用户名: 密码: 验证码:
具有微相分离结构防污涂层的设计、制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于海洋生物污损能够带来的巨大损失,防污涂层的研究一直是人们研究的热点。尤其是随着人们环保意识的提高,以及对海洋生物污损过程的深入了解,对于新型仿生防污涂层要求越来越多,进而开发了具有微相分离结构的仿生防污涂层。研究表明,具有微相分离结构的表面可以防止蛋白吸附,进而可以用来进行海洋生物防污。由于具有微相分离结构的共聚物体系较少,这种防污涂层尚处于研究阶段,对防污涂层制备技术和防污机理研究也不足。本文的基本思想是选用几种常见并且比较廉价的聚合物为链段模型,设计出不同体系的共聚物,并采用模拟方法预测各种共聚物涂层的微相分离结构;同时,利用化学方法合成所设计的共聚物,并对其进行微相分离结构以及防污性能研究。
     首先,本文选用几种常见廉价并且对海洋环境没有污染的共聚物为链段,分别设计了PDMS/PS嵌段共聚物、PMMA/PS随机共聚物及PMMA/PEG接枝共聚物,并利用耗散粒子动力学方法,对不同成分含量的三种共聚物分别进行了涂层表面微相分离结构的预测。对PDMS含量分别为10%、20%~90%的PDMS/PS嵌段共聚物涂层,PMMA含量分别为10%、20%~90%的PMMA/PS随机共聚物涂层,以及PMMA含量分别为10%、20%~50%的PMMA/PEG接枝共聚物涂层的微相分离结构预测结果均表明,随着共聚物中某一成分含量的增加,共聚物涂层的微相分离结构呈现从这一成分的颗粒状,到岛状,到双连续状,再到另一成分的岛状,颗粒状的变化规律。
     其次,根据所预测的涂层表面的微相分离结构,经过多次试验,制定了合理的化学合成工艺,并选用合适的原料成功地合成了PDMS含量分别为32%、41%和50%的PDMS/PS嵌段共聚物,PMMA含量分别为19%、62%、69%和84%的PMMA/PS随机共聚物,以及PEG含量分别为8%、10%和12%的PMMA/PEG接枝共聚物,并利用FT-IR、1H-NMR、UV和DSC等方法对所合成的共聚物进行了表征。同时利用旋转涂膜方法对各共聚物表面进行成膜,并利用轻敲模式AFM方法观察了涂层表面的形貌。结果表明,三种共聚物涂层表面的微相分离结构均与所预测的表面结构一致,均是以相对亲水的相为凸起的分散相,相对疏水的相为连续相形式分布,并且随着共聚物中相对亲水成分含量的增加,凸起的相区的尺寸有所增加。
     再次,对于所制备的共聚物涂层分别进行了润湿性和防污性能的研究。PDMS/PS、PMMA/PS及PMMA/PEG三种共聚物涂层的接触角测量的结果表明,共聚物涂层的润湿性主要取决于涂层的组成;其中PDMS/PS涂层的疏水性最强,PMMA/PS涂层次之,而PMMA/PEG具有亲水性;并且在每种共聚物涂层中,疏水性均随着疏水性强的链段的增加而增加。通过牛血清蛋白吸附试验及小新月菱形藻吸附试验,对PDMS/PS、PMMA/PS及PMMA/PEG三种共聚物涂层的防污性能的研究。结果表明,尽管三种共聚物涂层具有不同的表面疏水性及微相分离尺寸,但三种共聚物涂层均具有良好的防蛋白和藻类吸附的性能,并且防污性能相当。研究结果说明了三种涂层的防污性能不仅与涂层的亲疏水性有关,而且很大程度上取决于涂层表面的结构。
     最后,为深入研究共聚物涂层中微相分离结构与防污性能之间的关系,本文根据所测试的共聚物涂层的防污性能,从吸附物尺寸小于和大于材料表面微相分离结构两个角度,系统的研究了共聚物涂层的防污机理。揭示了本文中的三种共聚物表面结构与防污性能的关系,为其它具有微相分离结构材料的防污机理研究提供了依据。
The settlement of microorganisms as marine biofouling, has enormous harm upon shipsand other sea facilities. Playing an increasingly important role in marine organisms atifouling.Antifouling coatings become a hotspot of research interests nowadays. Antifouling coatingswith microphase separation structure were developed, with the improvement of people’sconsciousness of environment protection and the deeply understanding of marine foulingorganism mechanism. It is identified that the surfaces of coatings with microphase separationstructure have function in preventing the adsorption of proteins, thus they can be used inmarine pollution prevention. The basic thinking of the research is selecting some common andcheap polymers as chain segments to design a series of copolymers. At the same time, thesurface structures of the copolymers will be predicted. After that the copolymers will besynthesized and the surface structure and properties will be studied.
     Firstly, a series of common, cheap and no pollution to the marine environment polymerswere chosen as chain segments, and PDMS/PS block copolymer, PMMA/PS randomcopolymer and PMMA/PEG graft copolymer were designed respectively. Meanwhile, thesurface microphase structures of the copolymers with different components were forecastedby DPD method. The predicting results of PDMS/PS copolymer coatings with10%,20%~90%PDMS contents, PMMA/PS copolymer coatings with10%,20%~90%PMMAcontents, and PMMA/PEG copolymer coatings with10%,20%~90%PEG contents showedthat, with the increase of one segment in copolymers, the structure of the coatings changedfrom particle form to island form of one phase, then to bicontinuous structure, then to islandform and particle form of the other phase.
     Secondly, according to the prediction for the surface structure of the copolymers coatings,reasonable chemical synthesis processes were made. And PDMS/PS copolymers with32%,41%and50%PDMS contents, PMMA/PS copolymers with19%,62%,69%and84%PMMA contents and PMMA/PEG copolymers with8%,10%and12%PEG contents weresynthesized respectively. The copolymers were characterized by FT-IR,1H-NM, UV and DSCmethod. Copolymer coatings were prepared by spin-casting method, and surface structure of the coatings were studied by tapping mode AFM. It was showed that the surface structures ofthe coatings were consistent with the predictions. Thereinto the relatively hydrophilic phasewere dispersed phase, and relatibely hydrophobic phase were continuous phase. With theincrease of dispersed phase in copolymer coatings, the phase size increased.
     Thirdly, wettability and antifouling performance of copolymer coatings were studied.Water contact angle experiment was used to study the surface wettability of PDMS/PS,PMMA/PS and PMMA/PEG copolymers coatings. The results showed that the wettabiltiy ofthe coatings depended on the components of copolymers. The antifouling propertiesPDMS/PS, PMMA/PS and PMMA/PEG copolymer coatings were studied by bovine serumalbumin adsorption experiment and nitzschia closterium minutissima adsorption experiment.The results showed that the antifouling properties of copolymer coatings depent not only onthe wettability but also on the surface structure.
     Lastly, for further study of the relationship between the structures and antifoulingperformance, antifouling mechanism was studied from adsorption content size was less thanand more than the phase separation structure points of view. The antifouling performances ofthe copolymer coating in this paper were revealed by that mechanism, furthermore, thismechanism provided theory basis for other materials with micro phase separation structure inexplaining the antifouling performance.
