用户名: 密码: 验证码:
氯氰菊酯对鲫鱼的毒理效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氯氰菊酯是一种拟除虫菊酯杀虫剂,随着近年来在农业生产上广泛应用,在环境中的污染日趋严重。本论文以鲫鱼为试验动物,应用生物化学、细胞生物学等技术手段,研究了氯氰菊酯对鲫鱼的急性毒性、在鲫鱼体内的蓄积释放规律、对鲫鱼的免疫系统、抗氧化防御体系以及遗传效应的影响,从整体生物、组织细胞水平和分子水平多层次地评价了氯氰菊酯对鲫鱼的毒理效应。
     研究结果表明,氯氰菊酯对平均体长为14.0±1.0cm,平均体重为65.0±5.0g的鲫鱼96hLC_(50)值为18.0μg·L~(-1),根据农药毒性分级标准,氯氰菊酯对鲫鱼属高毒类农药。
     根据急性毒性试验结果,选择1/2 96hLC_(50)以下浓度为试验浓度系列,即1μg·L~(-1),2μg·L~(-1),3μg·L~(-1),5μg·L~(-1)和8μg·L~(-1)对鲫鱼进行连续暴露染毒,分析氯氰菊酯的低剂量连续暴露对鲫鱼的生理生化和遗传指标的影响,结果如下:
     1)氯氰菊酯经20-25d可在鲫鱼体内达到蓄积平衡,肌肉和肝脏组织中的最大富集系数分别为3.950和2.155,肌肉组织的蓄积能力小于肝脏组织。在氯氰菊酯的释放过程中,肌肉组织的释放快于肝脏组织。
     2)经氯氰菊酯30d连续暴露后鲫鱼肝脏发生了明显的改变,但脏器系数未有显著的变化;而鲫鱼的脾脏无论是解剖形态,还是脏器系数与对照组相比均无明显差异。氯氰菊酯对鲫鱼溶菌酶的影响表现为低浓度组(2μg·L~(-1)-5μg·L~(-1))溶菌酶呈现先升高后降低的趋势,而高浓度组(8μg·L~(-1))则相反,为先降低后升高。但随着暴露时间的延长,各试验组在20-25d时恢复至正常水平,血清中溶菌酶的含量与对照组相比无明显差异,至试验结束时(第30d)各浓度组溶菌酶的含量稳定,变化不大。
     3)鲫鱼在1.0μg·L~(-1)氯氰菊酯连续暴露30d后,其肌肉和肝脏中的GSH含量和GST、CAT、MAO的酶活性与对照组相比均未发生显著的差异(P>0.05),而2.0μg·L~(-1)以上浓度的氯氰菊酯连续暴露对鲫鱼肌肉和肝脏中的GSH含量和GST、CAT、MAO活性均产生了一定程度的影响:(a)氯氰菊酯连续暴露下鲫鱼肌肉和肝脏中的GSH含量和GST活性的变化规律为先升高后降低,且肝脏中的变化要大于肌肉中变化。在试验结束时,除1.0μg·L~(-1)试验组外,其余试验组GSH含量和对照组相比均存在一定的差异;而2.0μg·L~(-1)及以上试验组GST活性在试验结束时与对照组相比差异显著(P<0.01),低至对照组的15.71%--67.31%。(b)CAT活性的变化规律为先降低后升高,肝脏中的变化幅度要大于肌肉,在试验结束时除1.0μg·L~(-1)试验组外,其余试验组CAT活性与对照组相比均有一定的变化。肌肉中的CAT活性与对照组相比最大降幅可达17.8%,肝脏组织CAT最大降幅可达51.86%-69.64%(P<0.01)。(c) MAO的变化规律为先升高后降低再恢复,在试验结束时除1.0μg·L~(-1)试验组外,其余试验组MAO活性与对照组相比均有一定的变化。
     4)3.0μg·L~(-1)以上浓度的氯氰菊酯连续暴露可诱导鲫鱼外周血红细胞产生微核,微核的发生率随暴露浓度的升高和暴露时间的延长具有明显的浓度-效应和时间-效应关系。
     研究结果显示,2.0μg·L~(-1)以上浓度的氯氰菊酯可对鲫鱼的生理机能产生一定的影响,这种影响在一定程度上关系到鲫鱼的养殖品质。因此为了鲫鱼的养殖和食用安全,在养殖水环境中氯氰菊酯的浓度应严格控制于1.0μg·L~(-1)以下。
Cypermethrin which was a kind of pyrethroids caused severe contamination to the environment with its wide use in agriculture in recent years . This master paper used Carassius auratus Linn. as experiment animal, applied biochemiscalogy, cell biology etc. technology , studied the influences produced by cypermethrin on Carassius auratus Linn, from acute toxicity trials , accumulation and release rules , immune system , antioxidize system , and heredity effect, from the whole living, organ and cell level and molecule level evaluated the satey of cypermethrin .
     The results of acute toxicity revealed that 96hLC_(50) of cypermethrin was 18.0μg·L~(-1) for Carassius auratus Linn. with mean body weight 65.0g±5.0g and mean body length 14.0±1.0cm. According to the methods of biological detect, cypermethrin was a high toxic pesticide for Carassius auratus Linn..
     Based on the acute toxicity trial, the following concentration series below 1/2 96hLC_(50) that were 1μg·L~(1),2μg·L~(1),3μg·L~(1) ,5μg/L and 8μg·L~(1) were established to infect Carassius auratus Linn.. Analyzing continual exposure to low dosage cypermethrin for the impact of physiochemical and hereditary of Carassius auratus Linn.. We get a conclusion that:
     1) Results indicated that accumulation of cypermethrin in Carassius auratus Linn, reached balance at the twentieth to twenty fifth days and the maximal enrichment coefficients of muscle and organ were 3.950 and 2.115 . Accumulation capacity of muscle was less than that of liver while cypermethrin release of muscle was quicker than that of liver.
