重金属的含量特征分析.地理学报,2008,9(9):994-1005
    [79]顾济沧,赵娟.云南省土壤重金属污染现状及治理技术研究.环境科学导刊,2010,29(5):68-71
    [80]Covaci A, Ryan J J, Schepens P. Chemosphere,2002,47(2):207-217
    [81]余刚,牛军峰,黄俊,等.持久性有机污染物.北京:科学出版社,2005
    [82]肖春艳,邰超,赵同谦,等.黄河湿地孟津段水体及沉积物中有机氯农药的分布特征.环境科学,2009,30(6):1614-1620
    [83]赵龙,侯红,郭平毅,等.海河干流及河口地区土壤中有机氯农药的分布特征.环境科学,2009,30(2):543-550
    [84]王琳,董铮,黄卫,等.镇江地区土壤中有机氯农药残留状况研究.环境监控与预警,2009,1(2):41-43
    [85]陈峰,王俊,游泳,等.福州蔬菜基地土壤中有机氯农药污染特征及其风险评价.热带作物学报,201 1,32(6):1185-1189
    [86]高乃媛,刘宪斌,田胜艳,等.天津临港工业区周围海域生物体内滴滴涕(DDTs)和六六六(HCHs)残留.海洋湖沼通报,2011(3):76-82
    [87]连子如,王江涛,谭丽菊,等.青岛近海生物体内多环芳烃多氯联苯和有机氯农药的含量和分布特征.生态毒理学报,2010,5(5):746-751
    [88]孙芳,黄云,刘志刚,等.鄱阳湖康山和湖口水域鱼、贝类体内有机氯农药残留现状.环境科学研究,2010,23(4):467-472
    [89]白有成,金海燕,卢勇,等.长江口嵊泗海域生物体内持久性污染物残留量及分布特征.海洋学研究,2011,29(3):162-168
    [90]Meyer A, Kleibohmer W. Determination of pentachlorophenol in leather using supercritical fluid extraction with in situ derivatization. Journal of Chromatography A,1995,718:131-139
    [91]Leblanc Y G, Gilbert R, J H. Determination of pentachlorophenol and its oil solvent in wood pole samples by SFE and GC with postcolumn flow splitting for simultaneous detection of the species. Analytical Chemistry,1999,71:78-85
    [92]Gremaud E, Turesky R J. Rapid analytical methods to measure pentachlorophenol in wood. Journal of Agricultural and Food Chemistry,1997, 45(4):1229-1233
    [93]Fischer W, Bund O, E H H. Thin-layer chromatographic analysis of phenols on TLC aluminium sheets RP-18 F254s. Fresenius'Journal of Analytical Chemistry, 1996,354:889-891
    [94]Shcrma J, McGinnis S C. Determination of pentachlorphenol and cymiazole in water and honey by C-18 solid phase extraction and quantitative HPTLC. Journal of Liquid Chromatography,1995,18:755-761
    [95]Mardones C, Palama J, Sepulveda C, et al. Determination of tribromophenol and pentachlorophenol and its metabolite pentachloroanisole in asparagus officinalis by gas chromatography/mass spectrometry. Journal of separation science,2003, 26:923-926
    [96]Agrawal O, Sunita G, Gupta V K. Sensitive spectrophotometric method for determining pentachlorophenol in various environmental samples. Journal of AOAC International,1998,81:803-807
    [97]Awawdeh A M, Harmon H J. Spectrophotometric detection of pentachloro-phenol (PCP) in water using immobilized and water-soluble porphyrins. Biosensors and Bioelectronics,2005,20(8):1595-1601
    [98]Costa S G, Nitschke M, Haddad R, et al. Production of pseudomonas aeruginosa LBI rhamnolipids following growth on Brazilian native oils. Process Biochemistry,2006,41:483-488
    [99]Thanomsub B, Pumeechockchai W, A L, et al. Chemical structures and biolo-gical activities of rhamnolipids produced by Pseudomonas aeruginosa B189 isolated from milk factory waste. Bioresource Technology,2006,98:1149-1153
    [100]Thavasi R, Subramanyam Nambaru V R M, Jayalakshmi S, et al. Biosurfactant production by azotobacter chroococcum isolated from the marine environment. Marine Biotechnology,2009,11:551-556
    [101]Ilori M O, Amobi C J, Odocha A C. Factors affecting biosurfactant production by oil degrading Aeromonas spp. isolated from a tropical environment. Chemos- phere,2005,61:985-992
    [102]Nitschke M, Pastore G M. Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava wastewater. Bioresource Technology, 2006,97:336-341
    [103]Tang L, Zeng G M, Shen G L, et al. Simultaneous amperometric determination of lignin peroxidase and manganese peroxidase activities in compost bioremediation using artificial neural networks. Analytica Chimica Acta,2006, 579:109-116