引文
[1] Paul Handa, Camilla Fant, Magnus Nydén. Antifouling agent release from marinecoatings-ion pair formation/diddolution for controlled release. Progress in OrganicCoatings,2006,57:376-382
    [2] X.Q. Bai, G.T. Xie and H. Fan. Study on biominetic preparation of shell surfacemicrostructure for ship antifouling. Wear,2012, In Press
    [3] Andrew Turner. Marine pollution from antifouling paint particles. MarinePollution Bulletin,2010,60(2):159-171
    [4]马世宁,张占平.舰船防污涂层技术的发展现状与趋势.中国表面工程,2009,22(6):19-35
    [5]郑纪勇.海洋生物污损与材料腐蚀.中国腐蚀与防护学报,2010,3(2):171-176
    [6] Castaneda H., Bentton X.D. SRB-biofilm influence in active corrosion sitesformed at the steel-electrolyte interface when exposed to artificial seawatercondition. Corrosion Science,2008,50:1169-1183
    [7] Brito L.V. R., Coutinho R., Cavalcanti E.H.S., et al. The influence of macrofoulingon the corrosion behabiour of API-5L-X65carbon steel. Biofouling,2007,32(3-4):193-201
    [8] Melchers R., Jeffrey R. The critical involvement of anaerobic bacterial activity inmodeling the corrosion behaviour of mild steel in matine environments.Electrochim Acta,2008,54:80-85
    [9]胥震,欧阳清,易定和.海洋污损生物防除方法概述及发展趋势.腐蚀科学与防护技术,2012,24(3):192-198
    [10] Soren H. Seawater soluble pigments and their potential use in self polishingantifouling paints: simulation based screening tool. Progress in Organic Coatings,2002,45(4):423-434
    [11] S.M. Olsen, J.B. Kristensen, B.S. Laursen, et al. Antifouling effect of hydrogenperoxide release from enzymatic marine coatings: Exposure testing underequatorial and Mediterranean conditions. Progress in Organic Coatings,2010,68(3):248-257
    [12] Harold M. Horbund, Arnold Freiberger. Slime films and their role in marinefouling: A review. Ocean Engineering,1970,1(6):631-634
    [12] Shesdev Patro, D. Adhavan, Sweta Jha. Fouling diatoms of Andaman waters andtheir inhibition by spinal extracts of the sea urchin Diadema setosum. InternationalBiodeterioration&Biodegradation,2012,75:23-27
    [13]冯万亮,桂赤斌,周建奇.生物污损对舰船的危害及防污新技术.四川兵工学报,2009,30(11):129-132
    [14] Anthony D. Woolmington, John Davenport. pH and PO2Levels beneath marinemacro-fouling organisms. Journal of Experimental Martine Biology and Ecology,1983,66(2):113-124
    [15] Khalid Al-Muhanna, Khaled Habib. Marine bio-fouling of different alloysexposed to continuous flowing fresh seawater by electrochemical impedancespectroscopy. Journal of Saudi Chemical Society,2012, In Press
    [16]段东霞.污损生物附着机理及酶在生物防污中的应用.海洋科学,2011,35(7):107-112
    [17] Katherine A. Dafforn, John A. Lewis, Emma L. Johnston. Antifouling strategies:Histtory and regulation, ecological impacts and mitigation. Marine PollutionBulletin,2011,62(3):453-465
    [18]倪春花,于良民,赵海洲等.防污涂料及其防污性能的评价方法.上海涂料,2010,1:29-32
    [18]陈长春,项凌云,刘汉奇.海洋污损生物藤壶的附着与防除.海洋环境科学,2012,3(4):621-624
    [19] Jean Guezennec, Jean Marie Herry, Achraf Kouzayha, et al. Exopolysaccharidesfrom unusual marine environments inhibit early stages of biofouling. InternationalBiodeterioration&Biodegradation,2012,66(1):1-7
    [20] Asif Matin, Z. Khan, S.M.J. Zaidi, et al. Biofouling in reverse osmosismembranes for seawater desalination: Phenomena and prevention. Desalination,2011,281(17):1-16
    [21] R.A. Braithwaite, L.A. McEvoy. Marine Biofouling on Fish Farms and ItsRemediation. Advances in Marine Biology,2004,47:215-252
    [22] Mercedes Camps, Jean-Fran ois Briand, Linda Guentas-Dombrowsky, et al.Antifouling activity of commercial biocides vs. natural and natural-derivedproducts assessed by marine bacteria adhesion bioassay. Marine Pollution Bulletin,2011,62(5):1032-1040
    [23] Moshe Herzberg, Menachem Elimelech. Biofouling of reverse osmosismembranes: Role of biofilm-enhanced osmotic pressure. Journal of MembraneScience,2007,295(1-3):11-20
    [24]黄云涛,彭乔.海洋生物污损的防止方法及研究进展.全面腐蚀控制,2004,18(1):3-5
    [25] Jakob Broberg Kristensen, Rikke Louise Meyer, Brian S gaard Laursen, et al.Antifouling enzymes and the biochemistry of marine settlement. BiotechnologyAdvances,2008,26(5):471-481
    [26]杨玉臻,于良民,李霞等.基于低表面能树脂的海洋防污涂料的研究进展.材料导报,2012,26(6):96-100
    [27]邵静静,蔺存国,张金伟等.鲨鱼皮仿生防污研究.涂料工业.2008,38(10):39-41
    [28] L.D. Chambers, K.R. Stokes, F.C. Walsh, Modern approaches to marineantifouling coatings. Surface and Coating Technology,2006,201(6):3642-3652
    [29] Chelsea M. Magin, Scott P. Cooper, Anthony B. Brennan. Non-toxic antifoulingstrategies. Materials Today,2012,13(4):36-44
    [30]高海平;蔺存国;张桂玲等.表面微结构防污研究.涂料工业,2010,40(1):75-79
    [31] Kohler J., Hansen P.D. Wahl M. Colonization patterns at the substratum-waterinterface: how does surface microtopography influence recuitnent patterns ofsessile organisms. Bigouling,1999,14:237-248
    [32]黄硕,吴仲岿,易辉等.疏水型自清洁涂料的制备与性能研究.表面技术,2012,41(1):106-108
    [33]穆振军,]陈光章,任润桃等.铝壳舰船用防污涂层的性能评价.装备环境工程,2008,5(5):18-20
    [34]田军,薛群基.无毒防污涂层表面化学结构的研究.环境科学,1998,19(1):46-49
    [35]田军,薛群基.有机硅涂层表面能对海生物附着的影响.海洋学报,1998,20(5):61-64
    [36]于雷艳,陈正涛,王科等.无氧化亚铜自抛光防污涂料的研制.中国涂层,2010,7:52-54
    [37] Kenneth Schiff, Dario Diehl, Aldis Valkirs. Copper emissions from antifoulingpaint on rereational vessels. Marine Pollution Bulletin,2004,48(1-3):371-377
    [38]陈绍平,国耀东,康思波等.木质渔船用新型防污涂料的研制.中国涂料,2012,27(7):40-43
    [39] Hamid Monfared, Farhad Sharif. Design guidelines for development of tin-freeantifouling self-polishing coatings using simulation. Progress in Organic Coatings,2008,68(3):189-200
    [40]丁锐,李相波,王佳等.舰船长效防污涂层研究进展.腐蚀科学与防护技术.,2012,63(1):79-86
    [41] S. Ananda Kumar, T. Balakrishnan, M. Alagar, et al. Development andcharacterization of silicone/phosphorus modified epoxy materials and theirapplication as anticorrosion and antifouling coatings. Progress in OrganicCoatings,2006,55(3):207-217
