用户名: 密码: 验证码:
密云水库沉积物中腐殖酸特征及其与重金属吸附作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
饮用水水源地的环境安全是关系民生的重大问题,重金属污染已经严重影响着居民生活用水安全。腐殖酸广泛的分布于地球的生态环境中,沉积物中腐殖酸可以有效吸附水环境中无机和有机污染物,这种结合能力取决于腐殖酸的化学结构和组成。而腐殖酸与重金属离子的结合强度不同,使得腐殖酸成为水环境中重金属离子的“汇”和“源”。因此,开展沉积物中腐殖酸的结构特征、腐殖酸结合态重金属的特征、腐殖酸吸附重金属离子的研究,对于水源地环境保护具有重要的现实价值。
     本论文以北京市唯一的地表水水源地密云水库为研究对象,通过国际腐殖质协会推荐的方法提取水库表层沉积物中的腐殖酸,利用固态核磁共振技术分析腐殖酸的结构组成;通过表层沉积物腐殖酸与对应沉积物中重金属分布,研究密云水库重金属的来源、重金属在腐殖酸中的结合能力以及腐殖酸结合重金属的环境效应;选取腐殖酸吸附量大的Cu元素、工矿业活动来源的Cd和Pb元素作为研究元素,探讨水库潮河区域和白河区域的两个腐殖酸对这三种重金属元素的吸附作用及影响因素。其主要的研究结果如下:
     1.密云水库表层沉积物中总有机碳的平均含量为16.40mg/g,腐殖酸平均含量为0.71mg/g。总有机碳的空间分布表现为中间区域>白河区域>潮河区域,表层沉积物中有机碳主要来源是白河和潮河径流,水库北岸的大量农田对水库中间区域的表层沉积物有机碳有重要的影响。腐殖酸的含量与有机碳含量没有出现一致性的关系,腐殖酸在水库的白河区域的含量相对较高。
     2.密云水库表层沉积物中腐殖酸具有相似的结构,主要结构为非极性脂肪链、羧基结构、芳香结构、甲氧基和碳水化合物。部分腐殖酸上存在烷基取代的芳香碳结构、异构的O-C-O和羰基,而羰基主要出现在水库潮河和中间区域,白河区域腐殖酸结构中则没有这一官能团。腐殖酸中的非极性脂肪链含量最高,平均值为42.79%,其次为羧基20.38%,含氧官能团(甲氧基和碳水化合物)19.03%,芳香官能团14.11%,其它结构含量都较小。水库不同区域的腐殖酸结构存在差异,潮河区域腐殖酸中的羧基含量高于其它区域。腐殖酸的脂化度较高,芳香度和氧化度较低。在白河和潮河入库口附近,腐殖酸主要来为陆源的生物来源,而在受水流作用较弱的其它区域则也有部分来源于水库内的水生生物。
     3.密云水库表层沉积物重金属含量与页岩平均值相比没有出现明显的富集,地累积指数表明表层沉积物重金属没有受到污染。水库表层沉积物重金属主要由潮、白河及其支流的径流携带进入水库沉积,水库中白河和潮河区域的地理环境不同,使得两河携带的重金属在水库中的空间分布规律不同。潮河区域大部分金属的含量在入库口附近和潮河大坝附近的含量较高,水流方向的中间区域较低;而白河区域在入库口附近和白河大坝处含量较低,水流方向的中间区域含量较高;密云水库中间区域的金属含量总体较低,但在牤牛河汇入水库附近区域的金属含量有明显的增大。表层沉积物重金属的主成分和相关性分析结果表明,重金属来源主要有两个来源,第一主成分包括Ni、Cr、Cu、V、Zn、Mn以及部分的Pb,代表流域的风化和土壤侵蚀来源,第二主成分包括Cd和Pb,以及部分的Cr、Cu、V、Zn、Mn,代表工矿业来源。牤牛河上游堆放的金矿尾砂已经对密云水库重金属污染构成了一种潜在的威胁。
     4.水库表层沉积物腐殖酸中重金属结合容量的大小顺序为Zn(143.21-2858.13μg/g)>Cu(236.07-4887.07μg/g)>Cr(18.17-2137.81μg/g)>>Ni(13.56-1757.581μg/g)>>V(0.55-46.97μ.g/g)>Pb(0.71-29.04μ.g/g)>Cd(0-2.59μg/g)。在研究的金属元素中,腐殖酸中Cu和Zn含量显著高于对应表层沉积物中的含量,Cu和Zn在腐殖酸上比沉积物中有更强的结合能力,并形成更加稳定的络合物,因此腐殖酸可以有效的去除水环境中Cu和Zn离子,并降低其生物有效性。由于表层沉积物中腐殖酸含量较低,腐殖酸中的Cu和Zn分别占沉积物中总量的0.31%-4.16%和0.11%-1.91%,其它金属元素在腐殖酸中的含量占沉积物总量比例都小于1%。其它的金属元素更容易与沉积物中的其它组分结合,但由于腐殖酸的结构和环境条件(如氧化还原条件等)不同,在一些区域腐殖酸也与Cr和Ni有较强的结合能力。地累积指数结果表明腐殖酸中的Cu和Zn具有中强度的污染,腐殖酸中的其它重金属含量则没有明显的污染。腐殖酸中重金属含量可以反映水环境重金属污染和来源,对于水源地的水环境安全评价有重要的指示作用。
     5.研究了不同区域腐殖酸(潮河区域腐殖酸CHHA和白河区域BHA)对Cu2+、Cd2+和Pb2+吸附作用。其结果表明:在重金属离子的不同起始浓度下,随着重金属离子的浓度增加,腐殖酸对Cu2+、Cd2+和Pb2+吸附量逐渐增大并最终趋于平衡,吸附率反而逐渐减小;在不同的pH值下,腐殖酸对Cu2+和Cd2+吸附量随着pH值增加而增大并逐渐稳定,Cu2+吸附的临界点为pH=6.0,Cd2+临界点为pH=5.0,而Pb2+的吸附量受pH值变化的影响较小;在不同温度下,随着温度的降低,腐殖酸对Cu2+、Cd2+和Pb2+吸附量都相应的增加;在相同的条件下,不同腐殖酸对Cu2+、Cd2+和Pb2+吸附量表现为CHHA>BHA,主要是因为CHHA中的羧基和酚羟基官能团含量高于BHA,表明Cu2+、Cd2+和Pb2+在腐殖酸上的吸附作用主要是发生在羧基和酚羟基官能团上。
     6.腐殖酸对Cu2+、Cd2+和Pb2+的等温吸附符合Freundlich方程,Langmuir方程和Temkin方程,其中Langmuir方程达到极显著水平。在相同条件下,腐殖酸对三种重金属离子的饱和吸附量大小为Pb2+>Cu2+>Cd2+。在25℃,pH6.0时,CHHA对Cu2+、Cd2+和Pb2+的饱和吸附量分别为23.65mg/g,4.64mg/g和44.64mg/g,BHA饱和吸附量分别为17.29mg/g,3.23mg/g和38.09mg/g;在15℃,pH6.0时,CHHA对Cu2+、Cd2+和Pb2+的饱和吸附量分别为25.49mg/g,5.79mg/g,69.45mg/g;BHA的饱和吸附量为18.30mg/g,4.85mg/g,41.65mg/g。
     综上所述,不同区域中腐殖酸结构、腐殖酸结合金属含量和腐殖酸吸附金属饱和容量都存在着一定的差异。腐殖酸对金属离子吸附量远大于腐殖酸本身结合态的金属离子含量,腐殖酸与重金属离子的作用既包括表面吸附也有内部结合。因此,腐殖酸能够有效去除水环境中的重金属,降低重金属的生物有效性,同时,当水体环境条件发生变化时,一部分腐殖酸吸附结合的重金属会释放到环境中形成重金属的“二次污染”。因此,对腐殖酸与重金属的研究不仅对其吸附机理有重要的作用,同时也为水源地的环境保护提供了重要的科学依据。
Water quality of the drinking water source is strong and direct link between people's health and improvement of communities. The pollution by heavy metal has been a serious impact on the safety of drinking water. Humic acid, the most widely distributed in natural environment, can effectively react on inorganic and organic pollutants, and is very important in the formation of a variety of complexes. In general, heavy metals can be substracted from water environment by humic acid. However, the ability of binding capacity and affinity depends on the chemical structure and composition of humic acid. The different complexion strength can determine to the "sink" and "source" for heavy metals in the water environment. Therefore, the metal binding capacities of Humic acid are important to practical signification for the the environmental protection of drinking water source.