    [104]Banat I M, Makkar R S, Cameotra S S. Potential commercial applications of microbial surfactants. Applied Microbiology and Biotechnology,2000,53: 495-508
    [105]Dean S M, Jin Y, Cha D K, et al. Radosevich M. Phenanthrene degradation in soils co-inoculated with phenanthrene-degrading and biosurfactant-producing bacteria. Journal of Environmental Quality,2001,30:1126-1133
    [106]Rahman K S M, Banat I M, Thahira J, et al. Bioremediation of gasoline contaminated soil by a bacterial consortium amended with poultry litter, coir pith and rhamnolipid biosurfactant. Bioresource Technology,2002,81:25-32
    [107]Prabhu Y, Phale P S. Biodegradation of phenanthrene by Pseudomonas sp. strain PP2:novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation. Applied Microbiology and Biotechnology,2003,61:342-351
    [108]Sotirova A, Spasova D, Vasileva-Tonkova E, et al. Effects of rhamnolipid-biosurfactant on cell surface of Pseudomonas aeruginosa. Microbiology Research,2009,164:297-303
    [109]Shulga A, Karpenko E, Vildanova-Martsishin R. Biosurfactant-enhanced reme-diation of oil-contaminated environments. Adsorption Science & Technology, 2000,18:171-176
    [110]钟华,曾光明,黄国和,等.鼠李糖脂对铜绿假单胞菌降解颗粒有机质的影响.中国环境科学,2006,26(2):201
    [111]Tyagi S, Kramer F R. Molecular beacons:probes that fluoresce upon hybridi-zation. Nature Biotechnology,1996,14:303-308
    [112]Stryer L. Fluorescence energy transfer as aspectroscopic ruler. Annual Review of Biochemistry,1978,47:819-846
    [113]Li J J, Fang X, Schuster S, et al. Molecular beacons:a novel approach to detect protein-DNA interactions. Angewandte Chemie International Edition,2000,39: 1049-1052
    [114]Li J, Geyer R, Tan W. Using molecular beacons as a sensitive fluorescence assay for enzymatic cleavage of single-stranded DNA. Nucleic Acids Research, 2000,28(e52):1-5
    [115]Bockisch B, Grunwald T, Spillner E, et al. Immobilized stem-loop structured probes as conformational switches for enzymatic detection of microbial 16S rRNA. Nucleic Acids Research,2005,33:e101, doi:10.1093/nar/gni101
    [116]Choi B K, Wyss C, B G U. Phylogenetic analysis of pathogen-related oral spirochetes. Journal of Clinical Microbiology,1996,34:1922-1925
    [117]Schmalenberger A, Schwieger F, Tebbe C C. Effect of primers hybridizing to different evolutionarily conserved regions of the smallsubunit rRNA gene in PCR-based microbial community analyses and genetic profiling. Applied and Environmental Microbiology,2001,67:3557-3563
    [118]Clarridge Ⅲ J E. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clinical Microbiology Reviews,2004,17:840-862
    [119]Munson M A, Banerjee A, Watson T F, et al. Molecular analysis of the microflora associated with dental caries. Journal of Clinical Microbiology,2004, 42:3023-3029
    [120]Petti C A, Polage C R, Schreckenberger P. The role of 16S rRNA gene sequen-cing in identification of microorganisms misidentified by conventional methods. Journal of Clinical Microbiology,2005,43:6123-6125
    [121]Chakravorty S, Helb D, M B, et al. A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. Journal of Microbio-logical Methods,2007,69:330-339
    [122]Kohne D, Hogan J, Jonas V, et al. Novel approach for rapid and sensitive detection of microorganisms:DNA probes to RNA[M]/Washington DC American Society for Microbiology,1986:110-112.