     2) There were obvious pathological changes in liver of Carassius auratus Linn, after its continual exposure to cypermethrin for 30 days, but organ coefficients did not occur obvious changes. As for spleen, it did not take on any obvious changes compared with the contrast in anatomization shape and organ coefficients. The influences on lysozyme by cypermethrin in Carassius auratus Linn, were that low concentration lysozymes(2μg·L~(1)-5μg·L~(1)) had the tendency of arising first and declining after, whereas the tendency was contrary for high concentration lysozymes (8μg·L~(1)) . With the increasement of exposure time , all trial groups restored to natural levels at the twentieth day . Lysozemes content in serum was steady until the end of the trial and was not obviously different from the contrast. The outcome revealed that the effects on lysozemes in serum by cypermethrin was reversible for Carassius auratus Linn..
     3) After exposure to 1.0ug·L~(-1) of cypermethrin for 30 days , GSH contents and activities of GST、CAT and MAO in muscle and liver had not any significantly difference(P>0.05), but GSH contents and activities of GST、CAT and MAO all occurred dynamic varieties after exposure to cypermethrin above 2.0 ug·L~(-1) : (a) Under the cypermethrin intimidation , the tendency of GSH contents and GST activities were arising first then declining after and the variety degree in liver was bigger than that of muscle . At the end of trial, GSH content in other groups had some changes compared with the contrast except for the group of 1.0 ug·L~(-1), but GST activity was different significantly from the contrast(P<0.01) , 15.71%-67.31% beneath contrast group . (b) CAT activity tendency was decreasing first then arising after and variety degree in liver was bigger than that of muscle. At the end of trial , CAT activity in other groups had some changes compared with the contrast except for the group of 1.0 ug·L~(-1). CAT activity in muscle is lower 17.8% than the contrast group , the most reduction of CAT activity in organ between 51.86%-69.64% (P<0.01); (c) MAO variety was arising first, then declining and restoring at last and variety degree in liver was lower than that in muscle. At the end of trial , MAO activity in other groups had some changes compared with the contrast except for the group of 1.0 ug·L~(-1).
     4) The results showed that continual exposure to cypermethrin above 3.0 ug·L~(-1) could induce peripheral red cell to produce micronuclei . Micronuclei frequency had obvious concentration effect and time effect with cypermethrin concentration increased and exposure time prolonged.
     The results revealed that cypermethrin above 2.0 ug·L~(-1) produced influences on physiological mechanism of Carassius auratus Linn.; For the security of aquaculture and food available , cypermethrin concentration should be below 1.0 ug·L~(-1) in aquaculture for edible quality.
引文
[1]华小梅,单正军.我国农药的生产、使用状况及其污染环境因子分析[J].环境科学进展,1996,4(2):33-45.
    