     Miyun Reservoir has been used as unique surface drinking water storage for Beijing. The sediments of Miyun Reservoir are an important repository for nutrient substances and heavy metals from rivers and surrounding environment. The water quality of Miyun Reservoir directly affects health and safety of residents in Beijing. The sediments of Miyun Reservoir were studied as the research object. Humic acid extracted from surface sediment followed by a method from the International Humic Substance Society (IHSS). The structural characterization of humic acid was investigated by solid state NMR, and the content and distribution of humic acid and TOC were determined to the nutrient levels. The concentration and distribution of metal binding humic acid and corresponding sediments were analyzed for the sources of heavy metals, the capacities of metal binding by humic acid and the environmental effects. Cu, Cd and Pb were chosen for adsorption on sedimentary humic acid at different location of Miyun Reserovior, the characterization of the adsorption and the impact factors were discussiong. The main results are following:
     1. The average content of total organic carbon in the surface sediments was about16.40mg/g, and the average concentration of humic acid was0.71mg/g. The spatial distribution of total organic carbon was the order of the middle region> the flow area of Bai River> the flow area of Chao River. The main source of organic carbon in the surface sediments were the runoff by Bai River and Chao River. However, a large of farmland in north of middle reservoir had become an important source of organic carbon. The content of humic acid and organic carbon appeared an unconsistent relationship, and the concentration of humic acid was relatively higher in the flow area of Bai River.
     2. The sedimentary humic acids in Miyun Reservor were found to be quiet similar, the main structure of sedimentary humic acid was comprised of non-polar aliphatic chain, carboxyl groups, aromatic group, methoxy group and carbohydrates. Partial of humic acid also included aromatic C-O, O-C-O anomerics and carbonyl. However, carbonyl occurred mainly at the middle region and the flow area of Chao River in Miyun Reservior, and this group was not found at in the flow area of Bai River. Among all the groups, the content of non-polar aliphatic chain was the highest and the average value reached to42.79%, the following was carboxyl groups (about20.38%), oxygen-containing groups (including methoxy group and carbohydrates, about19.03%), aromatic group (about14.11%), and other groups were smaller. Howerver, the structure of humic acids were diversity at different regions, such as the carboxyl group was higher at the flow area of Chao River than other regions. Aliphaticity of humic acid was higher, and armoaa' city and degree of oxidation were lower. At the near of infall to Chao River and Bai River, humic acid mainly came from land-based biological origin, and the other regions suffered from weak water flow were derived from aquatic organisms within the reservoir.
     3. The contents of heavy metals in surface sediments were at a low level comparing with the average shale values. Index of geoaccumluation showed heavy metals were uncontamination. Heavy metals in surface sediments were mainly carried by the river into the reservoir and deposition, The spatial distribution of heavy metals at Miyun Reservior was different due to the geographical environment of the two rivers. At the flow area of Chao River, the higher contents of metals were found near the input of reservoir and Chao Dam, and the lower was at the middle of the flow direction. However, at the flow area of Bai River, the lower concentrations of metals were found near the the input of reservoir and Bai Dam, and the hiher was at at the middle of the flow direction. At the middle of Miyun Reservoir, the contents of most metals were lower, but there were a significant increase near the import of the Mangniu River. The results of principal component and correlation analysis showed there were two main sources for metals in surface sediments. The first principal component, including Ni, Cr, Cu, V, Zn, Mn, and part of Pb, represented the source of rock wreathing and soil erosion. The second principal component, consisting of Cd and Pb, and partial concentration of Cr, Cu, V, Zn and Mn, represented the source of industrial mining. The gold mine tailings stacked at the upstream of Mangniu River were potential threat to heavy metals pollution for drinking water source.
     4. The order of the heavy metals binding to humic acid in surface sediments was as follows:Zn (143.21-2858.13μg/g)> Cu (236.07-4887.07μg/g)> Cr (18.17-2137.81μg/g)> Ni (13.56-1757.58μg/g)> V (0.55-46.97μg/g)> Pb (0.71-29.04μg/g)>Cd (0-2.59μg/g). Of the studied metals, the concentrations of Cu and Zn in humic acid were significantly higher than the corresponding sediments, and Cu and Zn showed a greater affinity for humic acid than sediment, suggesting the possible formation of more stable complexes with humic acid, and it could reduce the bioavailability of these contaminats. With lower content of humic aicd, respectively0.31%-4.16%and0.11%-1.91%of the total Cu and Zn in surface sediments were recovered into humic acid, and other metals were lower than1%. Other metals seemed to prefer sediment, even though Cr and Ni were found a general increase in its content in humic acid in some areas, probably because of the structure of humic acid and environmental conditions (such as oxic to anoxic conditions). The results of index of geoaccumluation showed Cu and Zn had a stronger enrichment in humic acid, but the contents of other metals showed no obvious enrichment in humic acid. The contents of heavy metals in humic acid reflected the source and pollution of heavy metals in water environment, and provided valuable information on drinking water source for environmental safe assessment.
     5. The adsorption of Cu2+、Cd2+and Pb2+on the different surface sedimentary humic acids (CHHA and BHA) were investigated under different conditions. Under the different initial concentrations of heavy metals, the adsorptive capacity of Cu2+、 Cd2+and Pb2+was increased gradually and eventually equilibrium with the ions of three heavy metals increased, but the adsorption rate was gradually decreased. The pH value could impact on the adsorption of Cu2+and Cd2+, the adsorptive capacity of Cu2+and Cd2+was increased and eventually up to a certain scope no longer to increase as the pH value increased, and the bound of pH value for Cu2+on humic acid with experimental range was6.0, and Cd2+was5.0, but the pH values palyed a smaller effect on adsorptive capacity of Pb2+. Temperature also affected the adsorptive capacity of Cu2+, Cd2+and Pb2+, and the adsorptive capacities of these three ions were increased as the temperature decreased. Under the same conditions, the size of the amount of adsorption for Cu2+, Cd2+and Pb2+on different humic acid was CHHA> BHA, this was mainly due to the content of the carboxyl and phenolic hydroxyl functional groups in CHHA was higher than BHA.