    [123]London C J, Griffith L P. Characterisation of pseudomonads isolated from diseased fleece. Applied and Environmental Microbiology,1984,47:993-997
    [124]Sokol D L, Zhang X, Lu P, et al. Real time detection of DNA.RNA hybridization in living cells. Proceedings of the National Academy of Sciences of the United States of America,1998,95:11538-11543
    [125]Kostrikis L G, Tyagi S, Mhlanga M M, et al. Spectral genotyping of human alleles. Science,1998,279:1228-1229
    [126]Piatek A S, Tyagi S, Pol A C, et al. Molecular beacon sequence analysis for detecting drug resistance in Mycobacterium tuberculosis. Nature Biotechnology, 1998,16:359-363
    [127]Vet J A, Majithia A R, Marras S A, et al. Multiplex detection of four pathogenic retroviruses using molecular beacons. Proceedings of the National Academy of Sciences of the United States of America,1999,96:6394-6399
    [128]Xi C, Balberg M, Boppart S A, et al. Use of DNA and peptide nucleic acid molecular beacons for detection and quantification of rRNA in solution and in whole cells. Applied and Environmental Microbiology,2003,69:5673-5678
    [129]Brown L J, Brown T, Cummins J, et al. Molecular beacons attached to glass beads fluoresces upon hybridization to target DNA. Chemical communications (Cambridge, England),2000,7:621-622
    [130]Fang X, Liu X, Schuster S, et al. Designing a novel molecular beacon for surface-immobilized DNA hybridization studies. Journal of the American Chemical Society,1999,121:2921-2922
    [131]Wang H, Li J, Liu H, et al. Label-free hybridization detection of a single nucleotide mismatch by immobilization of molecular beacons on an agarose film. Nucleic Acids Research,2000,30:e61
    [132]Liu X J, Tan W H. A Fiber-Optic Evanescent Wave DNA Biosensor Based on Novel Molecular Beacons. Analytical Chemistry,1999,71:5054-5059
    [133]Fan C, Plaxco K W, Heeger A J. Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. Proceedings of the National Academy of Sciences,2003,100: 9134-9137
    [134]Huang Z F, Chen F, Bennett P A, et al. Single molecule junctions formed via au-thiol contact:stability and breakdown mechanism. Journal of the American Chemical Society,2007,129(43):13225-13231
    [135]Tang L, Zeng G M, Shen G L, et al. Rapid Detection of picloram in agricultural field samples using a disposable immunomembrane-based electrochemical sensor. Environmental Science & Technology,2008,42:1207-1212
    [136]Small J, Call D R, Brockman F J, et al. Direct detection of 16S rRNA in soil extracts by using oligonucleotide microarrays. Applied and Environmental Microbiology,2001,67:4708-4716
    [137]Herne T M, J T M. Characterization of DNA probes immobilized on gold surfaces. Journal of the American Chemical Society,1997,119(38):8892-8916
    [138]Castano-Alvarez M, Fernandez-Abedul M T, A C. Genosensor on gold films with enzymatic electrochemical detection of a SARS virus sequence. Biosensors and Bioelectronics,2005,20(11):2251-2260
    [139]Levicky R. Using self-assembly to control the structure of DNA monolayers on gold:A Neutron reflectivity Study. Journal of the American Chemical Society, 1998,120:9787-9792
    [140]Steel A B, Herne T M, J T M. Electrochemical quantitation of DNA immobilized on gold. Analytical Chemistry,1998,70(22):4670-4677
    [141]Nicewarner Pena S R, Raina S, Goodrich G P, et al. Hybridization and enzymatic extension of Au nanoparticle-bound oligonucleotides. Journal of the American Chemical Society,2002,124(25):7314-7323
    [142]Du H, Strohsahl C M, Camera J, et al. Sensitivity and specificity of metal surface-immobilized "molecular beacon" biosensors. Journal of the American Chemical Society,2005,127(21):7932-7940
    [143]Bard A J, Faulkner L R. Electrochemical Methods. Wiely,2000
    [144]Xie H, Zhang C, Z G. Amperometric detection of nucleic acid at femtomolar levels with a nucleic acid/electrochemical activator bilayer on gold electrode. Analytical Chemistry,2004,76:1611-1617