    [42] Elisabete Almeida, Teresa C. Diamantino, Orlando de Sousa. Marine paints: Theparticular case of antifouling paints. Progress in Organic Coatings,2007,59(1):2-20
    [43] M.T. Davis, P.F. Newell, N.J. Quinn. TBT contamination of an artisanalsubsistence fishery in Suva harbour, Fiji. Ocean&Coastal Management,1999,42(6-7):591-601
    [44] S ren Kiil, Claus E. Weinell, Michael S. Pedersen, et al. Mathematical Modellingof a Self-Polishing Antifouling Paint Exposed to Seawater: A Parameter Study.Chemical Engineering Research and Design,2002,80(1):45-52
    [45] Bharat Bhushan, Kerstin Koch, Yong Chae Jung. Fabrication and characterizationof the hierarchical structure for superhydrophobicity and self-cleaning.Ultramicroscopy,2009,109(8):1029-1034
    [46]于良民.环境友好型丙烯酸树脂的合成及其在海洋防污涂料中的应用研究:
    [博士学位论文].青岛:中国海洋大学,2004
    [47] Elmer J. O Brien, Charles P. Monaghan, Mary L. Good. Determination oforganotin structures in antifouling coatings by m ssbauer spectroscopictechniques. Organometallic Polymers,1978,207-218
    [48] Dabid R. Dixon, Haydn Prosser. An investigation of the genotoxic effects of anorganotin antifouling compound(bis(tribulyltin)oxide) on the chromosomes of theedible mussel, Mytilus edulis. Aquatic Toxicology,1986,8(3):185-195
    [49] Lena Gipperth. The legal design of the international and European Union ban ontributyltin antifouling paint: Direct an indirect effects. Journal of EnvironmentalManagement,2009,90(Supplement1): S86-S95
    [50] Hervé Gueuné, Gérald Thouand, Marie-José Durand. A new bioassay for theinspection and indentiftcation of TBT-containing antifouling paint. MarinePollution Bulletin,2009,58(11):1734-1738
    [51] Michael A. Champ. A review of organotin regulatory strategies, pending actions,related costs and benefits. Science of the Total Environment,2000,258(1-2):21-27
    [52] Sangeeta Sonak, Prajwala Pangam, and Asha Giriyan, et al. Implications of theban on organotis for pretion of global coastal and marine ecology. Journal ofEnvironmental Management,2009,90(Supplement1): S96-S108
    [53] H. Okamura. Photodegradation of the antifouling compounds Irgarol1051andDiuron released from a commercial antifouling paint. Chemosphere,2002,48(1):43-50
    [54]徐经委,于良民,李霞等.自抛光防污涂层及评价技术的发展.涂料工业,2011,41(12):62-65
    [55]孙祖信,叶章基,吴诤等.利用导电涂膜防止舰船污损技术的研究.2001全国水环境腐蚀与防护学术交流会,2011
    [56]李永清,郑淑贞.有机硅低表面能海洋防污涂料的合成及应用研究.化工新型材料,2003,31(7):1-4
    [57] B.T. Watermann, B. Daehne, S. Sievers, R. Dannenberg. et al. Bioassays andselected chemical analysis of biocide-free antifouling coatings. Chemosphere,2005,60(11):1530-1541
    [58] Fabienne Fa, Estelle Renard, Valérie Langlois, et al. Development ofpoly(ε-caprolactone-co-l-lactide) and poly(ε-caprolactone-co-δ-valerolactone) asnew degradable binder used for antifouling paint. European Polymer Journal,2007,43(11):4800-4813
    [59]王彬,侯世忠,韩严等.海水电解防污用金属氧化物涂层阳极研究现状.材料开发与应用,1998,13(1):41-45
    [60] Evelyn Armstrong, Kenneth G Boyd, J.Grant Burgess. Prevention of marinebiofouling using natural compounds from marine organisms. BiotechnologyAnnual Review,2000,6:221-241
    [61] Fabienne Fa, David Carteau, Isabelle Linossier, et al. Evaluation ofanti-microfouling activity of marine paints by microscopical techniques. Progressin Organic Coatings,2011,72(3):579-585
    [62] Diego Meseguer Yebra, S ren Kiil, Kim Dam-Johansen, et al. Reaction rateestimation of controlled-release antifouling paint binders: Rosin-based systems.Progress in Organic Coatings,2005,53(4):256-275
    [63] David E. Jones, Andrew Turner. Bioaccessibility and mobilisation of copper andzinc in estuarine sediment contaminated by antifouling paint particles. Estuarine,Coastal and Shelf Science,2010,87(3):399-404
    [64] Mirta E. Stupak, Mónica T. Garc a, Miriam C. Pérez. Non-toxic alternativecompounds for marine antifouling paints. International Biodeterioration&Biodegradation,2003,52(1):49-52
    [65] Gui-bin Jiang, Ji-yan Liu, Ke-wu Yang. Speciation analysis of butyltincompounds in Chinese seawater by capillary gas chromatography with flamephotometric detection using in-situ hydride derivatization followed by headspacesolid-phase microextraction. Analytica Chimica Acta,2000,421(1):67-74
    [66]杜玉成,李岩凌,李洪义等.环氧改性丙烯酸自清洁防腐涂料制备与应用研究.中国涂料,2007,22(11):15-17
    [67] Nhuisec, Barthlottw. Characterization and distribution of water repellent,self-cleaning plan surface. Annals of Botany,2003,80:667-677
    [68] I. Francolini, F. Crisante, A. Martinelli, L. D’Ilario, A. Piozzi. Synthesis ofbiomimetic segmented polyurethanes as antifouling biomaterials. ActaBiomaterialia,2012,2(2):549-558
    [69] Jie Zhao, Qiang Shi, Shifang Luan, et al. Improved biocompatibility andantifouling property of polypropylene non-woven fabric membrane by surfacegrafting zwitterionic polymer. Journal of Membrane Science,2011,369(1-2):5-12
    [70] L.D. Chambers, C. Hellio, K.R. Stokes, S.P. Dennington, et al. Investigation ofChondrus crispus as a potential source of new antifouling agents. InternationalBiodeterioration&Biodegradation,2011,65(7):939-946
    [71] Zheng-Wei Dai, Fu-Qiang Nie, Zhi-Kang Xu. Acrylonitrile-based copolymermembranes containing reactive groups: Fabrication dual-layer biomimeticmembranes by the immobilization of biomacromolecules. Journal of MembraneScience,2005,264(1-2):20-26
    [72] Jeffrey L. Dalsin, Phillip B. Messersmith. Bioinspired antifouling polymers.Materials Today,2005,8(9):38-46
    [73] Qian Ma, Hui Zhang, Jiang Zhao, et al. Fabrication of cell outer membranemimetic polymer brush on polysulfone surface via RAFT technique. AppliedSurface Science,2012,258(24):9711-9717