     6. The results showed that the adsorption isotherm of Cu2+> Cd2+and Pb2+on humic acids complied with the Freundlich equation, the Langmuir equation and the Temkin equation, and the Langmuir equation showed a significant level. In the same conditions, the order of the highest capacity to metal ions on humic acid was Pb2+> Cu2+>Cd2+. In the conditions of25癈and pH6.0, the highest capacities to Cu2+> Cd2+and Pb2+on CHHA were respectively23.65mg/g,4.64mg/g and44.64mg/g, while on the BHA were respectively17.29mg/g,3.23mg/g and38.09mg/g. However, in15"C and pH6.0, the highest capacities to Cu2+> Cd2+and Pb2+on CHHA were respectively25.49mg/g,5.79mg/g and69.45mg/g, but on BHA were respectively18.30mg/g,4.85mg/g and41.65mg/g.
     In summary, the structure of humic acid, metal binding by humic acid, and the saturated adsorption capacities of humic acid were differences in different regions. The amount of adsorption capacity was much larger than the content of metal binding to the humic acid, and the reaction of heavy metals on humic acid included both surface adsorption and internal combination. Heavy metals in water environment were effectively removed by humic acid, and bioavailability of heavy metals was reduced. However, when the water environmental conditions were changed, a part of surface adsorptive content on humic acid would be release to water and form a "secondary pollution" for heavy metals. Therefor, the study on the reaction of humic acid and heavy metals can provide an important scientific basis for the environmental protection of water sources.
引文
Abate G., Masini J.C. Complexation of Cd(Ⅱ) and Pb(II) with humic acids studied by anodic stripping voltammetry using differential equilibrium functions and discrete site models [J]. Organic Geochemistry,2002,33:1171-1182
    Ackerman F. A procedure for correcting the grain size effect in heavy metal analyses of estuarine and coastal sediments[J]. Environ. Technol. Lett.1980,1:518-527
    Alberts J.J., Filip Z. Metal binding in estuarine humic and fulvic acids:FTIR analysis of humic aeid-metal complexes[J].Environmental Technology,1998,19:923-931
    Alberts J.J., Takacs M., Egeberg P.K. Total luminescence spectral characterization of natural organic matter (NOM) size fractions as defined by ultrafiltration and high performance size exclusion chromatography (HPSEC)[J].Org. Geochem.,2002, 33:817-828
    Alfassi Z.B. On the complex of humic acid-Am3+ [J]. Journal of Radioanalytical and Nuclear Chemistry,2002,251:307-309
    Amir S., Benlboukht F., Cancian N., et al. Physical-chemical analysis of tannery solid waste and structural characterization of its isolated humic acids after composing[J]. Journal of Hazardous Materials,2008,160:448-455
    Appel C, Mal L. Concentration, pH, and surface charge effects on cadmium and lead sorption in three tropical soils [J]. J. Environ. Qual.2002,31:581-589
    Arnason J.G., Fletcher B.A. A 40+year record of Cd, Hg, Pb, and U deposition in sediments of Patroon Reservoir, Albany County, NY, USA [J]. Environ Pollut,2003, 123:383-391
    Avena M.J., Vermeer A.W.P., Koopal L.K. Volume and structure of humic acids studied by viscometry pH and electrolyte concentration effects[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects,1999,151:213-224
    Banerjee A.D.K. Heavy metal levels and solid phase speciation in street dusts of Delhi, India [J]. Environmental Pollution,2003,123:95-105
    Barona A., Aranguiz I, Elias A. Assessment of metal extraction, distribution and contamination by a 3-step sequential extraction procedure [J]. Chemosphere,1999, 39(11):1911-1922
    Barona A., Romero F. Relationship among metals in the solid phase of soils and in wild plants [J]. Water, air and soil Pollution,1997,95:59-74
    Barrow N.J., Whelan B.R. Comparing the effects of pH on the sorption of metals by soil and by goethite, and on uptake by plants [J].Eur.J.Soil Sci.1998,49:683-692
    Berns A.E., Conte P. Effect of ramp size and sample spinning speed on CPMAS 13C NMR spectra of soil organic matter[J]. Organic Geochemistry,2011,42:926-935
    Balnois E., Wilkinson K.J., Lead J.R., et al. Atomic force microscopy of humic substances:Effects of pH and ionic strength [J]. Environ Sci Technol,1999,33 (21):3911-3917
    Bloom G., Winkels H.J. Modeling sediment accumulation and dispersion of contaminations in Ljsselmeer (the Netherlands)[J]. Water Sci Tech,1998,37(6-7): 17-24
    Bloom P.R., Leenheer J.A. In:H ayes M H B, et al. Humic Substances Ⅱ-In Search of Structure [J]. Chichester Wiley,1989,409-446
    Boerschke P. R., Callie E.A., Belzile N, et al. Quantitative elemental and structural analysis of dissolved organic carbon fractions [J]. Can. J. Chem.,1996, 74:2460-2470
    Bowden J.W., Posner A.M., Quirk J.P. Adsorption and charging phenomena in variable charge soils. In:Theng, B.K.G. (Ed.), Soils with Variable Charge. Soil Bureau, Department of Scientific and Industrial Research, Lower Hutt, New Zealand,1980, pp.147-166
    Brandy N., Well R. The nature and properties of soils[M]. New Jersey:PrenticeHall, 1999, p466-489
    Brennan R.F., Robson A.P., Gartrell J.W. Reaction of copper with soil affecting its availability to plants. Ⅱ, Effect of soil pH, soil sterililation and organic maRer on the availability of applied copper [J]. Aust J Soil Res,1983,21:155—163
    Brich G.F., Evenden D., Teutsch M.E. Dominance of point source in heavy metal distribution in sediments of a major Sydney estuary (Australian)[J]. Environmental Geology,1996,28:169-174
    Brigante M., Zaninia G., Avenaa M.. Effect of pH, anions and cations on the dissolution kinetics of humic acid particles[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects,2009,347:180-186
    Brown G.K., MacCarthy P., Leenheer J.A. Simultaneous determination of Ca, Cu, Ni, Zn and Cd binding strengths with fulvic acid fractions by Schubert's method[J]. Analytica Chimica Acta,1999,402:169-181
    Bruemmer G.W., Gerth J., Herms U. Heavy metal species, mobility and availability in soils[J]. J. Plant Nutr. Soil Sc.,1986,149(4):382-392
    Bryan N.D., Jones M.N., Birkett J.et al. Aggregation of humic substances by metal ions measured by ultracentrifugation[J].Analytica Chimica Acta,2001, 437:291-308
    Buffiel J., Greter F.L., Haerdlw. Measurement of complexation properties of humic and fulvic acids in nature waters with lead and copper ion-selective electrodes. Analytical chemistry,1977,49:216-222
    Calace N. Petronio B.M. The role of organic matter on metal toxicity and bio-availability[J].Annali di Chimica,2004,94:487-493
    Calace N., Palmieri N., Mirante S., et al. Dissolved and particulate humic substances in water channels in the historic centre of Venice[J]. Water Research,2006, 40:1109-1118
    Casagrande J.C., Alleoni L.R.F., De Camargo O.A., et al. Effects of pH and ionic strength on zinc sorption by a variable charge soil [J].Comm. Soil Sci. Plant Anal. 2004,35:2087-2095
    Cezikova J., Kozler J., Madronova L. et al. Humic acids from coals of the North-Bohemian coal field Ⅱ☆. Metal-binding capacity under static conditions [J]. Reactive & Functional Polymers,2001,47,111-118.
