用户名: 密码: 验证码:
吸附相反应技术制备镍基催化剂的过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究吸附相反应技术制备NiO/SiO_2纳米复合粒子的过程规律,并通过肼还原法制备Ni/SiO_2催化剂,并考察了其催化性能。
     论文首先综述了纳米Ni和NiO的性能和应用,简单介绍了目前纳米材料的一些传统制备方法,并对纳米镍和氧化镍的制备研究进展作出总结。在总结已有研究成果的基础上,提出了本论文的研究设想和实验思路。
     作者采用吸附相反应技术在乙醇-水体系中通过NaOH与Ni(NO_3)_2反应制备NiO/SiO_2纳米粒子。研究中设计了对比实验比较吸附相反应法、反应-吸附法和直接反应法制备得到的样品,发现吸附相反应法有利于获得较小粒径粒子,且粒子分散性相对较好。通过透射电子显微镜(TEM)分析粒子形貌、X-射线衍射仪(XRD)分析粒子粒径、酸碱滴定NaOH浓度、络合滴定Ni~(2+)含量等多种表征和分析手段,研究了反应物浓度、水浓度、以及温度等各种影响因素对产物粒子NiO的粒径和形貌的影响规律。通过这些研究对过程规律有了一个较为清晰的认识:水浓度较小时,反应主要发生在化学吸附层中,而化学吸附层中的反应速率相对较慢,反应物浓度对过程有较大影响;水浓度增加,物理吸附层逐渐形成,反应过程逐渐转移到物理吸附层中,物理吸附层中反应速率极快,反应主要受Ni(NO_3)_2进入吸附层的速率控制;温度升高有助于反应速率的加快,但温度过高导致吸附层破坏,反应会在体相中发生。
     作者在吸附相反应技术得到Ni(OH)_2/SiO_2的基础上,通过水合肼还原法制备了纳米Ni催化剂,利用TEM、XRD分析粒子形貌和粒径,并将其应用于肼还原硝基苯制备苯胺的催化体系中。实验首先比较了不同催化剂用量对催化性能的影响,发现催化活性和选择性随催化剂用量的增加而增大,且一定量后基本不变。为了考察硅胶载体表面Ni负载量对催化性能的影响,作者比较了两种不同负载量的催化剂的催化活性,发现负载量低有利于Ni粒子的分散和稳定,催化活性较高。实验还比较了在制备Ni(OH)_2/SiO_2过程中的不同水量对催化剂的影响,实验表明,水量为2mL时化学吸附层完全形成,还原得到的Ni粒子与硅胶表面较强的结合,分散性较好,催化活性较高;而其他水量条件下Ni粒子容易团聚,催化剂稳定性较差。Ag掺杂实验研究表明,Ag的掺杂有助于Ni粒子的生成和分散,大幅提高了Ni催化剂的催化活性;不同掺杂条件对Ni催化剂的粒子大小和结构有一定的影响,从而影响其催化性能。
     最后总结了论文工作,并提出了论文中没有解决的问题,为以后进一步的研究工作明确了方向。
Synthesis of NiO/SiO_2 nanocomposite materials in a nanoreactor which formed by the water-rich adsorption layer on the surface of SiO_2 were studied in this dissertation. Ni/SiO_2 catalyst was prepared by aqueous reducing method and the catalystic properties were studied.
     First the dissertation generalized the characteristic and application of nickel and nickel oxide nanoparticles, and their preparation methods were simply introduced. Based on the generalization of research that had been done, the dissertation's research orientation and experiment strategies were proposed.
     Based on the adsorption phase reactor technology, NiO/SiO_2 nanocomposite materials were successfully prepared by reaction of NaOH with Ni(NO_3)_2 in alcohol-water system. The samples prepared in different methods were compared, it was found that nanoparticles were smaller and more dispersed by adsorption phase reactor technology.
     Water concentration, reactant concentration and temperature influence the pattern and size of NiO nanoparticles. The author designed a series of experiments including water concentration, reactant concentration and temperature experiments. The influence of these factors to the size and pattern of products NiO were gained with the help of many kinds of analytical methods such as TEM, XRD, Acid & alkali titrate and complexometric titration, and some rules were gained:
     When water concentration was low, reaction mainly happened in chemical adsorption phase, in which the velocity was relatively low, the reactant concentration mainly influenced on this situation. When water concentration increased, physical adsorption phase formed gradually, the reaction was relatively fast in this phase, and was controlled by the velocity of nickel nitrate's diffusion. Reaction quickened up as the temperature increased. However, the adsorption phase was destroyed when temperature was too high, and reaction happened in bulk phase.
     Based on Ni(OH)_2/SiO_2 prepared by adsorption phase reactor technology, nickel catalyst was prepared by aqueous reducing method. The pattern and size of particles were analyzed by TEM and XRD, then catalyzed the reduction of nitrobenzene to aniline by hydrazine.
     The influence of catalyst quality was firstly studied. It was found that catalytic activity increased with the increase of catalyst quality, and basically unchanged after a certain amount. In order to investigate the influence of Ni loading on catalytic properties, the author compared the two catalysts with different loading for activity and found that catalyst with low-loading of the Ni particles had higher activity. The experiments also showed that chemical adsorption phase was fully formed under 2mL water, the Ni particles was strongly combined with silica surface after reduced, while Ni particles prepared in other water conditions were easily reunited and poor in stability. Ag doping experiments showed that it was contributed to the formation and dispersion of Ni, thereby greatly increased the activity. Different conditions on doping influeneced the particle size and structure of Ni catalysts, thus affected their catalytic properties.
     At last, the work in the dissertation was generalized, and the problems which still need to discuss in paper were represented.
引文
[1]邢伟,李丽,阎子峰等.介孔氧化镍的合成、表征和在电化学电容器中的应用. 化学学报,2005,63(19):1775-1781.
    