    [2]唐除痴,李煜昶,陈彬等.农药化学[M].天津:南开大学出版社,1998,174-175.
    
    [3]吴文君.农药学原理[M].北京:中国农业出版社,1999:26-32.
    
    [4]张友军,张文吉.乙酰胆碱酯酶分子生物学研究[J].昆虫知识,1997,34(4):242-246.
    
    [5]张明,李盾,陈仪本等.乙酰胆碱酯酶分子生物学研究进展[J].农药,2006,45(1):8-11.
    
    [6]姚爱琴,翟良安,李纪芳等.农药杀灭菊酯对鱼类毒性的研究[J].淡水渔业,1989(2):29-32.
    
    [7]贺全仁,聂星湖.拟除虫菊酯类农药的临床毒理学研究现状[J].中国工业医学杂志,1997,10(1):46-48.
    
    [8] Szegletes T, Balint T, Szegletes Zs, Nemcsok J. Changes caused by methidathion in activity anddistribution of molecular forms of carp (CyprinuscarpioL.) AchE[J]. Pestic Biochem Physiol, 1995, 52:71-79.
    
    [9] Barron MG, Plakas SM, Wilga PC, Ball T. Absorption, tissue distribution and metabolism ofchlorpyrifos in cannel catfish following waterborne exposure[J]. Environ. Toxicol Chem, 1993, 12(8):1469-1476
    
    [10] Dutta GR, AdhikA RIS. Accumulation of malathion in different organs of Heteropneustefossilis(Bloch)[J]. J Freshw ater biology, 1994, 6(2): 183-186.
    
    [11] Haya K. Toxicity of pyrethroid insecticides to fish[J]. Environ Toxicol Chem, 1989,8: 373-380.
    
    [12] Santhakumar M, Balaji M, Ramudu K. Effect of sublethal concentrations of monocrotophos onerythropoietic activity and certain hematological parameters of fish Anabas testudineus(Bloch) [J]. BullEnviron Contam Toxicol, 1999,63: 379-384.
    
    [13]高炜锋,刘洁生.杀灭菊酯对鲤鱼血液影响初探[J].环境污染与防治,1996,18(6):4-7.
    
    [14] Subburaju S, Selvarajan V R. Physiological and biochemical approaches to the toxicologicalassessement of environmental pollution[M]. Utrecht, Netherlands: Royal Netherlands ChemicalSociety,1990.
    
    [15] Rao KSP, Rao KRSS, Sahib IKA, Rao KVR. Combined action of carbayl and phenthoate on tissuelipid derivatives of murrel, Channa punctatus(Bloch) [J]. Ecotoxicol Environ Saf, 1985, 9(1): 107-111.
    
    [16] Joyce S, Rani V, Janaiah C. Ammonia metabolism in freshwater teleost, Clarias batrachus onexposure to trichlorfon[J]. Bull Environ Contam Toxicol, 1991, 46: 731-737.
    
    [17] Begum G, Vijayaraghavan S. In vivo toxicity of dimethioate on proteins and transaminases in theliver tissue of fresh water fish Clarias batrachus(Linn)[J]. Bull Environ Contam Toxicol, 1995, 54:??370-375.
    
    [18]魏渲辉,汝少国.有机磷农药对鱼类的毒性效应及内分泌扰乱作用[J].海洋科学,2002,26(9):45-48.
    
    [19] Miller T A, Adams M E. Mode of action of tyrethroids[A]. In: Coats J R(ed)[J]. Insecticide mode of action. New York: Academic press, 1988, (3): 45-47.
    
    [20] Zhou BS, Zhang YY, Xu Y.Toxic effects of meothrin on the gill ultrastructure of grass carp Ctenopharyngodon idelluus[A]. Annual report of State Key Laboratory for Fresh water Ecology and Biotechnology of China[C]. International Academic Publisher, 1991,105.
    
    [21]王朝晖,尹伊伟.甲氰菊酯对白鲢(Hypophthalmichthys molitrix)鳃组织病理学研究[J].暨南大学学报(自然科学版),1996,17(1):74.
    
    [22] Wang Z H, Yin YW, Zhang YY, et al. Effect of femrpopathrin on ATPase activity and cardia muscle constraction of silver carp (Hypophthalmichthys molitrix)[A]. Liu JK. Annual Report of State Key Laboratory for Freshwater Ecology and Biotechnology of China[C]. Beijing: International Academic Publishers, 1991,137.
    
    [23]王朝晖,尹伊伟,刘洁生.甲氰菊酯对白鲢心肌收缩的影响[J].生态科学,1992,2:119.
    