    [145]Hianik T, Gajdo V, Krivanek R, et al. Amperometric detection of DNA hybridization on a gold surface depends on the orientation of oligonucleotide chains. Bioelectrochemistry,2001,53:199-204
    [146]Caruana D J, Heller A. Enzyme-Amplified Amperometric detection of hybridization and of a single base pair mutation in an 18-Base oligonucleotide on a 7-μm-diameter microelectrode. Journal of the American Chemical Society, 1999,121:769-774
    [147]汤琳,曾光明,黄国和,等.辣根过氧化物酶生物传感器催化与抑制动力学研究.中国生物工程杂志,2004,11:70-75
    [148]Liu G D, Wu Z Y, Wang S P, et al. Renewable amperometric immunosensor for schistosoma japonium antibody assay. Analytical Chemistry,2001,73(14): 3219-3226
    [149]Rant U, Arinaga K, Fujita S, et al. Structural properties of oligonucleotide monolayers on gold surfaces probed by fluorescence investigations. Langmuir, 2004,20(23):10086-10092
    [150]Chen D, J L. Interfacial design and functionization on metal electrodes through self-assembled monolayer. Surface Science Reports,2006,61:445-463
    [151]Keith L, Telliard W. Priority pollutants:I-a perspective view. Environmental Science & Technology,1979,13:416-423
    [152]Jensen J. Chlorophenols in the terrestrial environment. Reviews of Environmental Contamination & Toxicology,1996,146:25-51
    [153]Domeno C, Munizza G, C N. Development of a solid-phase microextraction method for direct determination of pentachlorophenol in paper and board samples:Comparison with conventional extraction method. Journal of Chroma-tography A,2005,1095:8-15
    [154]王旭刚,孙丽蓉.五氯酚的污染现状及其转化研究进展.环境科学与技术,2009,32(8):93-100
    [155]IPCS (International Programme on Chemical Safety). Health and safety guide No.19 [DB/OL][EB/OL]. [2008-06-20]. http://www.inchem.org/documents /hsg/hsg/hsg019.html.
    [156]Wild S R, Harrad S J, Jones K C. Pentachlorophenol in the UK environment. Ⅰ. A budget and source inventory. Chemosphere,1992,24(7):833-845
    [157]Liu Y, Wen B, Q S X. Determination of pentachlorophenol in wastewater irrigated soils and incubated earthworms. Talanta,2006,69(5):1254-1259
    [158]Nascimento N R D, Nicola S M C, Rezende M O O, et al. Pollution by hexachlorobenzene and pentachlorophenol in the coastal plain of Sao Paulo State, Brazil. Geoderma,2004,121:221-232
    [159]Muir J, G E. PCP in the freshwater and marine environment of the European Union. The Science of the Total Environment,1999,236:41-56
    [160]Hong H C, Zhou H Y, Luan T G, et al. Residue of pentachlorophenol in freshwater sediments and human breast milk collected from the Pearl River Delta, China. Environment International,2005,31:643-649
    [161]Liu J L, Hu J Y, Wan Y, et al. Distribution of pentachlorophenol in sediments and water from Haihe and Bohai Bay. Environmental Chemistry,2006,25(5): 539-542
    [162]曲丽娟,鲜鸣,邹惠仙.固相微萃取-气相色谱法测定饮用水及其水源水中的氯酚.环境污染与防治,2004,26(2):154-157
    [163]Abbas M N, Mostafa G A E, A H A M. PVC membrane ion selective electrode for the determination of pentachlorophenol inwater, wood and soil using tetrazolium pentachlorophenolate. Talanta,2001,55:647-656
    [164]Keith B M, Coralie S, L J H T. Optimization and characterization of a flow injection electrochemical system for pentachlorophenol assay. Analytical Chemistry,1998,70:4134-4139
    [165]Guijarro E C, Yanez-Sedeno P, Carrazon J M P, et al. Voltammetric determina-tion of pentachlorophenol at a glassy carbon electrode. Analyst,1998,113: 625-627
    [166]Barrio M A R, P C J M. oltammetric determination of pentachlorophenol with a silica gel-modified carbon paste electrode. Fresenius'Journal of Analytical Chemistry,1992,344:34-38
    [167]Guijarro E C, Yanez-Sedeno P, Carrazon J M P, et al. Voltammetric determina-tion of pentachlorophenol at a glassy carbon electrode. Analyst,1998,113: 625-627
    [168]Codognoto L, Zuin V G, Souza D, et al. Electroanalytical and chromatographic determination of pentachlorophenol and related molecules in a contaminated soil:a real case example. Microchemical Journal,2004,77:177-184