    [2]杨红琳,胡菊.纳米氧化镍在铁镍蓄电池中的性能测试分析.十堰职业技术 学院学报,2004,17(3):70-71..
    
    [3]闪星,张密林.纳米氧化镍在超大容量电容器中的应用.功能材料与器件学 报,2002,8(1):35-39.
    
    [4]赵晨曦,宋春敏,阎子峰.NiO改性HZSM-5分子筛催化剂催化1-丁烯芳构化 反应.石油化工,2005,34(10):917-921.
    
    [5]黄新汉,杨先贵,张家琪,刘昭铁.载体及NiO负载方法对乙炔加氢酯化合 成丙烯酸甲酯反应的影响.石油与天然气化工,2001,30(1):6-11.
    
    [6]赵永祥,武志刚,许临萍,张宏伟,刘滇生,徐贤伦.后处理温度对NiO/SiO_2 气凝胶催化剂顺酐选择加氢性能的影响.天然气化工,2001,26(6):8-11.
    
    [7] WU Ying, CHEN Tong, CAO Xiaodong, WENG Weizheng, WAN Huilin. LowTemperature Oxidative Dehydrogenation of Ethane to Ethylene Catalyzed byNano-sized NiO. Chinese Journal of Catalysis, 2003, 24(6): 403 - 404.
    
    [8]娄向东,王天喜,成庆堂.氧化镍的制备和表征及光催化性能研究,水处理 技术,2005,31(7):32-34.
    
    [9] B. J. Sweo. Basic Approch to Progress in Porcelain Enamelling. Proceeding ofthe PET Forum, 1967,29,1-18.
    
    [10]唐景平,蒋伟忠.氧化镍在搪瓷密着及抑制鳞爆中的作用.中国搪瓷, 2003,24(2):22-27.
    
    [11]ZHANG Ru-Bing, LI Feng-Sheng. Huozhayao Xuebao(Chin.J.Prop.and Expl),1999,22(1): 45.
    
    [12]McCrorie J D. Particle behavior in solid propellant rocket motors and plume [R].AD2A 260900 ,1992.
    
    [13]谈玲华,李勤华,杨毅等.纳米镍粉的制备及其催化性能研究.固体火箭技 术,2004,27(3):198-200.
    
    [14]Ueno A. J. Chem. Soc, Faraday Trans. , 1983, 79,127.
    
    [15]Fendler J. H. Chem. Rev., 1987, 87, 877.
    
    [16]Yan Du, Hongling Chen, Rizhi Chen, Nanping Xu. Synthesis of p-aminophenolfrom p-nitrophenol over nano-sized nickel catalysts, Applied Catalysis A:General, 2004,277: 259-264.
    
    [17]左东华,张志琨,崔作林,纳米镍在硝基苯加氢中催化性能的研究,分子催 化,1995,9(4):298-302.
    
    [18] J. Gao et al. Preparation of ultrafine nickel powder and its catalyticdehydrogenation activity. Materials Chemistry and Physics, 2001, 71: 215-219.
    
    [19]全慧娟,席红安,李勤,王若钉,镍催化热解乙炔制备碳纳米纤维,无机材料 学报,2005,20(3):735-739.
    
