用户名: 密码: 验证码:
高静压对菠菜绿色品质影响的生理机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高静压(HHP)技术作为一种新型的食品非热加工技术,大量研究已证实其能较好的保持食品的颜色品质。基于正常植物体中大部分叶绿素存在于色素蛋白复合体中,结合前期实验结果,即HHP处理后的菠菜浆在光照贮藏条件时的颜色品质要好于暗贮藏,我们推测HHP处理后的样品可能仍然保持光反应活性,而类囊体膜是光反应发生的主要部位,其功能的实现是通过其上色素蛋白复合体来维持。因此,植物体光反应相关生理功能的研究对于分析HHP处理后绿色蔬菜叶绿素代谢具有重要的意义。本论文以菠菜为研究对象,选取类囊体膜和PSⅡ颗粒进行研究,从植物生理角度探讨HHP保持绿色蔬菜颜色品质的可能机制,主要结论如下:
     (1)HHP处理较热处理能很好的保持菠菜叶片贮藏期间的叶绿素荧光动力学参数,具有较高的Fo, Fm和Fv/Fm,证实了HHP处理后菠菜叶片较高的PSⅡ原初光能转化效率和电子传递活性。较高的光反应活性反映了膜上色素蛋白复合体功能的保持,对于其上叶绿素的稳定具有积极的影响。
     (2)HHP处理对于菠菜体系和类囊体膜溶液体系的影响基本一致。同热处理相比,HHP处理都能较好的保持类囊体膜的垛叠结构及功能。在此基础上进一步以类囊体膜溶液为研究对象,分析贮藏期间HHP保持类囊体膜结构及功能的可能机制,发现类囊体膜多肽组分PSⅠ反应中心的蛋白亚基PsaA/B、PSII中的CP47和CP43组分受高压的影响较小,在压力处理后仍具有稳定性,保持PSⅠ和PSⅡ功能特性。
     (3)贮藏期间,类囊体膜不饱和脂肪酸指数在HHP(100MPa和250MPa)处理后至整个贮藏期间都呈现逐渐升高的趋势,不饱和脂肪酸指数的升高可以提高植物类囊体膜的流动性和稳定性,对膜蛋白功能的保持具有积极的影响。然而随着压力逐渐增加,500MPaHHP处理组随着贮藏时间的延长,其不饱和脂肪酸指数逐渐降低,这可能与膜脂不饱和化酶的活性在高压适应过程中的抑制有关,从而阻止了原有脂肪酸的脱饱和,此现象仍有待于进一步研究。
     (4)PSⅡ作为类囊体膜逆境下受影响的起始部位,HHP处理后仍能保持其颗粒结构及捕光活性,且捕获的光能可以进一步被激发传递到PSⅡ反应中心。类囊体膜蛋白多肽CP47、D1、D2、29KD、CP26各组分含量在HHP处理后的降解效果要低于热处理。上述各组分含量的保持能维持PSⅡ复合体中的放氧过程及其在高压下的稳定性,保护整个光合作用体系的活性。因此,HHP处理较热处理能较好的保持PSⅡ颗粒的结构及功能,维持类囊体膜及相关色素蛋白复合体的功能性和稳定性,抑制其中叶绿素的降解。
High hydrostatic pressure (HHP) is a novel non-thermal food processing technology due to its limited effects on food color qulity. Based on plant chlorophylls are presented in chlorophyll-protein complexes, combined with our previous research that HHP could better retain green color of spinach puree during storage, and the positive effect induced by HHP in the200lux storage was more significant than that of storage in the dark. It is speculated that physiology activities related to chlorophyll-protein complexes are still existed. The possible physiology mechanism of green color retention in HHP-treated spinach was discussed. The main results were as follows:
     (1) HHP treatments better retained chlorophyll fluorescence kinetics of spinach leaves during storage compared to thermal treatment, and higher Fo, Fm and Fv/Fm could be found in HHP-treated samples. The results showed that PS II primary light energy conversion efficiency and electron transfer activity were kept, they will better contribute to protection of photosynthetic apparatus. The retention of chlorophyll-protein complexes function could be reflected by higher light reaction activity, it will play a positive role for chlorophyll retention in HHP processing green color vegetables.