    [169]William S, Hummers J, Richard E O. Preparation of Graphitic Oxide. Journal of the American Chemical Society,1958,80(6):1339
    [170]Kovtyukhova N I, Ollivier P J, Martin B R, et al. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chemistry of Materials,1999,11:771-778
    [171]Bourlinos A B, Gournis D, Petridis D, et al. Graphite oxide:chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir,2003,19:6050-6055
    [172]Bourlinos A B, Giannelis E P, Sanakis Y, et al. A graphite oxide-like carbo-genic material derived from a molecular precursor. Carbon,2006,44: 1906-1912
    [173]Jeong H K, Lee Y P, Lahaye R J W E, et al. Evidence of graphitic AB stacking order of graphite oxides. Journal of the American Chemical Society,2008,130: 1362-1366
    [174]Xu J Y, Hu Y, Song L, et al. Preparation and characterization of polyacry-lamide-intercalated graphite oxide. Materials Research Bulletin,2001,36: 1833-1836
    [175]Wang G C, Yang Z Y, Li X W, et al. Synthesis of poly(aniline-co-o-anisidine)-intercalated graphite oxide composite by delamination/reassembling method. Carbon,2005,43:2564-2570
    [176]Shen W C, Wen S Z, Z C N, et al. Expanded graphite-a new kind of biomedical material. Letter to the Editor/Carbon,1999,37:351-358
    [177]Rabin B, Liu P K Y, F S S. Intercalation of polypyrrole into graphite oxide. Synthetic Metals,2006,156:1023-1027
    [178]Zhang Q, He Y Q, Chen X G, et al. Structure and photocatalytic properties of TiO2-Graphene Oxide intercalated composite. Chinese Science Bulletin,2011, 56:331-339
    [179]Rabin B, Liu P K Y, White W, et al. Encapsulation of polyanilines into graphite oxide. Langmuir,2006,22:1729-1734
    [180]Liu Z, Robinson J T, Sun X M, et al. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. Journal of the American Chemical Society,2008,130:10876-10877
    [181]Sun X M, Liu Z, Welsher K, et al. Nano-graphene oxide for cellular imaging and drug delivery. Nano Research,2008,1:203-212
    [182]Yang X Y, Zhang X Y, Ma Y F, et al. Superparamagnetic graphene oxide-Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. Journal of Materials Chemistry,2009,19:2710-2714
    [183]Li L M, Du Z F, Liu S, et al. A novel nonenzymatic hydrogen peroxide sensor based on MnO2/graphene oxide nanocomposite. Talanta,2010,82:1637-1641
    [184]Qiu J D, Hyang J, P L R. Nanocomposite film based on graphene oxide for high performance flexible glucose biosensor. Sensors and Actuators B:Chemical, 2010:10-1016
    [185]Wu Y H. Nano-TiO2/dihexadecylphosphate based electrochemical sensor for sensitive determination of pentachlorophenol. Sensors and Actuators B: Chemical,2009,137:180-184
    [186]Marcano D C, Kosynkin D V, Berlin J M, et al. Improved synthesis of graphene oxide. ACSNano,2010,4:4806-4814
    [187]孙康,葛元新.电流型生物传惑器的研究进展.四川教育学院学报,2002,18(9):69-72
    [188]Scelza R, Rao M A, Gianfreda L, et al. Response of an agricultural soil to pentachlorophenol (PCP) contamination and the addition of compost or dissolved organic matter. Soil Biology and Biochemistry,2008,40:2162-2169
    [189]Yu Z, Zeng G M, Chen Y N, et al. Effects of inoculation with phanerochaete chrysosporium on remediation of pentachlorophenol-contaminated soil waste by composting. Process Biochemistry,2011,46:1285-1291
    [190]Nieman J K C, Sims R C, Sorensen D L, et al. Humic acid toxicity in biologically treated soil contaminated with polycyclic aromatic hydrocarbons and pentachlorophenol. Archives of Environmental Contamina-tion and Toxicology,2005,49(3):283-289
    [191]Li C C, Kang Q, Chen Y F, et al. Electrochemiluminescence of luminol on Ti/TiO2 NT electrode and its application for pentachlorophenol detection. Analyst,2010,135:2806-2810
    [192]Waisberg M, Joseph P, Hale B, et al. Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology,2003,192:95-117