    [20]李建中,吕功煊,李克,单分散硅溶胶前体制备的Ni/SiO_2催化剂裂解甲烷制 氢,天然气化工,2005,30(1):1-5.
    
    [21] Li W Z, Qian L X, Qian S F, et al. Science in China, Series A, 1996, 39: 657-664.
    
    [22]王文生,多层陶瓷电容器Ni内电极研究进展,电子元件与材料,1994,13(1): 7-11.
    
    [23]龚春虹,田俊涛,张治军.高浓度纳米镍的制备及其电磁屏蔽性能的研究. 功能材料信息,2007,5.
    
    [24]刘兰香,黄玉安,黄润生等.纳米镍-铁合金/膨胀石墨复合材料的制备、表征 及其电磁屏蔽性能,无机化学学报,2007,23(9):1667-1670.
    
    [25]黄家明,李维,黄劲松等.预弥散强化镍粉.硬质合金的新型粘结剂[J].稀有 金属与硬质合金,1999,(137):1-3.
    
    [26]汪仕元,潘启芳,雍志华等.稀土元素对WC-Ni硬质合金性能的影响.粉 末冶金技术,1996,14(4):291.
    
    [27]杜艳,陈洪龄,陈日志,徐南平.高活性纳米镍催化剂的制备及其催化性能 研究.高校化学工程学报,2004,18(4):515-518.
    
    [28]朱屯,王福明等主编.国外纳米材料技术进展和应用.北京,化学工业出版 社,2002.
    
    [29]Kimoto K, et.al. An Electron Microscope Study on Fine Metal ParticalsPrepared by Evaporation in Argon Gas at Low Pressure. J.App.Phys, 1993, 2, 702-705.
    
    [30]任庆利,陈维,罗强.液相法合成针状镁铝水滑石纳米晶的研究.无机材料 学报,2004,19(5):977-984.
    
    [31]李艳,张明侠,赵斌,张世民,阳明书.纳米反应器的研究进展.高分子通报, 2002,2:24-33.
    
    [32]沈茹绢,忻新泉等.纳米氧化锌的固相合成及其气敏特性,无机化学学报, 2000,16(6):906-910.
    
    [33]由万胜,忻新泉等.室温固相反应制备Keggin结构杂多酸铵盐纳米粒子.高 等学校化学学报,2000,21(11):1636-1638.
    
    [34]郇维亮,温传庚,王开明,周英彦,赵颖.NiO纳米粉体的液相沉淀法制备. 鞍山科技大学学报,2005,28(3-4):164-166.
    
    [35]李国军,任瑞铭,黄校先,郭景坤.纳米晶氧化镍的制备及表征.无机化学学 报,2004,20(3):287-290.
    
    [36]赵永祥,武志刚,王永钊等.NiO/SiO_2气凝胶催化剂性能研究.燃料化学学 报,2001,29:182-184.
    
    [37]朱毅青,林西平,王占华,赖梨芳.溶胶-凝胶法镍基催化剂的研究.分子催 化,2000,14(3):184-190.
    
    [38]郭广生,郑东华,王志华等.均匀沉淀法制备纳米氧化镍[J].北京化工大学 学报,2004,31(3):74-76.
    
    [39]吴莉莉,吕伟,吴佑实,石元昌,魏慧英,胡春霞.均相沉淀法制备氧化镍纳 米线.中国有色金属学报,2005,15(1):61-65.
    
    [40]刘胜峰,吴春艳,韩效钊.高分子网络法制备纳米NiO超细粉的研究[J].无 机化学学报,2003,19(6):624-626.
    
    [41]尚秀丽,杨玉英,胡中爱,孔超,赵红晓.纳米氧化镍制备新方法.石化技术 与应用,2005,23(3):220-222.
    
    [42]胡辉,高艳阳.低热固相法制备纳米氧化镍.应用化工,2003,32(5):30-32.
    
    [43]李生英,高锦章,杨武等.固相合成纳米NiO微粒.西北师范大学学报(自然 科学版),2003,39(1):46-48.
    
    [44]朱诚意,刘中华,陈雯,何发泉.超微NiO粉体的制备及其应用现状.功能材 料,1999,30(4):345-349.
    
    [45]牛明勤,吴介达,超细镍粉的制备进展,精细化工,2003,20(12):715-717.
    
    [46]谈玲华,李凤生,刘磊力,李敏,纳米镍粉制备的研究进展,材料导报,2003, 17:41-43.
    