    [24]塔娜,李想,冯建芳等.拟除虫菊酯类农药的非对映和对映异构体分离.中国环境科学,2006,26(1):87-90
    
    [25] LIU Weiping, Gan J Jay, QIN Sujie. Seperation and aquatic toxicity of enantiomers of syntheticpyrethroid insecticides[J].Chiraty,2005,17:127-133
    
    [26] LIU Weiping, Gan J Jay. Determination of enantiomers of synthetic pyrethroids in water by solidphase microextraction enantioselective gas chromatography[J].J.Agric.Food Chem.2004,52,736-741
    
    [27]冯坚,张湘宁.光学活性拟除虫菊酯的研究与开发.卫生杀虫药械,2000,6(1):6-9
    
    [28]黄润秋,汪清民,高茹瑜.差向异构化制备高效氯氰菊酯的某些副反应研究.农药,2004,43(8):356-357
    
    [29]张湘宁.卤代环丙烷羧酸系菊酯中差向异构体技术的应用.农药,1999,38(1):10-11
    
    [30]王鹏,江树人,周志强.反式氯氰菊酯对映异构体的分离.应用化学,2004,21(1):96-97
    
    [31]毕富春.氯氰菊酯立体异构体分析方法研究概述.农药科学与管5,2000,21(3):4-7
    
    [32]范志金,刘丰茂,钱传范.氯氰菊酯的名称和组成及其光学异构体.农药科学与管理,1999,20(2):9-12
    
    [33]万帮江.氯氰菊酯和溴氰菊酯杀虫活性与电子结构关系的理论研究.重庆工业高等专科学校学报,2004,19(4):12-13
    
    [33]覃松,王碧,阮尚全.几种拟除虫菊酯杀虫活性与电子结构关系研究.化学与生物工程,2005,4:32-34
    
    [34]刘安西,宁黔冀,陈叙龙等.氯氰菊酯异构体对黑胸大蠊神经钠钾通道的调制作用.昆虫学报,1990,33(1):1-6
    
    [35]张文吉,钱洪,程会文等.不同光学异构体组成的氯氰菊酯对敏感及抗性家蝇的神经电生理学研究,昆虫学报,1995,38(3):257-265
    
    [36]毕富春,王文丽,陈学仁等.南开菊酯和顺式氯氰菊酯杀虫活性比较.植物保护,1993,4:43-44
    
    [37]赵海源,马生钢,郭惠玲.4.5%高效顺反氯氰菊酯EC用于防治草原蝗虫的新探索.新疆蓄牧业,2003,3:41-42
    
    [38]秦曙,乔雄梧,朱九生等.实验室条件下氯氰菊酯在土壤中的降解.农药学学报,2000,2(3):68-73
    
    [39]刘庆余,王硕,朱立民等.南开菊酯微生物降解的研究.环境化学,1992,11(6):61-63
    
    [40]许育新,戴青华,李晓慧等.氯氰菊酯降解菌株CDT3的分离鉴定及生理特性研究.农业环境科学学报,2004,23(5):958-963
    
    [41]林淦,刘法彬.混合培养微生物降解氯氰菊酯的特性研究.化学与生物工程,2005,8:40-42
    
    [42]许育新,李晓慧,张明星等.红球菌CDT3降解氯氰菊酯的特性及途径.中国环境科学,2005,25(4):399-402
    
    [43]何华,徐存华,孙成等.高效氯氰菊酯在土壤中的降解动态.中国环境科学,2003,23(5):490-492
    
    [44]王兆守,林淦,尤民生等.茶叶上拟除虫菊酯类农药降解菌的分离及其特性.生态学报,2005,25(7):1824-1827
    
    [45]杨绍斌,牛志涛,夏舒叶等.复合光合细菌对食用菌农药残留降解的研究.食用菌,2005,3:29-30
    
    [46]谭晓珍,吴垠,李韬等.氯氰菊酯和氰戊菊酯对栉孔扇贝的急性毒性.大连水产学院学报,2005,20(3):203-207
    
    [47]王媛,杨康健,吴中等.氯氰菊酯对鲫鱼血清中谷丙转氨酶及谷草转氨酶活力的影响.水产科学,2005,24(9):80-10
    
    [48]谢文平,马广智.氯氰菊酯对草鱼鳃和肝组织超氧化物歧化酶(SOD)活性的影响.水产科学,2003,22(6):5-7
    
    [49] Wang Yuan,Xiong Li,Yang Kangjian etal.Effect of beta-cypennethrin on GPT and GOT activities of crucian serum. Agricultural Science & Technology,2005,6(l):20-23
    