    [74] Young Gun Ko, Peter X. Ma. Surface-grafting of phosphates onto a polymer forpotential biomimetic functionalization of biomaterials. Journal of Colloid andInterface Science,2009,330(1):77-83
    [75] F.J. Xu, K.G. Neoh, E.T. Kang. Bioactive surfaces and biomaterials via atomtransfer radical polymerization. Progress in Polymer Science,2009,34(8):719-761
    [76]王强,李昌诚,闫雪峰等.低表面能防污涂层技术及其评价方法.材料导报,2008,22(10):84-87
    [77]边蕴静.低表面能防污涂料的防污特性理论分析.中国涂料,2000,5:36-39
    [78] Graham P D., Joint I., Nevell T G., et al. Fluompolymer Films: Surface EnergyCharacteristics and Marine Anti-Fouling Performance[C].10th InternationalCongress on Marine Corrosion and Fouling. Australia: University of Melbourne,1999,29
    [79]熊圣东,王应席,黄丽君等.含氟两亲接枝共聚物的制备及其结晶行为.应用化学,2010,27(3):290-294
    [80] D. Chen, H.L. Jiang and K.J. Zhu. Synthesis, Characterization and degradation ofa novel class of fluorescent poly[1,3-bis(p-carboxyphenoxy) propane:p-(carboxyethylformamido) benzoic anhydride](P(CPP: CEFB)). EuropeanPolymer Journal,2005,41:107-113
    [81] P.M. Claesson, E. Blomberg and E.E. Kumachova, et al. Interactions betweenfluorocarbon surfaces in aqueous nonionic block copolymer solutions. Journal ofColloid and Interface Science,1991,147(1):129-136
    [82] Vadim M. Timoshenko, Alexander V. Tkachenko, Yuriy G. Shermolovich. A newmethod for the preparation of polyfluoroalkanedithiocarboxylates. Journal ofFluorine Chemistry,2005,126(3):361-364
    [83] Zoltán Szlávik,Antal Csámpai, and Marie Pierre Krafft, et al. The prepartion ofmethyl9-iodo-perfluorononanoate: an access to reverse fluorinated amphiphiles.Tetrahedron Letters,1997,38(50):8757-8760
    [84]田军,薛群基.含氟聚合物低表面能防污(蜡)功能涂层的研制及应用.塑料,1997,26(3):27
    [85]田军,徐锦芬,潘光明等.含氟聚合物及其应用.功能高分子学报,1995,8(4):504
    [86] Ameduri B., Boutevin B., Copolymerization of fluorinated monomers: recentdevelopments and future trends. Journal of Fluorine Chemistry,200,104(1):53-62
    [87]付铁柱,王海连,成佳辉. FEVE含氟树脂的结构和性能及含氟涂料的改性和应用.有机氟工艺,2011,4:24-28
    [88] Moore G. W., Zhu D. W., Pellerite M., et al. Water-borne crosslinkablefluorochemical coatings. Surface Coating International,1995,78(9):377-379
    [89] Li Y., Liu Y., Zou Y., et al. Effects of dispersants on dispersion of carbonnanotubes and properties of fluorocarbon resin nanocomposites. Journal ofMaterial Science,2008,43:3738-3741
    [90]马丽,安秋凤,许伟.水性氟碳涂料的制备及其性能.材料保护,2012,45(2):31-34
    [91] Stefano Turri, Massimo Scchitano, Giovanni Simeone, et al. Chemicalapproaches toward the definition of new high-solid and high-performancefluorocoatings. Progress in Organic Coating,1997,32(1-4):205-213
    [92] L.M. Levchenko, V.N. Mitkin, A.A. Galizky, et al. Synthesis andphysical-chemical properties of hydtolyzed nanosized mesoporous fluotocarbonmaterials and carbon-flotocarbon composites. Journal of Fluorine Chemistry,2011,132(12):1134-1145
    [93]于良民,王强,高红秋.有机氟低表面能涂料的研究进展.有机氟工业,2008,4:21-26
    [94] Robert F. Brady. Properties which influence marine fouling resistance inpolymers containing silicon and fluorine. Progress in Organic Coating,1999,35(1-4):31-35
    [95] S.M. Mirabedini, M. Mohseni, Sh. PazokiFard, et al. Effect of TiO2on themechanical and adhesion properties of RTV silicon elastomer coatings. Colloidsand Surfaces A: Physicochemical and Engineering Aspects,2008,317(1-3):80-86
    [96]高万振,刘秀生,刘兰轩.低氟含量低表面能自清洁氟碳涂料的研究.涂料涂装与电镀,2005,8:5-10
    [97] Xiaoli Zhu, Meng Zhang and Qingsi Zhang. Synthesis and characterization ofbis(methoxyl hydroxyl)-functionalized disiloxane and polysiloxane oligomersderivatives thereform. European Polymer Journal,2005,41:1993-2001
    [98]郭虹,于治洋.有机硅改性丙烯酸树脂低表面能防污涂料.沈阳化工大学学报,2011,25(2):97-100
    [99] L.F. Wang, Q. Ji, T.E. Glass, et al. Synthesis and characterization oforganosiloxane modified segmented polyether polyurethanes. Polymer,2000,41(13):5083-5093
    [100]杨清峰,翟金清,陈焕钦.有机硅该型聚氨酯的研究进展.涂料技术与文摘,2004,25(6):1-5
    [101] Kuniaki Satoh, Marek W. Urban. Stratification of polysiloxanes at the film-airand film-substrate interfaces in silicone-modified acrylic coatings, an ATR Fi-IRspectroscopic study. Progress in Organic Coating,1996,29(1-4):195-199
    [102]Fatima Joki-Lorpela, Tuula T. Pakkanen. Incorporation of polydimethylsiloxaneinto polyurethanes and characterization of copolymers. European Polymer Journal,2011,47(8):1694-1708
    [103]郭虹,王丹,郭红勇.防污涂料用丙烯酸树脂的合成研究.化学研究与应用,2008,20(4):499-502
    [104] Feng X.P., Zhong A.Y., Chen D.B., Preparation and properties of poly(silicone-co-acrylate)/montmorillonite nanocomposite emulsion. Journal ofApplied Polymer Science,2006,101(6):3963-3970
    [105]雷海波,罗运军,李晓萌等.有机硅改性聚氨酯的合成及微观结构与性能研究.北京理工大学学报,2011,31(10):1242-1246
    [106] Hamid J. N., Reza M. Synthesis and characterization of new polysiloxanebearing vinylic function and its application for the preparation ofpoly(silicone-co-acrylate)/montmorillonite nanocomposite emulsion. Progress inOrganic Coating,2011,70(1):32-38
    [107]严微,鲁琴,胡荣涛等.有机硅改性并西段酯涂料的性能研究.化学与生物工程,2011,28(9):32-35
    [108] Zhao Tiansheng, Tomokazu Takemoto, Noritatsu Tsubaki. Direct synthesis ofpropylene and light olefins from dimethyl ether catalyzed by modified H-ZSM-5.Catalysis Communications,2006,7:647-650
    [109]龙香丽,陈美玲,高宏等.新型氟硅改性环氧丙烯酸超疏水防污涂层研究.涂料工业,201,42(9):11-15
    [110] Martinelli Elisa, Glisenti Antonella, Gallot Bernard, et al. Surface propertied ofmesophase-forming fluorinated bicycloacrylate/polysiloxane methacrylatecopolymers. Macromolecular Chemistry and Physics,2009,2(10):1746-1753
    [111] Robert Kaplánek, Old ich Paleta, Ji i Michálek, et al. Perfluoroalkylateddiblock-alkyl methacrylate monomers for biomedical applications: Wettability oftheir copolymers with HEMA and DEGMA. Journal of Fluorine Chemistry,2005,126(4):593-598