    [47]周苇,郭林,化学法制备金属镍纳米材料研究进展,化学通报,2006,69: w063.
    
    [48]王炳根,国内外羰基镍粉的发展、生产及应用[J],四川有色金属,1997,33(4): 6-10.
    
    [49]Teng M H, Host J J, et al. J Mater Res, 1995,10(2): 233.
    
    [50]李华,龚伟.铁、钴、镍金属超微粒的制备与磁性[J].物理学报,1991,40(8): 1356-1363.
    
    [51]Tepper F. Power Metall, 2000,43(4): 320.
    
    [52]喻克宁,胡嗣强,毛铭华,等.Ni(OH)2水热氢还原制备超细Ni粉[J].材料研 究学报,1995,9(3):223-227.
    
    [53]张楠,瞿秀静,瞿玉春.功能材料1999,30(3):263.
    
    [54]邓意达,赵凌,刘曦等.自催化还原制备微米和纳米级空心镍球的研究.高 等学校化学学报,2005,26(7):1309-1312.
    
    [55]李鹏,官建国,张清杰,等.1,2-丙二醇液相还原法制备纳米镍粉的研究[J]. 材料科学与工艺,2001,9(3):259-262.
    
    [56]王明辉,李和兴.Ni-B/SiO_2非晶态催化剂应用于硝基苯液相加氢制苯胺.催 化学报,2001,22(3):287-290.
    
    [57]A Chatterjee, D Chakravorty. Appl. Phys. Lett., 1992, 60(1): 138 -140.
    
    [58]高保娇,高建峰,周加其,等.超微镍粉的微乳液法制备研究[J].无机化学学 报,2001,17(4):491-495.
    
    [59]C Wang, X M Zhang, X F Qian et al. Mater. Res. Bull., 1998, 33(12):1747-1751.
    
    [60] Y Wada, S Yanagida. Ceram. Trans., 2003: 71-78.
    
    [61]H L Niu, Q W Chen, M Ning et al. J. Phys. Chem. B, 2004,108: 3996-3999.
    
    [62]陈祖耀,陈日文,朱英杰,等.化学物理学报,1997,10(1):26-30.
    
    [63]韦钦,刘雄飞,曹建,等.中南矿冶学院学报,1994,25(1):137.
    
    [64]Lisiecki I, Billoudet F, Pileni MP. Syntheses of copper nanoparticles in gelifiedmicroemulsion and in reverse micelles. J MOL LIQ, 1997,72(1、3):251 - 261。
    
    [65]施利毅,胡莹玉,张剑平等.微乳液反应法合成二氧化钛超细粒子.功能材 料,1999,30(5):495-497.
    
    [66]Dekany I, Nagy L G. Immersional Wetting and Adsorption Displacement onHydrophilic/Hydrophobic Surfaces. Journal of Colloid and Interface Science,1991,147(1): 119-128.
    
    [67] Beck A, et al. Pd nanoparticles prepared by "controlled colloidal synthesis" insolid/liquid interfacial layer on silica. I. Particle size regulation by reduction timeCatalysis Letters, 2000,65(1-3): 33-42.
    
    [68]Zhuravlev L T. The Surface Chemistry of Amorphous Silica. Zhuravlev Model.Colloids and Surfaces A: Physicochem. Eng. Aspects, 2000,173: 1-38.
    
    [69]Beck A, et al. Pd nanoparticles prepared by "controlled colloidal synthesis" insolid/liquid interfacial layer on silica. I. Particle size regulation by reduction timeCatalysis Letters, 2000,65(1-3): 33-42.
    
    [70]Szucs A, Berger F, et al. Preparation and Structural Properties of PdNanoparticles in Layered Silicate. Colloids and Surfaces, 2000,174: 387-402.
    
    [71]Papp S, Szucs A, et al. Preparation of Pd Nanopaticles Stabilized by Polymersand Layered Silicate. Applied Clay Science, 2001,19: 155-172.
    
    [72]Xin Jiang, Ting Wang, You-wen Wang. Preparation of TiO_2 nanoparticles on theSurface of SiO_2 in Binary Liquids. Colloids and Surfaces A: Physicochem. Eng.Aspects, 2004,234: 9-15.
    
    [73]王挺,蒋新.吸附相反应技术制备纳米TiO_2温度影响.浙江大学学报(工学版). 2006,40(5):846-847,852.
    