    [50]梁丽燕,越飞,黄振烈等.顺式和反式氯氰菊酯拟雌激素样作用探讨.中国职业医学,2005,32(4):25-26
    
    [51] Basanta Kumar Das,Subhas Chandra mukherjee. Toxicity of cypermethrin in Labeo rohita fingerlings:biochemical,enzymatid and haematological consequences.Comparative Biochemisty and Physiology Part C .2003,134:109-121
    
    [52]Y.Yang,Y.Wu,S.Chen,GJ.Devine,I.Dinholm,P.Jewess,GD.Moores. The involvement of microsomal oxidases in pyrethroid rdsistance in Helicoverpa armigera from Asia.Insect Biochemistry and Molecular Biology .2004,34:763-773
    
    [53] Anna Rymuszka,Maria Studnicka,Andrzej K.Siwicki,Anna Sieroslawska,Adam Bownik. The immunomodulatory effects of the dimmer of lysozyme (KLP-602) in carp (Cyprinus carpio L)-in vivo study .Ecotoxicology and Environmental Safety .2005,61:121-127
    
    [54] H.Chaaieri Oudou,H.C.Bruun Hansen. Sorption of lambda-cyhalothrin,cypermethrin,deltamethrin and fenvalerate to quartz,corundum,kaolinite and montmorillonite. Chemosphere ,2002,49:1285-1294
    
    [55] Ben T.G.Gowland,Colin F.Moffat,Ron M.Stagg,Dominic F.Houlihan,Ian M.Davies Cypermethrin induces glutathione S-transferase activity in the shore crab,Carcinus maenas Marine Environmental Research ,2002,54:169-177
    
    [56] M. David,S.B.Mushigeri,R.Shivakumar,GH.Philip. Response of Cyprinus carpio (Linn) to sublethal concentration of cypermethrin:alterations in protein metabolic profiles. Chemosphere ,2004,56: 347-352
    
    [57] S Adhikari,B.Sarkar,A.Chatterjee,C.T.Mahapatra,and SAyyappan. Effects of cypermethrin and carbofuran on certain hematological parameters and prediction of their recovery in a freshwater teleost.Labeo rohita (Hamilton).Ecotoxicology and Environmental Safety,2004,58: 220-226
    
    [58] Diwakar Mishra,Sunil K.Srivastav,and Ajai K.Srivastav. Effects of the insecticide cypermethrin on plasma calcium and ultimobranchial gland of a teleost,(Heteropneustes fossilis). Ecotoxicology and Environmental Safety,2005,60:193-197
    
    [59] M.M.Babin,J.V.Tarazona. In vitro toxicity of selected pesticides on RTG-2 and RTL-W1 fish cell lines. Environmental pollution ,2005,135: 267-274
    
    [60] Ghousia Begum. In vivo biochemical changes in liver and gill of Clarias batrachus during cypermethrin exposure and following cessation of exposure. Pesticide Biochemistry and Physiology ,2005,82:185-196
    
    [61] Andrew Moore,Colin P.Waring. The effects of a synthetic pyrethroid pesticide on some aspects of reproduction in Atlantic salmon (Salmo salar L.). Aquatic Toxicology ,2001,52:1-12
    
    [62] GH.Philip ,B.H.RAJASREE. Action of Cypermethrin on Tissue Transamination during NitrogenMetabolism in Cyprinus carpio.Ecotoxicoligy And Enviromental Safety , 1996,34:174-179,Article No.0060
    
    [63] GH.Philip, P.M.R Eddy, GSridevi. Cypemethrin-Induced in vivo alterations in the Carbohydrate Metabolism of Freshwater Fish, Labeo rohita.Ecotoxicology and Environmental Safety ,1995, 31: 173-178
    
    [64] H.Lutnicka,T.Bogacka, L.Wolska. Degradation of Pyrethroids In An Aqatic System Model.Wat.Res. 1999,33(16):3441-3446
    
    [65] 王建英,任引哲,王迎新.氧自由基与人体健康[J].化学世界,2006,(1):61-63.
    
    
    [66]王咏梅.自由基与谷胱甘肽过氧化物酶[J].解放军药学学报,2005,21(5):369-371.
    