    Chefetz B., Deshmukh A.P., Hatcher P.G., Guthrie E.A. Pyrene sorption by natural organic matter[J]. Environ Sci Technol,2000,34:2925-2930
    Chen J., Gu B., Leboeuf E.J., et al. Spectroscopic characterization of the structural and functional properties of natural organic matter fractions [J]. Chemosphere,2002, 48(1):59-68
    Chen Y, Schnitzer M. The surface tension of aqueous solutions of soil humic substances[J]. Soil Sci.1978,125:7-15
    Chen Y, Stevenson F.J. Soil organic matter interactions with trace elements. In:Chen Y, Avnimelech Y.(eds) The role of organic matter in modem agriculture. Martinus Nijhoff Publishers, Dordrecht, pp73-116
    Coles C.A., Yong R.N. Humic aicd preparation, properties and interactions with metals lead and cadmium[J]. Engineering Geology,2006,85:26-32
    D'Angelo E.M., Reddy K.R. Diagenesis of organic matter in a wetland receiving hypereutrophic lake water:I. Distribution of dissolved nutrients in the soil and water column[J]. Environ Qual,1994,23(5):928-936
    Davies G., Fataftah A., Radwan A.et al. Isolation of humic acid from the terrestrial plant Brugmansia sanguine[J]. Sci. Total Environ.,1997,201:79-87
    De la Rosa J.M., Santos M., Araujo M.F. Metal binding by humic acids in recent sediments from the SW Iberian coastal area[J]. Estuarine, Coastal and Shelf Science,2011,93:478-485
    Deflaun M.F., Mayer L.M. Relationships between bacteria and grain surface in intertidal sediments [J]. Limnol.Oceanogr.1983,18:873-881
    Diana Hernandez, Cesar Plaza, Nicola Senesi, et al. Detection of Copper(II) and zinc(Ⅱ) binding to humic acids from pig slurry and amended soils by fluorescence spectroscopy [J]. Environmental Pollution,2006,43:212-220
    Dick D.P., Mangrich A.S., Menezes S.M.C., et al. Chemical and spectroscopical characterization of humic acids from two south Brazilian coals of different ranks [J]. Journal of the Brazilian Chemical Society,2002,13:177-182
    Dudka S., Ponce-Hemadez R., Tate G., Hutchinson T.C. Forms of Cu, Ni, and Zn in soils Sudbury, Ontario and the metal concentrations in plants [J]. Water, air and soil Pollution,1996,90:531-542
    Dzombak A.D., Fish W., Morel F.M.M. Metal-humate interactions.l.Piscrete ligancl and continuous distribution models [J].Environ Sci Technol,1986,20(7):669-675
    El-Eswed B., Khalili F. Adsorption of Cu(Ⅱ) and Ni(Ⅱ) on solid humic acid from the Azraq area, Jordan[J]. Journal of Colloid and Interface Science,2006,299:497-503
    Emma F.C., Flora A.V., Andrade M.L. Heavy metal sorption and desorption capacity of soils containing endogenous contaminants [J]. J. Harzard. Mater.2007, 143:419-430
    Engebretson R.B., von Wandruszka R. Kinetic aspects of cation enhanced aggregation in aqueous humic acids[J]. Environmental Science & Technology,1998, 32:488-493
    Ergin M., Gaines A., Galletti G.C., et al. Early diagenesis of organic matter in recent Black Sea sediments:characterization and source assessment [J]. Appl Geochem, 1996,11:711-720
    Evangelou V.P., Marsi M. Composition and metal ion complexation behavour of humic fractions derived from com tissue[J]. Plant and Soil,2001,229:13-24
    Exner A., Theisen M., Panne U., Niessner R. Combination of asymmetric flow field-flow fractionation (AF(4)) and total-reflexion X-ray fluorescence analysis (TXRF) for determination of heavy metals associated with colloidal humic substances [J]. Fresenius Journal of Analytical Chemistry,2000,366:254-259
    Fakushina M., Tanaka S., Taga M. Effect of Ionic Strength on Complexing Equilibrium Between Copper (Ⅱ) and Humic Acid [J].Environmental Analytical Chemistry,1994,56(3):229-237
    Filella M., Town R.M. Heterogeneity and lability of Pb(II) complexation by humic substances:practical interpretation tools [J]. Fresenius Journal of Analytical Chemistry,2001,370:413-418
    Forstner U., Salomons W. Trace metal analysis on polluted sediments. I. Assessment of sources and intensities [J].Environ.Technol. Lett.1980,1:494-505
    Forstner W., Muller G. Factors controlling the distribution of minor and trace elements (heavy metals V, Li, Sr) in recent lacustrine sediments, Resumes des Publications IX Congress Intl. De Sedimentologie, Nice, Theme Ⅱ,1975, p6
    Fytianos K., Greece N. Speciation of elements in sediment samples collected at Lake Volvi and Koronia, North Greece [J]. Environment International,2003,30 (1): 11-17
    Garcia C., Harnandez T, Costa F. Characterization of Humic Acids from Uncomposted and Composted Sewage Sludge by Degradative and Non-degradative Techniques [J]. Bioresource Technology,1992,41:53-57
    Ghabbour E.A., Khairy, A.H., Cheney D.P. et al. Isolation of Humic Acid from the brown alga Pilayella littoralis[J]. Journal of Applied Phycology,1994,6:459-469
    Ghosh R., Banerjee D.k. Complexation of trace metals with humic acids from soil,sediment and sewage[J]. Chemical Speciation and Bioavailability, 1997,9(1):15-19
    Gibbs R. J. Transport phases of transition metals in the Amazon and Yukon rivers [J]. Geological Society of America Bulletin.1977,88:829-843
    Glaus M.A., Hummel W., Van Loon L.R. Trace metal-humate interactions. I. Experimental determination of conditional stability constants [J], Applied Geochemistry,2000,15:953-973
    Gomes P.C., Fontes M.P.F., da Silva A.G., et al. Selectivity sequence and competitive adsorption of heavy metals by Brazilian soils[J]. Soil Science Society of America Journal,2001,65:1115-1121
    Gondar D., Iglesias A., Lopez R., et al. Copper binding by peat fulvic and humic acids extracted from two horizons of an ombrotrophic peat bog[J]. Chemosphere,2006, 63:82-88
    Gonzalez F.J., Martin F. Chemical structural characteristics of humic acids extracted from composted municipal refuse[J]. Agriculture, Ecosystems & Environment, 1985,14:267-278
    Gottschalch U, Birke M, Kupsch H, St'ark H J, Lippold H. Characterization of urban NOM in a municipal area with disused toxic waste sites [J]. Applied Geochemistry, 2007,22(11):2435-2455
    Gregorich E.G. et al. Biological attributes of soil quality. In:Gregorich E.G. & Carter M.R., eds. Soil quality for crop production and ecosystem health[M]. New York, USA:Elsevier,1997,81-114
    Hakanson L. An ecological risk index for aquatic pollution control—A sedimentological approach [J]. Water Research,1980,14:975-1001
    Hasan S., Ghosh T.K. Viswanth D.S., et al. Dispersion of chitosan on perlite for enhancement of copper (Ⅱ) adsorption capacity [J]. Journal of Hazardous Material, 2008,152:826-837