    [112] Bernand Boutevin, Yves Pietrasanta. The synthesis and applications offluorinated silicones, notably in high-performances coatings. Progress in OrganicCoatings,1985,13(5):297-331
    [113]吴建宇,方红霞.仿生防污涂层的研究进展.黄山学院学报,2007,9(3):63-65
    [114] Yunhong Liu, Guangji Li. A new method for producing “Lotus Effect” on abiomimetic shark skin. Journal of Colloid and Inteface Science,2012,388:235-242
    [115] Karen L., Wooley. New nanoparticle coating mimics dolphin skin prevents‘biofouling’ of ship hulls. Science Blog,2002,10
    [116] Schumacher J.F., Aldred N., Callow Me, et al. Engineered antifoulingmicrotopographies-effect of feature size, geometry, and roughnesson settlement ofzoospores of the green alga Ulva. Biofouling,2007,23(1):55-62
    [117]虞兆年.防腐蚀涂料和涂装.第2版.北京:化学工艺出版社,2002
    [118] Marmur A. Superhydrophobicity fundamentals: implications to biofoulingprevention. Biofouling,2006,22(2):107-115
    [119] Vankooten T.G., Vonrecum A.F. Cell adhesion to textured silicone surfaces: theinfluence of time of adhesion and texture on focal contact and fibronectin fibrilformation. Tissue Engineering,1999,5:223-240
    [120] Bers A.V., Wahl M. The influence of natural surface microtopographies onfouling. Bifouling,2004,20(1):43-51
    [121] Berntsson K.M., Andreasson H., Jonsson P.R., et al. Reduction of barnaclerecruitment on micro-textured surfaces: analysis of effective topographiccharacteristics and evaluation of skin friction. Biofouling,2000,16:245-261
    [122] Sun Y., Guo S. Walker G.C., et al. Surface elastic modulus of barnacle adhesiveand release characteristics from silicone surfaces. Biofouling,2004,20(6):279-289
    [123] Bo H.E., Patan Kar N.A., Multiple equilibrium droplet shapesand designcriterion for rough drophobic surfaces. Langmuir,2003,19(12):4999-5003
    [124]周明,郑傲然,杨加宏.复制模塑法制备超疏水表面及其应用.物理化学学报,2007,23(8):1296-1300
    [125] Genzer. Tailoring the grafting density of organic modifiers at solid/liquidinterfaces: US,6423372B1[P].2006-06-23
    [126]郑傲然,周明,杨加宏.仿生超疏水表面的制备及润湿性研究.功能材料,2007,11(38):1874-1883
    [127]孙祖信,林仲华.导电涂膜表面微米尺度内痕量C1O^1浓度测定方法的研究.上海涂料,2001,39(2):3-7
    [128]宇佐美,王教源.用导电涂膜防止海洋生物附着的技术.涂料技术,1994,1:44-48
    [129]边蕴静.发展迅速的特种功能涂料.化工新型材料,2006, S1:14-18
    [130] Mukund P Sibi, Zhengang Zong. Determination of corrosion on aluminum alloyunder protective coatings using fluorescent probes. Progress in Organic Coating,2003,47(1):8-15
    [131]苗展展,姜晓辉,于良民等.二硫代二丙酰胺衍生物的合成、表征及其防污性能研究.涂料工业,2012,42(8):1-4
    [132] Morita M., Liu G.B., Yoneta N. Methoud for producing2-alkyl-4-isothiazoline-3-one: US,6740759[P].2004-05-25
    [133] Kim S.H., Park J.H., Kim J.M., et al. Method of preparing N, N’-disubstituted-3,3’-dithiodipropionamide and method of preparing substituted3-isothiazoloneby using the same: US,6506904[P].2003-01-14
    [134]姜晓辉,于良民,董磊等.4,5-二氯-2-甲氧基丙基-4-异噻唑啉-3-酮的合成及其防污性能的研究.涂料工艺,2006,36(10):5-7
    [135] Ulyana Kharchenko, Irina Beleneva, Elena Dmitrieva. Antifouling potential of amarine strain, Pseudomonas aeruginosa1242, isolated from brass microfouling inVietnam. International Biodeterioration&Biodegradation,2012,75:68-74
    [136] Giulio Zanaroli, Andrea Negroni, Cecilia Calisti, et al. Selection of commercialhydrolytic enzymes with potential antifouling activity in marine environments.Enzyme and Microbial Technology,2011,49(6-7):574-579
    [137] Umberto Bianchi, EnricoPedemonte, antomio Turturro. Morphology ofstyrene-butadiene-styrene block copolymer. Polymer.1970,11(5):266-276
    [138] Eli Ruckenstein Dennis Byungip Chung. Surface modification by a two-liquidprocess deposition of A-B block copolymers,1998,123(1):170-185
    [139] R.A. Phillips, S.L. Cooper. Phase separation in crystallizable multiblockpoly(ether-ester) copolymers with poly(tetramethylene isophthalate) hardsegments. Polymer,1994,35(19):4146-4155
    [140] Y. Feng, J.N. Hay. Phase separation in a commercial block propylene-ethylenecopolymer. Polymer,1998,39(21):5277-5280
    [141] Vladimir A. Izumrudov, Marina Yu. Gorshkova, Irina F. Volkova. Controlledphase separations in solutions of soluble polyelectrolyte complex of DIVEMA(copolymer of divinyl ether and maleic anhydride). European Polymer Journal,2005,41(6):1251-1259
    [142] R. Vukovi, G. Bogdani, A. Erceg, et al. Miscibility and phase separation studyof blends of random copolymers of poly[ortho(para)-fluorostyrene-co-ortho(para)-Bromostyrene] with phenylsuphonylated poly(2,6-dimethyl-1,4-phenylene oxide)copolymers by thermal methods. Thermochimica Acta,1996,285(1):141-154
    [143] Diego Meseguer Yebra, S ren Kiil, Kim Dam-Johansen. Antifoulingtechnology—past, present and future steps towards efficient and environmentallyfriendly antifouling coatings. Progress in Organic Coatings,2004,50(2):75-104
    [144]周文木,王孝杰,胡碧茹等.海洋污损生物粘附机制及防污涂层表面工程.应用化学,2010,27(9):993-997
    [145] Diego Meseguer Yebra, S ren Kiil, Claus E. Weinell, et al. Effects of marinemicrobial biofilms on the biocide release rate from antifouling paints—Amodel-based analysis. Progress in Organic Coatings,2006,57(1):56-66
    [146] Ping Yang, Xinhong Yu, Yanchun Han. Transition between crystallization andmicrophase separation in PS-b-PEO thin film influenced by solvent vaporselectivity. Polymer,2010,51(21):4948-4957
    [147] Michael Schulz, Harry L. Frisch. Microphase separation transition in uniformdeformed interpenetrating polymer networks. Computational and TheoreticalPolymer Science,1997,7(2):85-94
    [148]何淑漫,周健.抗凝血生物材料.化学进展,2010,22(4):760-772
    [149] Pierandreal Lo Nostro. Phase separation properties of fluorocarbons,hydrocarbons and their copolymer. Advances in Colloid and Interface Science,1995,56:245-287