    [193]Jarup L, Akesson A. Current status of cadmium as an environmental health problem. Toxicology and Applied Pharmacology,2009,238:201-208
    [194]Nogawa K, Yamada Y, Honda R, et al. The relationship between itai-itai disease among inhabitants of the Jinzu River basin and cadmium in rice. Toxicology Letters,1983,17:263-266
    [195]Li J, Guo S J, Zhai Y M, et al. High-sensitivity determination of lead and cadmium based on the Nafion-graphene composite film. Analytica Chimica Acta,2009,649:196-201
    [196]Fang G Z, Meng S M, Zhang G Z, et al. Spectrophotometric determination of lead in foods with dibromo-p-methyl-bromosulfonazo. Talanta,2001,54(4): 585-589
    [197]Wong ELS, Chow E, J G J. The electrochemical detection of cadmium using surface-immobilized DNA. Electrochemistry Communications,2007,9: 845-849
    [198]Saint'Pierre T D, Maranhao T A, Frescura V L A, et al. The development of a method for the determination of trace elements in fuel alcohol by electrothermal vaporization-inductively coupled plasma mass spectrometry using external calibration. Spectrochimica Acta Part B:Atomic Spectroscopy,2005,60(5): 605-613
    [199]Spano N, Panzanelli A, Piu P C, et al. Anodic stripping voltammetric determination of traces and ultratraces of thallium at a graphite microelectrode: Method development and application to environmental waters. Analytica Chimica Acta,2005,553:201-207
    [200]Das A K, Dutta M, Cervera M L, et al. Determination of thallium in water samples. Microchemical Journal,2007,86(1):2-8
    [201]Lukaszewski Z, Zembrzuski W, A P. Direct determination of ultratraces of thallium in water by flow-injection-differential-pulse anodic stripping voltammetry. Analytica Chimica Acta,1996,318(2):159-165
    [202]Ciszewski A, Wasiak W, Ciszewska W. Hair analysis. Part 2. Differential pulse anodic stripping voltammetric determination of thallium in human hair samples of persons in permanent contact with lead in their workplace. Analytica Chimica Acta,1997,343:225-229
    [203]Lu T H, Yang H Y, W S I. Square-wave anodic stripping voltammetric determination of thallium (Ⅰ) at a Nafion/mercury film modified electrode. Talanta,1999,49(1):59-68
    [204]Wang J, Lu J M, Hocoeevar S B. Bismuth-coated carbon electrodes for anodic stripping voltammetry. Analytical Chemistry,2000,72:3218-3222
    [205]Wang J, Lu J M, Kirgoz U A. Insights into the anodic stripping voltammetric behavior of bismuth film electrodes. Analytica Chimica Acta,2001,434(1): 29-34
    [206]Sun H Z, Li H Y, Sadler P J. Interactions of bismuth complexes with metallothionein (Ⅱ). The Journal of Biological Chemistry,1999,274: 29094-29101
    [207]Hutton E A, Elteren J T V, Ogorevc B, et al. Validation of bismuth film electrode for determination of cobalt and cadmium in soil extracts using ICP-MS. Talanta,2004,63:849-855
    [208]Kadara R, Tothill I. Stripping chronopotentiometric measurements of lead(Ⅱ) and cadmium(Ⅱ)in soils extracts and wastewaters using a bismuth film screen-printed electrode assembly. Analytical and Bioanalytical Chemistry, 2004,378(3):770-775
    [209]Kruusma J, Banks C K, C C R. Mercury-free sono-electroanalytical detection of lead in human blood by use of bismuth-film-modified boron-doped diamond electrodes. Analytical and Bioanalytical Chemistry,2004,379(4):700-706
    [210]Kefala G, Economou A, Voulgaropoulos A, et al. A study of bismuth-film electrodes for the detection of trace metals by anodic stripping voltammetry and their application to the determination of Pb and Zn in tapwater and human hair. Talanta,2003,61(5):603-610
    [211]Kefala G, Economou A, A V. A study of Nafion-coated bismuth-film electrodes for the determination of trace metals by anodic stripping voltammetry. Analyst, 2004,129(11):1082-1090
    [212]公维磊,杜晓燕,王舒然,等.预镀铋膜修饰铂电极差分脉冲溶出伏安法测定痕量铅、镉.分析化学研究报告,2008,36(2):177-181
    [213]王娜,董献堆.新型铋膜电极溶出伏安法测定痕量重金属元素.东北师大学 报(自然科学版),2008,40(3):93-96