    Hatton D., Pickering W.F. The effect of pH on the retention of Cu, Pb, Zu and Cd by clay-humic acid mixtures [J]. Water air Soil Pollut,1980,14:13-21
    He M.C., Shi Y.H., Lin C.Y. Characterization of humic acids extracted from the sediments of the various rivers and lakes in China[J]. Journal of Environmental Sciences,2008,20(11):1294-1299
    Hering J.G.,Morel F.M.M. Humic acid complexation of calcium and copper[J]. Environ. Sci. Technol.,1988,22(10):1234-1237
    Hernandez D., Plaza C, Senesi N., et al. Detection of Copper(Ⅱ) and zinc(Ⅱ) binding to humic acids from pig slurry and amended soils by fluorescence spectroscopy [J]. Environmental Pollution,2006,143:212-220
    Hirner A.K., Kritsotaks K., Tobschall H.J. Metal-organicassociations in sediments—Ⅰ. Comparison of unpollutedrecent and ancient sediments and sediments affected by anthropogenic pollution[J]. Applied Geochemistry,1990,5(4):491-505
    Hoopm A. G., Leeuwen H. P.,Inheiro J. P., et al.. Voltammetric analysis of the competition calcium and heavy metals for complexation by humic material [J]. Colloids and Surface,1995, (95):305-313
    Huang W., Campredom R., Abrao J.J., et al. Variation of heavy metals in recent sediments from Piratininga Lagoon (Brazil)-interpretation of geochemical data with the aid of multivariate analysis [J]. Environmental Geology,1994,36(4): 241-247
    Huffman E.W.D., Stuber H.A In:Aiken, G.R., Mcknight, D.M., Wershaw, R.L., McCarthy, P. (Eds.).Humic Substances in soil, sediment, and water [M].Wily, New York, USA,1985
    Hur J., Schlautman M.A. Influence of humic substance adsorptive fractionation on pyrene partitioning to dissolved and mineral-associated humic substance[J]. Environ Sci Technol,2004,38:5871-5877
    Jain C.K., Gupta H., Chakrapani G.J. Enrichment and fractionation of heavy metals in bed sediments of River Narmada, India [J]. Environ Monit Assess,2008,141:35-47
    Jain C.K., Malik D.S., Rashmi Y. Metal fractionation study on bed sediments of Lake Nainital, Uttaranchal, India [J]. Environ Monit Assess,2007,130:129-139
    Jain C.K., Singhal D.C., Sharma M. K. Metal pollution assessment of sediment and water in the river Hindon, India [J]. Environmental Monitoring and Assessment, 2005,105(1-3):193-207
    Jing Y.D., He Z.L., Yang X.E. Effect of pH, organic acids, and competitive cations on mercury desorption in soils[J]. Chemosphere,2007,69:1662-1669
    Karl K, Karl H. W.. Distribution of the Elements in Some Major Units of the Earth's Crust[J]. Geological Society of America Bulletin,1961, v.72,175-192
    Kaschl A., Romheld R, Chen Y Binding of cadmium, copper and zinc to humic substances originating from municipal solid waste compost [J]. Israel Journal of Chemistry,2002,42:89-98
    Keppler F.,Eiden R.,Niedan V.,et al. Halocarbons produced by natural oxidation processes during degration of organic matter[J].Nature,2000,403:298-301
    Kinniburgh D. G., Van Riemsdijk W. H, Koopal, L. K, et al. Ion binding to natural organic matter:competition, heterogeneity, stoichiometry and thermodynamic consistency [J]. Colloids Surf. A.1999,151(1-2):147-166
    Kitis M., Kilduff J.E., Karanfil T. Isolation of dissolved organic matter(DOM)from surface waters using reverse osmosis and its impact on the reactivity of DOM to formation and speciation of disinfection by—products [J]. Water Research,2001,35: 2225-2234
    Klavins M., Apsite E. Sedimentary humic substances from lakes in Latvia[J]. Environment International,1997,23(6):783-790
    Ladonin D.V. and Margolina S.E. Interaction between humic acids and heavy metals [J]. Pochvovedenie,1997,7,806-811
    Lamy I. A soil cadmium mobility as a consequence of sewage sludge disposal [J]. Environ Qual.1993,22:731-737
    Leenheer A.J. Systematic approaches to comprehensive analyses of natural organic matter[J]. Annals of Environmental Science,2009,3:1-130
    Li X., Poon C., Liu P.S. Heavy metal contamination of urban soils and street dusts in Hong Kong [J]. Applied Geochemistry,2001,16:1361-1368
    Liu J., Wang J., Chen Y.H., et al. Comparacterzation of two natural humic acids in the Pearl River Basin, China and their environmental implications [J]. Journal of Environmental Science,2010,22(11):1695-1702
    Livens F.R. Chemical reactions of metals with humic material [J]. Environmental Pollution,1991,70(3):183-208
    Loring D.H. Geochemical factors controlling the accumulation and dispersal of heavy metals in the Bay of Fundy sediments [J]. Can. J. Earth Sci.1982,19:930-944
    Loska K., Wiechula D. Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir. Chemosphere,2003,51:723-733
    Manunza B., Deiana S., Maddau V, et al. Stability constants of metal-humate complexes:titration data analyzed by bimodal Gaussian [J].1995,59(6):1570-1574
    Mao J.D., Tremblay L., Gagne J. P. Structural changes of humic acids from sinking organic matter and surface sediments investigated by advanced solid-state NMR: Insights into sources, preservation and molecularly uncharacterized components [J]. Geochim Cosmochim Acta,2011,75:7864-7880
    Mao J.D., Tremblay L., Gagne J.P., et al. Humic acids from particulate organic matter in the Saguenay Fjord and the St. Lawrence Estuary investigated by advanced solid-state NMR[J]. Geochim Cosmochim Acta,2007,71:5483-5499
    Martlnez F., Sanchez J. Assessment of heavy metal levels in Almendares River sediments-Havana City, Cuba [J]. Water Research,2005,39:3945-3953
    Mayer L.M., Rossi P.M. Specific surface areas in coastal sediments:relationships with other textural factors [J]. Mar. Geol.,1982,45:241-252
    Mogollon J.L., Bifano C., Davies B.E. Geochemistry and anthropogenic inputs of metals in a tropic lake in Venezuela [J]. Applied Geochemistry,1996,11:605-616
    Moore J.W., Ramamoorthy S. Heavy metals in natural waters:applied monitoring and impact assessment [M]. NewYork:Springer,1984
    Mor S., Ravindra K., Bishnoi N.R. Adsorption of chromium from aqueous solution by activated alumina and activated charcoal [J]. Bioresource Technology, 2007,98:954-957
    Mortimer R.J.G, Rae J. E. Metal speciation (Cu, Zn, Pb, Cd) and organic matter in oxic to suboxic salt marsh sediments, Severn Estuary, Southwest Britain [J]. Marine Pollution Bulletin,2000,40 (5),377-386
    Miiller G. Schwermetalle in den Sedimenten desRheins—eranderungen seit 1971. Umschau,1979,24,778-783.
    Nieuwenhuize J., Maas Y.E., Middelburg J. Rapid analysis of organic carbon and nitrogen inparticulate materials[J]. Marine Chemistry,1994,45,217-224.