    [150] Efrosyni Themistou, Costas S. Patrickions. Synthesis and characterization ofamphiphilic star copolymers of2-(dimethylamino)ethyl methacrylate and methylmethacrylate: Effects of architecture and composition. Ruropean Polymer Journal,2007,43(1):84-92
    [151] T. Kajiyama, K. Tanaka, S.R. Ge, et al. Morphology and mechanical propertiesof polymer surfaces via scanning force microscopy. Progress in Surface Science,1996,52(1):1-52
    [152] A.A. Khaydarov, I.W. Hamley, Thomas M. Legge, et al. Surface structure ofthin asymmetric PS-b-PMMA diblock copolymers investigated by atomic forcemicroscopy. European Polymer Journal,2007,43(3):789-796
    [153] Jacques G. Archambault, John L. Brash. Protein resistant polyurethane surfacesby chemical grafting of PEO: amino-terminated PEO as grafting reagent. Colloidsand Surfaces B: Biointerfaces,2004,39(1-2):9-16
    [154] Murthy S. Gudipati, Johannes Daverkausen, Michael Maus, et al. Higherelectronically excited states of phenanthrene, carbazole and fluorine. ChemicalPhysics,1994,186(2-3):289-301
    [155] Li-Chong Xu, Christopher A. Siedlecki. Submicron–textured biomaterialsurface reduces staphylococcal bacterial adhesion and biofilm formation. ActaBiomaterialia,2012,8(1):72-81
    [156] Jian Huang, Kaisogn Zhang, Kun Wang, et al. Fabrication ofpolyethersulfone-mesoporous silica nanocomposite ultrafiltration membranes withantifouling properties. Journal of Membrane Science,2012,423-424:362-370
    [157]李吕辉,赵国良.嵌段共聚物微观分相理论.大连工学院学报,1980,19(1):1-13
    [158] Rustum Choksi, Xiaofeng Ren. Onteh derivation of a density theory formicrophase separation of diblock copolymers. Journal of Statistical Physics,2003,113(1-2):151-176
    [159] L. Porcar, W.A. Hamilton, P.D. Butler, et al. Relaxation of a shear-inducedlamella phase measured with time-resolved small-angle neutron scattering.Physica B: Condensed Matter,2004,350(1-3): E963-E966
    [160]王辰伟,张倩,李艳星等. PS-b-PDMS/环氧树脂制备疏水性环氧涂层的性能.高分子材料科学与工程,2010,26(3):149-15
    [161] M.J. Ko, S.H. Kim, W.H. Jo. The effects of copolymer architecture on phaseseparation dynamics of immiscible homopolymer blends in the presence ofcopolymer: a Monte Carlo simulation. Polymer,2000,41(16):6387-6394
    [162] N. Ghaouar, A. Gharbi. Kinetics of microphase separation of ramified polymernetwork of arbitrary topology. Physica A: Statistical Mechanics and itsApplications,2006,363(2):334-342
    [163] Nariya Uchida. Numerical study of microphase separation in gels and randommedia. Physics Letters A,2004,328(2-3):201-206
    [164]张旭茗,李莉,张玉. PEG-b-PDMS-b-PEG微相分离结构的耗散粒子动力学模拟.哈尔滨工程大学学报,2012,33(6):782-786
    [165] M. Karbarz, Z. Stojek, T.K. Georgiou. Microphase separation in ABA triblockcopolymer-based model conetworks in the bulk: Effect of loop formation. Polymer,2006,47(14):5182-5186
    [166] Jian Feng, Honglai Liu, Ying Hu. Micro-phaxe separation of diblock copolymerin a nanosphere: dissipative particle dynamics approach. Fluid Phase Equilibria,2007,261(1-2):50-57
    [167]徐毅,冯剑.星型两嵌段共聚物高分子薄膜微相分离的耗散粒子动力学模拟.上海大学学报(自然科学版),2010,16(5):476-481
    [168] Kai Zhang, Charles W. Manke. Simulation of diblock copolymer melts byDissipative Particle Dynamics. Computer Physics Communications,2000,129(1-3):275-281
    [169] Alexei R. Khokhlov, Pabel G. Khalatur. Microphase separation in diblockcopolymers with amphiphilic block: local chemical structure can dictate globalmorphology. Chemical Physics Letters,2008,461(1-3):58-63
    [170] Ching-I. Huang, Hsu-Tung Yu. Microphase and molecular conformation of AB2miktoarm star copolymers by dissipative particle dynamics. Polymer,2007,48(15):4537-4546
    [171] Irina V. Neratova, Pavel G. Khalatur and Alexei R. Khokhlov. A novel strategyfor controlling the orientation of cylindrical domains in thin blend copolymerfilms via ‘double phase separation’. Chemical Physics Letter.2010,487(4-6):297-302
    [172] Xin Dong Guo, Jeremy Pang Kern Tan, Li Juan Zhang, Majad Khan, ShaoQiong Liu, Yi Yan Yang and Yu Qian. Phase behavior study of paclitaxel loadedamphiphilic copolymer in two solvents by didipative particle dynamicssimulations. Chemical Physics Letters.2009,473(4-6):336-342
    [173] Alexey A. Gavrilov, Yaroslav V. Kudryavtsev, Oavel G. Khalatur, et al.Microphase separation in regular and random copolymer melts DPD simulations.Chemical Phaysics Letters,2011,503(4-6):277-282
    [174]张艳军,张钰英,王艺峰等.含氟丙烯酸树脂与苯乙烯共聚物的RAFT合成及表征.高分子学报,2010,12:1437-1442
    [175] Hongxia Fang, Shuxue Zhou, Limin Wu. Microphase separation behavior on thesurfaces of PEG–MDI–PDMS multiblock copolymer coatings. Applied SurfaceScience,2006,253(5):2978-2983
    [176] Jong Kwan Lee, Ji Seon Kim, Hae Jin Lim, et al. Microphase separation andcrystallization in mixtures of polystyrene–poly(methyl methacrylate) diblockcopolymer and poly(vinylidene fluoride). Polymer,2006,47(15):5420-5428
    [177] Seda Aydin, Tuba Erdogan, Dolunay Sakar, et al. Detection of microphaseseparation in poly(tert-butyl acrylate-b-methyl methacrylate synthesized via atomtransfer radical polymerization by inverse gas chromatography. European PolymerJournal,2008,44(7):2115-2122
    [178]刘晓磊,张春庆,李杨等.聚合机理转移法制备PMMA-PB-PMMA三前段共聚物.高分子通报,2010,8:46-50
    [179] Zhai Maolin, Ha Hongfei, Wu Jilan. Radiation synthesis of a water-solubletemperature sensitive polymer, activated copolymer and applications inimmobilization of proteins. Radiation Physics and Chemistry,1993,42(4-6):919-922
    [180] Yusuf Yagci, M. Atilla Tasdelen. Mechanistic transformations involving livingand controlled/living polymerization methods. Progress in Polymer Science,2006,31(12):1133-1170