    [214]Zhu C Z, Guo S J, Fang Y X, et al. Reducing sugar:new functional molecules for the green synthesis of graphene nanosheets. ACS Nano,2010,4:2429-2437
    [215]Geim A K, S N K. The rise of graphene. Nature Materials,2007,6:183-191
    [216]Pumera M, Ambrosi A, Bonanni A, et al. Graphene for electrochemical sensing and biosensing. TrAC Trends in Analytical Chemistry,2010,29(9):954-965
    [217]Avouris P, Chen Z, Perebeinos V, et al. Carbon-based electronics. Nature Nanotechnology,2007,2:605-615
    [218]Son Y W, Cohen M L, G L S. Half-metallic graphene nanoribbons. Nature,2006, 444:347-349
    [219]Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials. Nature,2006,442:282-286
    [220]Schedin F, Geim A K, Morozov S V, et al. Detection of individual gas molecules adsorbed on graphene. Nature Nanotechnology,2007,6:652-655
    [221]Sakhaee-Pour A, Ahmadian M T, Vafai A. Potential application of single-layered graphene sheet as strain sensor. Solid State Communications, 2008,147:336-340
    [222]Takamura T, Endo K, Fu L J, et al. Identification of nano-sized holes by TEM in the graphene layer of graphite and the high rate discharge capability of Li-ion battery anodes. Electrochimica Acta,2007,53(3):1055-1061
    [223]Novoselov K S, Jiang D, Schedin F, et al. Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences,2005,102:10451-10453
    [224]Guo H L, Wang X F, Qian Q Y, et al. A green approach to the synthesis of graphene nanosheets. ACS Nano,2009,3:2653-2659
    [225]Krolicka A, Pauliukaite R, Svancara I, et al. Bismuth film-plated carbon paste electrodes. Electrochemistry Communications,2002,4(2):193-196
    [226]Wang J, Lu J M, Hocevar S B, et al. Bismuth-coated screen-printed electrodes for stripping voltammetric measurements of trace lead. Electroanalysis,2001, 13(1):13-16
    [227]Chakrabarty D, Seth D, Chakraborty A, et al. Dynamics of Solvation and Rotational Relaxation of Coumarin 153 in Ionic Liquid Confined Nanometer-Sized Microemulsions. The Journal of Physical Chemistry B,2005, 109(12):5753-5758
    [228]Wang S F, Chen T, Zhang Z L, et al. Effects of hydrophilic room-temperature ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate on direct electrochemistry and bioelectrocatalysis of hemeproteins entrapped in agarose hydrogel films. Electrochemistry Communications,2007,9(7):1709-1714
    [229]Dreyer D R, Park S, Bielawski C W, et al. The chemistry of graphene oxide. Chemical Society Reviews,2010,39(1):228-240
    [230]Shao Y Y, Wang J, Engelhard M, et al. Facile and controllable electrochemical reduction of graphene oxide and its applications. Journal of Materials Chemistry, 2010,20(4):743-748
    [231]Agra-GutieArrez C, SuaArez M F, Compton R G. Optimization of mercury thin film electrodes for Sono-ASV studies. Electroanalysis,1999,11(1):16-22
    [232]方惠群,虞振兴.电化学分析.北京:原子能出版社,1984
    [233]于晶.铋膜碳电极阳极溶出伏安法的研究:[浙江大学硕士学位论文].杭州:浙江大学生物医学工程与仪器科学学院,2008
    [234]Legeai S, Soropogui K, Cretinon M, et al. Economic bismuth-film microsensor for anodic stripping analysis of trace heavy metals using differential pulse voltammetry. Analytical and Bioanalytical Chemistry,2005,383:839-847
    [235]Hoyer B, Florence T M, E B G. Application of polymer-coated glassy carbon electrodes in anodic stripping voltammetry. Analytical Chemistry,1987,59(13): 1608-1614
    [236]Wang J, Deo R P, Thongngamdee S, et al. Effect of surface-active compounds on the stripping voltammetric response of bismuth film electrodes. Electroanalysis,2001,13(14):1153-1156
    [237]Jia J B, Cao L Y, Wang Z H. Nafion/Poly(sodium 4-styrenesulfonate) mixed coating modified bismuth film electrode for the determination of trace metals by anodic stripping voltammetry. Electroanalysis,2007,19(17):1845-1849
    [238]Wenzel W W, F J. Accumulation of heavy metals in plants grown on mineralised soils of the Austrian Alps. Environmental Pollution,1999,104(1): 145-155

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700