    Nifanteva T.I., Burba P., Fedorova O., et al. Ultrafiltration and determination of Zn and Cu-humic substances complexes stability constants[J]. Talanta,2001, 53:1127-1131
    Noordwijkv M., Cerri C.,Woomer P.L. Soil carbon dynamics in the humid tropical forest zone[J]. Geoderma,1997,79:187-225
    Nriagu J.O., Pacyna J.M. Quantitative assessment of worldwide contamination of air, water and soils by trace metals [J]. Nature,1988,333:134-139
    Olivares-Rieumont S., De la Rosa D., Lima L., et al. Assessment of heavy metal levels in Almendares river sediments2 Havana City, Cuba [J]. Water Research, 2005,39:3945-3953
    Oste L.A., Temminghoff E.J.M., Lexmond T.M., et al. Measuring and Modeling zinc and cadmium binding by humic acid [J].Analytical Chemistry,2002,74:856-862
    Osterberg R., Wei S Q., Shirshova L. Inert copper ion complexes of humic acids [J]. Acta chemical Scand,1999a,53(2):153-172
    Osterberg R, Wei S.Q. Solution interaction of humic acids with Calcium ions involves of a two-phase system [J]. Acta chemical Scand,1999b,53(6):974-984
    Pandey A.K., Pandey S.D., Misra V. Stability constants of metal-humic acid complexes and its role in environmental detoxification [J]. Ecotoxicology and Environmental Safety,2000,47:195-200
    Peters A.J., Hamilton-Taylor J., Tipping E. Americium binding to humic acid [J]. Environmental Science & Technology,2001,35:3495-3500
    Peuravuori J., Pihlaja. Preliminary study of lake dissolved organic matter in light of nanoscale supramolecular assembly [J]. Environmenral Sicence & Technology, 2004,38(22):5958-5967
    Pilarski J.,Waller P.,Pickering W.Sorption of antimony species by humic acid [J].Water air Soil Pollut,1995,84:51-59
    Pinheiro J.P., Mota A.M., Goncalves M.S., et al. Kinetics of Adsorption of Humic Matter on Mercury [J].Environmental Science & Technology,1994,28:2112-2119
    Podolfo D.P., Julio C., Marc A.G.T., et al. Analysis of trace metal humic acid interactions using counterion condensation theory[J]. Environ Sci Technol,2002, 36:3815-3821
    Preston C.M., Schnitzer M. Effects of chemical modifications and extractants on the 13C NMR spectra of humic materials[J]. Soil Science Society of America Journal, 1984,48(2):305-311
    Radwan A., Davies G., Fataftah A., et al. Isolation of Humic Acid from the brown alga Ascophyllum nodosum, Fucus vesiculosus, Laminaria saccharina and the marine angiosperm Zostera marina[J]. Journal of Applied Phycology,1997,8: 553-562
    Rashid M.A. Geochemistry of Marine Humic Compounds[M]. Springer Verlag, New York,1985,300 pp.
    Ratha D.S., Sahu B.K. Source and distribution of metals in urban soil of Bombay, India, using multivariate statistical techniques [J]. Environmental Geology,1993, 22:276-285
    Ritchie J.D., Perdue E.M. Proton-binding study of standard and reference fulvic acids,humica acids, and natural organic matter. Geochim Cosmochim Acta,2003, 67(1):85-96
    Ryan D.K., Weber J.H. Copper (Ⅱ) complexing capacities of natural waters by fluorescence quenching[J]. Environ. Sci. Technol.,1982,166:866-872
    Saar R.A., Weber J.H. Comparision of spectrofluorometry and ion-selective electrode potantiometry for determination of complexes between fulvic acid and heavy metal ions[J]. Analytical chemistry,1980,52:2095-2100
    Salomons W., Forstner U. Trace metal analysis on pollution sediments, Part Ⅱ: Evaluation of environmental impact. Environmental Technology Letters,1980, 1:506-517
    Schnitzer M. Humic substances:chemistry and reactions, in M. Schnitzer and S. U. Khan (eds.), Soil Organic Matter [M]. Elsevier, Amsterdam,1978, pp.1-64
    Schulten H.R., Schnitzer M. Three-dimensional models for humic acids and soil organic matter[J]. Naturwiss,1995,82(11):487-498
    Sehoer J. Iron-oxo-hydroxides and their significance to the behavior of heavy metals in estuaries [J]. Environ. Teehnol.Letters.1985,6:189-202
    Sekaly A.L.R., Mandal R., Hassan N.M., et al. Effect of metal/fulvic acid mole ratios on the binding of Ni(II),Pb(Ⅱ), Cu(Ⅱ), Cd(Ⅱ), and Al(Ⅲ) by two well-characterized fulvic acids in aqueous model solutions[J].Analytica Chimica Acta,1999,402:211-221
    Sensesi N. Molecular and quantitative aspects of the chemistry of fulvtic acid and its interactions with metal ions and organic chemicals. Part Ⅱ. The fluorescence spectroscopy approach[J]. Anal. Chim. Acta.,1990,232:77-106
    Sensi N., Rizzi F.R., Dellion P et al. Fractal dimension of humic acids in aqueous suspension as a function of pH and time[J]. Soil Sci. A. M.,1996,60:1773-1780
    Sierra M.M.D., Gi ovanela M., Parlant i E., et al. Fluorescence fingerprint of fulvic and humic acids from varied origins as viewed by single-scan and excitation/emission matrix techniques [J]. Chemosphere,2005,589(6):715.-733
    Sikora F.J., Stevenson F.J. Silver complexation by humic substances; conditional stability constants and nature of reactive sites [J]. Geoderma,1998,42:353-363
    Silva S., Baffi C., Beone G.M. Agronomical trials with the use of chromium-containing fertilizers. In:Canali, S.,Tittarelli, F., Sequi, P. (Eds.),Chromium Environmental Issues. Franco Angeli, Milan,1997, pp.83-100.