    [181]陈洁,聂小安,常侠等.聚丙烯酸共聚物的合成与应用.精细石油化工进展,2012,13(2):35-39
    [182] Yan Sui, Zhining Wang, Xueli Gao, et al. Antifouling PVDF ultrafiltrationmembranes incorporating PVDF-g-PHEMA additive via atom transfer radicalgraft polymerizations. Journal of Membrane Science,2012,413-414:38-47
    [183] Yiwang Chen, Qilan Deng, Jichun Xiao, et al. Controlled grafting frompoly(vinylidene fluoride) microfiltration membranes via reverse atom transferradical polymerization and antifouling properties. Polymer,2007,48(26):7604-7613
    [184] Marli L.T. Sordi, Izabel C. Riegel, Marco A. Ceschi, et al. Synthesis of blockcopolymers based on poly(2,3-epithiopropylmethacrylate) via RAFTpolymerization and preliminary investigations on thin film formation. EuropeanPolymer Journal,2010,46(2):336-344
    [185]任丽霞,陈永明.4-PEG接枝苯乙烯-马来酸酐交替共聚物的合成及功能化.中国科学:B辑,2009,9:950-958
    [186] Xiuqiang Xin, Yanmei Wang, Wei Liu. Synthesis of zwitterionic blockcopolymers via RAFT polymerization. European Polymer Journal,2005,41(7):1539-1545
    [187] Chen-Mei Guan, Zheng-Hong Luo, Jing-Jing Qiu, et al. Novel fluorosiliconetriblock copolymers prepared by two-step RAFT polymerization: Synthesis,characterization, and surface properties. European Polymer Journal,2010,46(7):1582-1593
    [188]李宁,丁建明,董岸杰等.二醋酸纤维素接枝聚甲基丙烯酸甲酯的合成与表征.化学工业与工程,2012,29(4):11-14
    [189]蔡湘雯,肖安国.新型星形聚膦腈基杂臂聚合物的合成.湖南文理学院学报:自然科学版,2012,24(2):34-39
    [190]洪春雁,潘才元.用大分子引发剂法制备嵌段共聚物.化学通报,2004,67(4):246-256
    [191] Lyudmila M. Bronstein, Irina A. Khotina and Dmitri M. Chemyshov, et al.Morphology of hybrid polystyrene-block-poly(ethylene oxid) micelles: Analyticalultracentrifugation and SANA studies. Journal of Colloid and Interface Science,2006,299(2):944-952
    [192]罗婕,义建军,胡杰等.嵌段共聚物合成方法研究进展.化工新型材料,2010,38(4):10-12,19
    [193] Nam Seob Baek, Yong Hee Kim and Young Hwan, et al. Fine neurite partternsfrom photocrosslinking of cell-repellent benzophenone copolymer. Journal ofNeuroscience Method,2012,2010(2):161-168
    [194] Di Hu, Sixun Zheng. Reaction-induced microphase separation inpolybenzoxazine thermosets containing poly(N-vinyl pyrrolidone)-block-polysty-rene diblock copolymer. Polymer,2010,51(26):6346-6354
    [195] Lan Huang, Hai Yuan, Dongbai Zhang, et al. Controlled microphase separatedmorphology of block polymer thin film and an approach to prepare inorganicnanoparticles. Applied Surface Science,2004,225(1-4):39-46
    [196] Attila Bonyár, László Milán Molnár, Gábor Harsányi. Localization factor: Anew parameter for the quantitative characterization of surface structure withatomic force microscopy (AFM). Micron,2012,13(2-3):305-310
    [197] Sadhana Sharma, Robert W Johnson, Tejal A Desai. XPS and AFM analysis ofantifouling PEG interfaces for microfabricated silicon biosensors. Biosensors andBioelectronics,2004,20(2):227-239
    [198] H. Wang, A.B. Djuri i, W.K. Chan, M.H. Xie, et al. Factors affecting phase andheight contrast of diblock copolymer PS–b-PEO thin films in dynamic force modeatomic force microscopy. Applied Surface Science,2005,252(4):1092-1100
    [199]林安,周苗银.功能性防腐蚀涂料及应用.第1版.北京:化学工艺出版社,2004
    [200] Trentin Ilva, Romairone Virone Vittorion, Marcenaro Giuseppe, et al. Quick testmethods for marine antifouling paints. Progress in Organic Coatings,2001,42(1-2):15-19
    [201] Yebra D.M., Kill S., Weinell C.E., et al. Parametric study of tin-free antifoulingmodel paint behavior using rotary experiments. Ind.Eng. Chem. Res.,2006,45(5):1636-1649
    [202]徐东,周宁琳,沈健.蛋白吸附的光谱分析方法及其对生物材料的合成指导.光谱学与光谱分析,2010,12:3281-3284
    [203]周俊晖,吴起,刘和文.含1,2,3-三氮唑官能团嵌段共聚物的制备及其对蛋白质的吸附.应用化学,2012,29(5):515-519
    [204] Sacha H., Wolfgang E., Sven R., et al. Factors the determine the proteinresistance of Oligoether slf-assembled monolayers-internal hydrophilicity,terminal hydrophilicity, and lateral packing density. J. Am. Chem. Soc.,2003,125(31):9359-9366
    [205] Franck Cassé, Geoffrey W. Swain. The development of microfouling on fourcommercial antifouling coatings under static and dynamic immersion.International Biodeterioration&Biodegradation,2006,57(3):179-185
    [206] Dmitry A. Fedosov, Igor V. Pivkin, George Em Karniadakis. Velocity limit inDPD simulations of wall-bounded flows. Journal of Computational Physics,2008,227(4):2540-2559
    [207] Yiming Li, Guiying Xu, Yuxia Luan, et al. Studies on the interaction betweentetradecyl dimethyl betaine and sodium carboxymethyl cellulose by DPDsimulations. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2005,257-258:385-390
    [208] Zhonglin Luo, Jianwen Jiang. pH-sensitive drug loading/releasing inamphiphilic copolymer PAE–PEG: Integrating molecular dynamics anddissipative particle dynamics simulations. Journal of Controlled Release,2012,162(1):185-193
    [209]石琴.倍半硅氧烷及其复合材料的分子模拟和性质:[硕士学位论文].北京:北京化工大学,2008
    [210] Samu Hemmil, Juan V. Cauich-Rodríguez, Joose Kreutzer, et al. Rapid, simple,and cost-effective treatments to achieve long-term hydrophilic PDMS surfaces.Applied Surface Science,2012,258(24):9864-9875
    [211] Cheng Luo, Fang Meng, Anand Francis. Fabrication and application ofsilicon-reinforced PDMS masters. Microelectronics Journal,2006,37(10):1036-1046
    [212] Pardis Moradi Shehni, Abtin Ebadi Amooghin, Ali Ghadimi, et al. Modeling ofunsteady-state permeation of gas mixture through a self-synthesized PDMSmembranes. Separation and Purification Technology,2011,76(3):385-399
    [213] Jinge Li, Huayi Li, Chunhong Wu, et al. Morphologies, crystallinity anddynamic mechanical characterizations of polypropylene/polystyrene blendscompatibilized with PP-g-PS copolymer: Effect of the side chain length. EuropeanPolymer Journal,2009,45(9):2619-2628