    [67]方允中,杨胜,伍国耀.自由基稳衡性动态[J].生理科学进展,2004,35(3):199-204.
    
    [68]程元恺.谷胱甘肽的解毒作用与毒性代谢物[J].生物化学与生物物理学进展,1994,21(5):395-399.
    
    [69]蔡俊.谷胱甘肽的研究进展[J].粮食与饲料工业,2000,10:41-42.
    
    [70]徐文东,杨强,徐志伟.谷胱甘肽及其相关酶在生物体内的作用[J].福建热作科技,1999,24(3):42-43.
    
    [71]杨海灵,聂力嘉,朱圣庚等.谷胱甘肽硫转移酶结构与功能研究进展[J].成都大学学报(自然科学版),2006,25(1):19-24.
    
    [72]聂立红,王声勇,胡毅玲.谷胱甘肽硫-转移酶研究进展[J].中国病理生理杂志,2000,16(11):1240-1243.
    
    [73]朱忠勇.过氧化氢酶与过氧化物酶[J].临床检验杂志.1998,16(1):64.
    
    [74]盛丽,苏碧泉.过氧化物酶体中活性氧的生成与清除机理[J].辽宁化工,2003,32(2):84-88.
    
    [75]裘月,杜冠华,张均田.单胺氧化酶及与疾病的关系[J].中国药学杂志,1994,29(10):596-599.
    
    [76]陈剑峰,王恩多.单胺氧化酶[J].生物化学与生物物理进展,2000,27(5):504-508.
    
    [77]黄宁,陈学群.浅谈鱼类免疫系统[J].福建畜牧兽医,2005,27(6):20-22.
    
    [78]张永安,孙宝剑,聂品.鱼类免疫组织和细胞的研究概况[J].水生生物学报,2000,24(6):648-653.
    
    [79] Dunier M, Vergnet C, Siwicki A K. Effects of lindane exposure onrainbow trout(Oncorhynchus mykiss) immunity: 3. Effect on nonspecific immunity and Blymphocyte functions[J]. Ecotoxicology and Environmental Safety, 1994, 27(3): 324-334.
    
    [80]翁朝红,谢仰杰.环境因素对鱼类免疫功能的影响[J].集美大学学报(自然科学版),2001,6(1):184-189.
    
    [81]贾向志,李元,马文煜.溶菌酶的研究进展[J].生物技术通讯,2002,13(5):374-377.
    
    [82]荣晓花,凌沛学.溶菌酶的研究进展[J].中国生化药物杂志,1999,20(6):319-320.
    
    [83]丁炳.罗非鱼溶菌酶活力的研究[J].湛江海洋大学学报,2002,22(3):3-7.
    
    [84]孔志明.环境毒理学(第二版)[M].南京:南京大学出版社,2004,92.
    
    [85] Heddle J A. A rapid in vivo test for chromosomal damage[J]. Mutat Res, 1973,18:187-190.
    
    [86] Schmid W. The micronucleus test [J ]. Mutat Res, 1975, 31: 9-15.
    
    [87]国家环境保护总局水和废水监测分析方法编委会.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002,725-729.
    
    [88]王世若.现代动物免疫学[M].长春:吉林科学技术出版社,1996,116-117.
    
    [89]张宜霞,都本业.关于单核-巨嗜细胞系统的吞噬作用和其溶菌酶水平在抗感染中的意义的??研究[J].中华微生物和免疫学杂志,1984,4(2):77-79.
    
    [90] Fevolden S E, Roed K H. Cortisol and immune characteristics in rainbow trout(Oncorhynchusmykiss) selected for high or low tolerance tostress[J]. J Fish Biol, 1993,43: 919-930.
    
    [91]赵红霞,詹勇,许梓荣.鱼类免疫机制与疾病防治[J].辽宁畜牧兽医,2001,1:38-39.75.孙侠,韩长城,牛玉杰等.溴氰菊酯对小鼠免疫系统的损伤作用[J].河北医科大学学报,2005,26(1):1-4.
    
    [92]甘亚平,李云,陈贤君等.三种杀虫剂对小鼠内脏器官的影响[J].咸宁学院学报,2004,18(3):168-171.
    
    [93]黄伯俊,黄毓麟.农药毒理学[M].北京:人民军医出版社,2004,188-192.
    
    [94]周启星,孔繁翔,朱琳.生态毒理学[M].北京:科学出版社,2004,55-110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700