    Singh K. P., Mohan D., Singh V. K., Malik A. Studies on distribution and fractionation of heavy metals in Gomti river sediments—a tributary of the Ganges, India[J]. Journal of Hydrology,2005,312(1-4):14-27
    Spark K.M., Wells J.D. Johnson B.B. The interaction of a humic acid with heavy metals [J]. Australian Journal of Soil Research,1997,35:89-101
    Sposito G. Sorption of trace metals by humic materials in soils and natural waters [J]. Critical Reviews in Environmetal Control,1986,16(2):193-229
    Srivastava A., Srivastav P.C. Adsorption-Desorption behavior of Zinc (Ⅱ) at Iron (Ⅲ) hydroxide-aqueous solution interface as influenced by pH and temperature [J]. Environmental Pollution,1990,68(1):171-180
    Stevenson F.J. Humus Chemistry:Genesis, Composition, Reactions. John Wiley & Sons, Inc., New York.1994
    Stevenson F.J. Humus Chemistry:Genesis, Composition, Reactions., A wiley-Interscience publication. John Wiley & Sons, Inc., New York.1982
    Swift R.S. Organic Matter Characterization[M]. In Methods of Soil Analysis. In Soil Sci. Soc. Am. Book Series 5 (ed. D.L. Sparks). Soil Science Society of American Society of Agronomy,1996, pp.1011-1069
    Tao S, Lin B. Water soluble organic in soil and sediment[J]. Water Research,2000,34: 1751-1755
    Tarn N.F.Y., Wong Y.S. Retention and distribution of heavy metals in mangrove soils receiving wastewater [J]. Environmental Pollution,1996,94:283-291
    Terbouche A., Ramdane-Terbouche C., Hauchard D., et al. Evaluation of adsorption capacities of humic acids extracted from Algerian soil on polyaniline for application to remove pollutants such as Ca(II), Zn(II) and Ni(II) and characterization with cavity microelectrode[J]. Journal of Environmental Sciences, 2011,23(7):1095-1103
    Tessier A., Campbell P.G.C., Bisson M. Sequential extraction procedures for the speciation of particulate trace metals. Analytical Chemistry,1979,51:844-851
    Vallee B.L., Ulmer D.D. Biochemical effects of mercury, cadmium and lead [J]. Annual Review of Biochemistry,1972,41:92-108
    Von open B., Kordel w., Klein W. Sorption of nonpolar and polar compounds to soils: process, measurement and dexperience with the upplicability of the modified OECD-guideline 106[J].Chemosphere.l991,22(3-4):285-304
    Wallschlager D., Desai M.V.M., Spengler M., et al. How humic substances dominate mercury geochemistry in contaminated floodplain soils and sediments[J]. Environ Qual,1998,27(5):1044-1054
    Wang F., Chen J. Relation of sediment characteristics to trace metal concentration:A statistical study [J]. Water Research,2000,34 (2),694-698
    Wang Y.G., Combe C, Clark M.M. The effects of pH and calcium on the diffusion coefficient of humic acid [J]. Journal of Membrane Science,2001,183,:49-60
    Warren L.A., Haack E.A. Biogeochemical controls on metal behavior in freshwater environments [J]. Earth Science Reviews,2001,54:261-320
    Warren L.A., Zimmerman A.P. The influence of temperature and NaCl on cadmium, copper and zinc partitioning among suspended particulate and dissolved phases in an urban river[J]. Wat. Res.1994,28(9):1921-1931
    Wiese S.B. A recent history of metal accumulation in the sediments of the Thames Estuary, United Kingdom [J]. Estuaries,1997,20 (3):483-493
    Windmoller C C, Wilken R D, Jardim W D F. Mercury speciation in contaminated soils by thermal release analysis[J]. Water, Air and Soil Pollution,1996,89:399-416
    Wood S.A. The role of humic substances in the transport and fixation of metals of economic interest (Au, Pt, Pd, U, V) [J].Ore Geology Reviews,1996,11:1-31
    Wu F.C., Mills R.B., Evans R.D., et al.. Kinetics of metal-fulvic acid complexation using a stopped-flow technique and three-dimensional excitation emission fluorescence spectrophotometer[J]. Anal. Chem.,2004,76:110-113
    Wu F.C., Tanoue E. Isolation and partial characterization of dissolved copper-complexing ligands in streamwaters[J]. Environ. Sci. Technol.,2001, 35:3646-3652
    Wu F.C., Tanoue E., Liu C.Q. Fluorescence and amio acid characteristics of molecular size fractions of DOM in the waters of Lake Biwa[J]. Biogeochemistry,2003, 65:245-257
    Xia K., Bleam W., Helmke P.A. Studies of the nature of Cu2+ and Pb2+ binding sites in soil humic substances using X-ray absorption spectroscopy[J]. Geochimica et Cosmochimica Acta,1997,61:2211-2221
    Xiao B.H., Yu Z.Q., Huang W.L., et al. Black carbon and kerogen in soil and sediments.2. Their roles in equilibrium sorption of less-polar organic pollutants [J]. Environ Sci Technol,2004,38:5842-5852
    Xue H.B., Sigg L. Comparison of the complexation of Cu and Cd by humic or fulvic acids and by ligands observed in lake waters [J].Aquatic Geochemistry,1999, 5:313-335
    Yamamoto R., Ishiwatari S. A study of the formation mechanism of sedimentary humic substances. III. Evidence for the protein-based melanoidin model[J]. Science of the Total Environment,1992,117-118:279-291
    Zaccone, C., Cocozza, C., Cheburkin, A.K.,et al. Distribution of As, Cr, Ni, Rb, Ti and Zr between peat and its humic fraction along an undisturbed ombrotrophic bog profile (NW Switzerland) [J]. Applied Geochemistry,2008,23:25-33