    [74]王挺,蒋新.SiO_2表面上制备纳米TiO_2中水量对TiO_2含量和形貌的影响.硅酸 盐学报,2005,33(11):1356-1361
    
    [75]李元朴,蒋新,王挺.吸附法制备CuO/SiO_2纳米复合材料.浙江大学学报(工学 版),2005,39(12):1866-1870.
    
    [76]毛从文,蒋新.吸附法原位制备Ag/SiO_2纳米复合材料的研究.复合材料学报, 2006,23(4):88-94.
    
    [77]王挺,蒋新,王幼文.吸附相反应技术制备纳米TiO_2/SiO_2复合材料.高等学 校化学学报,2003,24(11):1929-1932.
    
    [78]毛从文,蒋新.吸附法原位制备Ag/SiO2纳米复合材料的研究.复合材料学报, 2006,23(4):88-94.
    
    [79]毛从文,蒋新.吸附层对制备Ag/SiO_2纳米复合材料过程的影响.浙大学报(工 学版).
    
    [80]陶刚,催克清.硝基苯催化加氢制苯胺的技术分析.氯碱工业,7(2001):24- 17.
    
    [81]皮现玉.苯胺的合成方法与应用.氯碱工业,6(1999):34-35.
    
    [82]汪智国,景山,魏飞.硝基苯在湍动流化床加氢制取苯胺.化学反应工程与 工艺,17(2001):278-281.
    
    [83]金栋,崔小明.国内外苯胺的生产应用及市场分析.化工中间体,15(2002):3 -6.
    
    [84]方向明.硝基苯气相加氢催化剂CuO/SiO_2的改性研究.应用化学,14(1997): 57-59.
    
    [85]崔小明.国内外苯胺的生产应用及市场分析.石油化工技术经济,18(2002): 32-38.
    
    [86]崔小明.苯胺的生产应用及市场分析(下).上海化工,21(2002):35-38.
    
    [87]宋啸平,黄美玉,江英彦.羊毛负载钯络合物的合成及其加氢催化作用.分 子催化,1(1994):8-13.
    
    [88]B.Amon, H. Redlingsho fer, E. Klemm. Kinetic investigations of the deactivationby coking of a noble metal catalyst in the catalytic hydrogenation of nitrobenzeneusing a catalytic wall reactor [J]. Chemical Engineering and Processing, 38(1999):395-404.
    
    [89]Shao-Pai Lee, Yu-Wen Chen. Nitrobenzene hydrogenation on Ni-P, Ni-B andNi-P-B ultrafine materials [J]. Journal of Molecular Catalysis A: Chemical152(2000): 213-223.
    
    [90]Braude E A, Linstead R P, Wooldridge K R H. Hydrogen transfer Part 3. Metalcatalysed transfer hydrogenation of nitro-compounds[J]. J Chem Soc, 1954, 3586-3595.
    
    [91]Furst A, Berlo RC, Hooton S. Hydrazine as a reducing agent for organiccompounds (catalytic hydrazine reductions).Chem Rev, 1965, 65:51-68.
    
    [92]邓洪,廖齐.复合催化剂催化水合肼还原对氯硝基苯制备对氯苯胺.贵州化 工,2004,29(5):21-23.
    
    [93]Xin Jiang, Ting Wang, You-wen Wang. Preparation of TiO_2 nanoparticles on theSurface of SiO_2 in Binary Liquids. Colloids and Surfaces A: Physicochem. Eng.Aspects, 2004,234: 9-15.
    
    [94] Wang,T.; Jiang, X.; Li, X. Acta Phys. - Chim. Sin, 2007,23(9): 1375-1380.
    
    [95]赵光,邓启刚.工业催化基础[M].哈尔滨:哈尔滨工程大学出版社,1999.
    
    [96]刘红,丁培培,菅盘铭.纳米镍粉的固相合成及其催化活性研究.工业催化, 2007,15(1):67-70.
    
    [97] S.Kapoor, et al. Radiolytic preparation and catalytic properties of nanophasenickel metal particles. Materials Research Bulletin, 2000,35: 143 - 148.
    
    [98]Huaining Wang, Zhongbin Yu, et al. High activity ultrafine Ni-Co-B amorphousalloy powder for the hydrogenation of benzene. Applied Catalysis A: General,1995,129: L143-L149.
    
    [99]冯国刚,李智渝.肼还原法制备纳米镍粉的研究.江苏广播电视大学学报, 2004,15(6):37-41.
    
    [100] JohnW.Larsen, et al. Mechanism of the carbon catalyzed reduction ofnitrobenzene by hydrazine. Carbon, 38(2000): 655 - 661.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700