    [214] Jennifer Tata, Dominique Scalarone, Massimo Lazzari, et al. Control ofmorphology orientation in thin films of PS-b-PEO diblock copolymers andPS-b-PEO/resorcinol molecular complexes. European Polymer Journal,2009,45(9):2520-2528
    [215] T.H Andersen, S Tougaard, N.B Larsen, K Almdal, et al. Surface morphology ofPS–PDMS diblock copolymer films. Journal of Electron Spectroscopy andRelated Phenomena,2001,121(1-3):93-110
    [216]吴宁晶,黄礼侃,郑安吶.聚苯乙烯/聚二甲基硅氧烷接枝共聚物的合成及性能.华东理工大学学报(自然科学版),2005,31(5):606-611
    [217]杨鹏,徐之光,蒋姗等.三嵌段共聚物PS-b-PEG-b-PS与聚苯乙烯共混薄膜的表面形貌与性能研究.高校化学工程学报,2012,26(3):511-516
    [218] Chien-Hong Lin, Win-Chun Jao, Yi-Hsing Yeh, Wen-Ching Lin, Ming-ChienYang: Hemocompatibility and cytocompatibility of stryenesulfonate-graftedPDMS-polyurethane-HEMA hydrogel, Colloids and Surfaces B: Biointerfaces,70(2009)132-141
    [219] E. Elif hamurcu, Baki Hazer, B.M. Baysal: Polystyrene-b-polydimethyl siloxane(PDMS) multicomponent polymer networks: styrene polymerization withmacromonomeric initiators (macroinimers) having PDMS units, Polymer,38(1997)2981-2987
    [220]朱诚身.聚合物结构分析.第2版.北京:科学出版社,2010
    [221] Feng Libang, Fang Hongxia, Zhou Shuxue: Synthesis and surfacecharacterization of poly (methylmethacrylate)-block-polydimethylsiloxanecopolymers from macroazointiator, Journal of Applied Polymer Science,2007,104:3356-3366
    [222] Lei Wang, Sixun Zheng: Morphology and thermomechanical properties ofmain-chain polybenzoxazine-block-polydimethylsiloxane multiblock copolymers,Polymers2010,51:1124-1132
    [223] I.S. Elashmawi, N.A. Hakeem, E. M. Abdelrazek. Spectroscopic and thermalstudies of PS/PVAc blends. Physica B: Condensed Matter,2008,403(19-20):3547-3552
    [224] B. Smitha, S. Sridhar, A.A. Khan. Synthesis and characterization of protonconducting polymer membranes for fuel cells, Journal of Membrane Science2003,225:63-76
    [225] Su Bitao, Ma Zhangying, Min Shixiong, et al. Preparation of TiO2/PS complexnanoparticles. Materials Science and Engineering: A,2007,458(1-2):44-47
    [226]周宁琳,夏小仙. PDMS-g-MMA-AN耐油性能的研究.橡胶工业,2002,49(5):272-273
    [227] Jian Gao, Xiaoting Fu, Mingming Ding, et al. Studies on partial compatibility ofPP and PS. Chinese Journal of Polymer Science,2010,4:647-656
    [228] Min Yong Lee, Seung Ho Kim, Hullathy Subban Ganapathy, et al.Characterization of micellar film morphologies of semifluorinated blockcopolymers by AFM, Ultramicroscopy,2008,108:1210-1214.
    [229]吴宁晶,郑安呐,姚文斌等.聚苯乙烯/聚二甲基硅氧烷嵌段共聚物的表面形态研究.高分子学报,2006,7:885-8912
    [230]史林启,许观藩.含有机硅三元多嵌段共聚物表面的研究.应用化学,1998,15(1):33-36
    [231] Emilienne M. Zuyderhoff, Caroline M. Dekeyser, Paul G. Rouxhet, et al. AnAFM, XPS and wettability study of the surface heterogeneity ofPS/PMMA-r-PMAA demixed thin films. Journal of Colloid and Interface Science,2008,319(1):63-71
    [232] Qun Zhao, Peihong Ni. Synthesis of well-defined and near narrow-distributiondiblock copolymers comprising PMMA and PDMAEMA via oxyanion-initiatedpolymerization. Polymer,2005,46(9):3141-3148
    [233] Jin Liu, Hanzheng Guo, Xinchang Pang, et al. Dynamics of polystyrene-block-poly(methylmethacrylate)(PS-b-PMMA) diblock copolymers andPS/PMMA blends: A dielectric study. Journal of Non-Crystalline Solids,2013,359:27-32
    [234] J. Holoubek, F. Lednicky, J. Baldrian. Non-equilibrium self-assembledstructures in thick PS-b-PMMA copolymer films. European Polymer Journal,2006,42(10):2236-2246
    [235] F. Ania, F.J. Baltá-Calleja, S. Henning, et al. Study of the multilayerednanostructure and thermal stability of PMMA/PS amorphous films. Polymer,2010,51(8):1805-1811
    [236]郭莉,景欢旺.两亲性温度及pH敏感性嵌段共聚物PMMA-b-(PAA-co-PNIPAM)的合成与表征.化工新型材料,2012,40(4):115-118
    [237]申涛,林群芳,周晓东. PS-b-PnBA-OH的合成及对玻纤增强PS界面性能的影响.高分子材料科学与工程,2012,28(6):8-11
    [238] Giuliana Gorrasi, Mariamelia Stanzione, Lorella Lzzo, Synthesis andcharacterization of novel star-like PEO-PMMA based copolymers, Reactive andFunctional Polymers,2011,71:23-29
    [239] B. Smitha, S. Sridhar and A.A. Khan, Synthesis and characterization of protonconducting polymer membranes for fuel cells, Journal of Membrane Science,2003,225:63-76.
    [240]温绍国,翁志学. PBA(EGDMA)/PMMA复合聚合物的合成过程研究.高分子材料,1997,4(4):15-19
    [241] Hanlina Kaczmarek, Hanna Chaberska, AFM and XPS study of UV-irradiatedpoly(methyl methacrylate) films on glass and aluminum support, Applied SurfaceScince,2009,255:6729-6735
    [242]魏清渤,高楼军,付峰等. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备及溶胀动力学.化工进展,2012,31(1):163-168,207
    [243] Rashi Nathawat, Anil Kumar, N. K. Acharya, et al, XPS and AFM surface studyof PMMA irradiated by electron beam, Surface&Coatings Technology,2009,203:2600-2604.
    [244] Jerome Chalmeau, Christian le Grimellec, John Sternick and Christophe Vieu,Patterned domains of supported phospholipids bilayer using microcontact printingof PII-g-PEG molecules, Colloids and Surfaces B: Biointerfaces,2012,89:188-195
    [245] Shengqiang Nie, Fen Ran, Chao He, et al, Synthesis of amphiphilic tri-blockcopolymer poly(vinylpyrrolidone)-b-poly(methyl methacrylate)-b-poly(vinylpyrrolidone) for the modification of polyethersulfone membrane, Chinese ChemicalLetters,2011,22:370-373
    [246] Philip S. Yune, James E. Kilduff, Georges Befort, Using co-solvents and highthroughput to maximize protein resistance for poly(ethylene glycol)-graftedpoly(ether sulfone) UF membranes, Journal of Membrane Science,2011,370:166-174
    [247]韩明川.石英晶体微天平研究蛋白质在壳聚糖及衍生物表面的吸附行为:
    [硕士学位论文].天津:天津大学,2004
    [248] Guenther H.O. Measure of protein in milk using immune method. LebensmittelChemistry,1991,4(1):145-167
    [249]詹东妮.蛋白质在PEU/LCP符合生物材料上的吸附行为:[硕士学位论文].重庆:重庆大学,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700