    Zhang J., Dai J.L., Wang R.Q., et al. Adsorption and desorption of divalent mercury (Hg2+) on humic acids and fulvic acids extracted from typical soils in China[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2009,335: 194-201
    Zhang S.Z., Wang S.X., Shan X.Q.. Distribution and speciation of heavy metals in surface sediments from Guanting Reservoir, Beijing. J. Environ. Sci. Health,2002, 37(4):465-478
    Zhao, W.C., He, J., Song, W. J., Lv, C.W., Liu, H.L., Wang, F. J.,2011. The spatial distribution of humus components and species and the pollution characters of the surface sediments in the Dailinuoer Lake, China[J]. Journal of Agro-Environment Science,30(2):341-346.
    鲍全胜,曹利军,王华东.密云水库非点源污染负荷评价研究[J].水资源保护,1997(1):8-11
    鲍士旦主编.土壤农化分析[M].北京:中国农业出版社,2007
    曾凡萍,肖化云,周文斌.鄱阳湖流域沉积物中重金属研究及其环境意义[J].江西化工,2007,(2):21-23
    陈怀满.土壤中化学物质的行为与环境质量[M].北京:科学出版社,2002
    陈静生,周家义编著.中国水环境重金属研究[M].北京:中国环境科学出版社,1992
    陈静生.水环境化学[M].北京:高等教育出版社.1987
    陈世宝,华珞,白玲玉等.有机质在土壤重金属污染治理中的应用[J].农业环境与发展,1997,14(3):26-29
    陈同斌,陈志军.土壤中溶解性有机质及其对污染物吸附和解吸行为的影响[J]。植物营养与肥料学报,1998,4(3):201-210
    陈同斌,郑袁明,陈煌等.北京市土壤重金属含量背景值的系统研究[J].环境科学,2004,25(1),117-122
    陈盈,颜丽,关连珠等.不同来源腐殖酸对铜吸附量和吸附机制的研究[J].土壤通报,2006,33(3):479-581
    陈盈,张满利,关连珠等.pH对不同来源腐殖酸吸附铅和锰的影响[J].中国农学通报,2010,26(12):67-69
    陈颖,袁旭音.河口湿地沉积物中腐殖酸含量对外源重金属分布的影响研究[J].水土保持学报,2008,22(4):185-189
    陈永灿,张宝旭,李玉梁.密云水库富营养化分析与预测[J].水利学报,1998, 29(7):12-15
    杜桂森,孟繁艳,李学东等.密云水库水质现状及发展趋势[J].环境科学,1999,20(2):110-112
    范文宏,陈俊,王琼.胡敏酸对沉积物中重金属形态分布的影响[J].环境化学.2007.26(2):224-227
    费珊珊.腐殖酸对天然水体生物膜吸附重金属的影响[D].吉林大学硕士学位论文,2006
    傅平青,刘丛强,万鹰昕等.水环境中腐殖质对重金属吸附行为的影响[J].矿物岩石地球化学通报,2002,21(4):277-281
    傅平青,刘从强,吴丰昌.水体环境中腐殖质-金属离子键合作用研究进展[J].生态学杂志,2004,23(6):143-148
    葛晓立,刘晓端,潘晓川等.密云水库水体的地球化学特征[J].岩矿测试,2003,22(1):44-48
    耿安朝,章申.腐殖酸与稀土元素的结合点位及其表征研究[J].厦门大学学报,2006,45(2):238-242
    顾雪元,顾志忙,王晓蓉.土壤中腐殖酸与稀土离子作用的傅立叶变换红外光谱[J].2001,29(5):569-572
    顾志忙,王晓蓉,顾雪元等.傅里叶变换红外光谱和核磁共振法对土壤中腐殖酸的表征[J].分析化学,2000,28:314-317
    蒋展鹏,廖孟钧.腐殖质及其在环境污染控制中的作用[J].环境污染与防治,1990,12(3):24-28
    金相灿主编.沉积物污染化学[M].北京:中国环境科学出版社,1992,pp26-27
    李光林,魏世强,牟树森.土壤胡敏酸对Pb的吸附特征与影响因素[J].农业环境科学学报.2004,23(2):308-312
    李光林.腐殖酸与几种重金属离子的相互作用及影响因素[D].西南农业大学博士论文,2002
    李然,李嘉,赵文谦.水环境中重金属污染综述研究[J].四川环境,1997,16(1):18-22
    李祥玉,季宏兵,朱先芳等.北京北部水源地沉积物中重金属元素分布及形态研究[J].现代农业科技,2010,(9):273-285
    李颖.水体中重金属、腐殖酸和粘土颗粒物之间的相互作用研究[D].山东大学博士论文,2010
    李玉,俞志明,宋秀贤.运用主成分分析(PCA)评价海洋沉积物中的重金属污染来源[J].环境科学,2006,27(1):137-141
    刘恩峰,沈吉,朱玉新,等.太湖表层沉积物重金属元素的来源分析[J].湖泊科学,2004,16(2):113-119
    刘峰,胡继伟,吴迪,等.基于形态学分析红枫湖沉积物中重金属的分布特征及污染评价.环境化学,2011,30(2):440-446
    刘俊华,王文华,彭安.土壤中汞生物有效性的研究[J].农业环境保护,2000,19(4):216-220
    刘晓端,徐清,葛晓立等.2005.密云水库沉积物中金属形态分析研究[J].中国科学D辑地球科学,35(增刊Ⅰ):288-195
    卢少勇,许梦爽,金相灿等.长寿湖表层沉积物氮磷和有机质污染特征及评价[J].环境科学,2012,33(2):393-398
    陆长青,朱燕婉.腐殖酸一镉络合物的稳定常数[J].土壤学报,1982,1(5):365-367
    罗道诚,刘俊峰.腐殖酸树脂处理含Pb2+、Cu2+、Ni2+废水的研究[J].环境污染治理技术与设备,2005,6(10):73-76
    罗固源,朱虹,许晓毅,蔡文良,杜娴.嘉陵江重庆段沉积物中腐殖酸的特性研究[J].光谱学与光谱分析,2011,31(6):1663-1667
    罗燕,秦延文,张雷,郑丙辉,贾静(2011).大伙房水库表层沉积物重金属污染分析与评价.环境科学学报,31(5),987-995
    吕福荣,刘艳.腐殖酸对钴、镉作用的研究[J].大连大学学报,2002,23(4):63-67
    庞叔薇.连续化学浸提法测定底泥中不同形态汞的探讨[J].环境科学学报,1981,1(3):234-241
    钱宝,刘凌,张颖等.江苏里下河地区典型湖泊有机质污染研究[J].环境污染与防治,2010,3(11):18-24
    尚林源,孙然好,汲玉河,郭二辉,陈利顶.密云水库入库河流沉积物重金属的风险评价.环境科学与技术,2011,34(12H),344-348
    宋海燕,尹友谊,宋建中.不同来源腐殖酸的化学组成与结构研究[J].华南师范 大学学报(自然科学版),2009,(1):61-66
    宋建中.珠江三角洲地区土壤和表层沉积物有机质的非均质性研究[D].中国科学院研究生院博士论文,2003
    王丹丽,王恩德.针铁矿及腐殖质对水体重金属离子的吸附作用[J].安全与环境学报,2001,1(4):1-4
    王浩,章明奎.污染土壤中有机质和重金属相互作用的模拟研究[J].浙江大学学报(农业与生命科学版),2009,35(4):460-466
    王宏康.土壤金属污染研究进展[J].环境化学,1991,10(5):36-37
    王菊英,张曼平.重金属的存在形态与生态毒性[J].海洋与湖沼,1992,23(2):84-89
    王强.腐殖酸与铁锰铝及其氧化物的相互作用机理研究[D].西南农业大学博士论文.2005
    王庆锁,梅旭荣,张燕卿,孙东宝,于一雷.密云水库水质研究综述[J].中国农业科技导报,2009,11(1):45-50
    王如阳,王泓,刘晓芳.褐煤腐殖酸对Cr(Ⅵ)离子吸附物性试验[J].云南民族学院学报(自然科学版),1999,4(8):41-44
    王慎敏,周群,甄捷等.用改性泥煤腐殖酸净化剂处理含重金属离子废水[J].中国煤炭,1999,25(3):40-41
    王维君,邵宗臣,何群.红壤粘粒对Co、Cu、Pb和Zn吸附亲和力研究[J].土壤学报,1995,32(2):167-178
    王晓丽.重金属在沉积物中的吸附与稳定固定化研究[D].吉林大学博士论文,2008
    王小庆.淀山湖沉积物中重金属元素分布特征及其季节变化[J].环境科学与技术,2005,28(6):106-108
    王晓燕,郭芳,蔡新广,等.密云水库潮白河流域非点源污染负荷[J].城市环境与城市生态,2003,16(1):31-33
    王晓燕,阎恩松,欧洋.基于物质流分析的密云水库上游流域磷循环特征[J].环境科学学报,2009,29(7):1549-1560
    吴丰昌,王立英,黎文等.天然有机质及其在地表环境中的重要性[J].湖泊科学,2008,20(1):1-12
    谢辉,陈卓,杨阳等.贵阳市南明河城区底泥中的重金属与有机质研究[J].贵州师范大学学报(自然科学版),2007(4):44-47
    熊向陨,黄廷林,于京亭.水中腐殖酸的03氧化与其生物可降解性实验研究[J].环境工程,1998,16(6):7-11
    薛含斌,符岩,汤鸿霄.镉与天然固体表面络合物的条件稳定常数[J].环境科学学报,1986,6(1):50-57
    杨敏,王红斌,宁平.山基土中腐殖酸的提取及吸附性能研究[J].上海环境科学2001,20(12):595-597
    杨志斌,杨忠芳,冯海艳,刘玉杰,王洪翠.四川成都经济区土壤腐殖质重金属元素含量特征研究[J].土壤通报,2008,39(5):1135-1139
    姚志刚,鲍征宇,高璞.洞庭湖沉积物重金属环境化学[J].地球化学,2006,35(6):629--638
    易文利,王圣瑞,杨苏文等.长江中下游浅水湖泊沉积物中腐殖质组分赋存特征[J].湖泊科学,2011,23(1):21-28
    余贵芬,青长乐,牟树森,等.汞在腐殖酸上的吸附与解吸特征[J].环境科学学报,2001,21(5):601-606
    袁旭音,王爱华,许乃政.太湖沉积物中重金属的地球化学形态及特征分析[J].地球化学,2004,33(6):611-618
    张翠,陈振楼,毕春娟,史贵涛.黄浦江上游饮用水源地水及沉积物中汞、砷的分布特征[J].环境科学学报,2008,28(7):1455-1462
    张世涛,宋学良,张子雄,冯庆来,刘本培.星云湖表层沉积物矿物组成及其环境意义[J].地球科学进展,2003,18(6):928-932
    赵万苍,何江,宋文杰,等.达里诺尔湖表层沉积物中腐殖质的分布特征[J].农业环境科学学报,2011,30(2):341-346.
    钟成林,刘晓艳,张新颖等.吴淞口近岸湿地沉积物中腐殖质的组成特征[J].上海大学学报(自然科学版),2012,18(4):408-412
    朱广伟,陈旭英.沉积物中有机质的环境行为研究进展[J].湖泊科学,2001,13(3):272-279
    朱先芳,唐磊,季宏兵等.北京北部水系沉积物中重金属研究[J].环境科学学报,2010,30(12):2553-2562
    邹丽敏,王超,李晓晨,等.大明湖沉积物中有机质分布特征[J].安徽农业科学,2007,35(9):2709-2710

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700