     (2) HHP treated samples showed similar trend for spinach system and thylakoid membrane solution system. HHP treatment could better retain thylakoid membrane stacked structure and harvesting light capacity, further transfer light energy to reaction center, and the positive influence could be continued to storage. HHP treatment had less effect on PsaA/B, CP47and CP43, and they had higher stability after HHP treatments. The functions of PS I and PS Ⅱ could be better kept.
     (3) For thylakoid membrane fatty acid composition, IUFA of samples after lower pressure (100and250MPa HHP) treatments had similar change with the control, and IUFA increased with storage time. The increase of IUFA presented better fluidity and stability of thylakoid membrane wasretained after lower pressure treatments. It played a protective role for thylakoid membrane chlorophyll-protein complexes and inhibited chlorophyll degradation. However,500MPa HHP-treated samples, IUFA decreased during storage. It might be caused by inhibition of membrane lipid unsaturated enzyme activity under HHP treatment, and desaturation of fatty acid was further inhibited.
     (4) As thylakoid membrane initiation site affected by stress, PSⅡparticle structure and harvesting light capacity could better retain after HHP treatment, and harvested light energy further was excited and transferred to PS II reaction center. Changes of PS Ⅱ particle polypetides showed that both of HHP and thermal treatments caused degradation of CP47, D1, D2,29KD and CP26to some degree. However, degradation induced by thermal treatment was more serious than that of HHP treatments. Degradations of the above polypetides compoments in HHP-treated samples could better keep oxygen activity of PS Ⅱ particle and the whold photosynthesis system activity. Hence, PS Ⅱ structure and function were maintained after HHP treatment, and higher LHC Ⅱ stability had positive effect on inhibition of chlorophyll degradation.
引文
Akhtar, M., Goidschmidt, E., John, I., et al. Altered patterns of senescence and ripening in gf, a stay-green mutant of tomato. Journal of Experimental Botany,1999,50 (336):1115-1122.
    Al-Khatib, K., Paulsen, G.M. Enhancement of thermal injury to photosynthesis in wheat plants and thylakoid by high light intensity. Amercian Society of Plant Biologists,1989,90(3),1041-1048.
    Anderson J M, Goodchild D J, Boardman N K. Composition of the photosystems and chloroplast structure in extreme shade plants. Biochemica et Biophysica Acta,1973,325:573-585.
    Anderson, J.M. Consequences of spatial separation of photosystem I and Ilin thylakoid membranes of higher plant chloroplasts. Febs Letters,1981,124:1-10.
    Baker, N.R., Webber, A.N. Interactions between photosystems. Advances in Botanical Research, 1987,13:1-56.
    Berry J, Bjorkman O. Photosynthetic response and adaptation to temperature in higher plants. Annual Review of Plant Biology,1980,31:491-543.
    Bjorkman, O. Low-temperature chlorophyll fluorescence in leaves and its relationship to photon yield of photosynthesis in photoinhibition. Phtoinhibition,1987,123-144.
    Bricker, T.M. The structure and function of CPa-1 and CPa-2 in photosystem Ⅱ. Photosynthesis Research,1990,24:1-13.
    Butz P., Edenharder R., FernandezGarcia A., et al. Changes in functional properties of vegetables induced by high pressure treatment. Food Research International,2002,35(2-3):295-300.
    Cheung, A.Y., McNellis, T., Piekos, B. Maintenance of Chloroplast Components During Chromoplast Differentiation in the Tomato Mutant Green Flesh. Plant Physioloy,1993,101:1223-1229.
    Corbineau F, Gay-Mathieu C, Vinel, D., et al. Decrease in sunflower seed viability caused by high temperatures as related to energy metabolism, membrane damage and lipid composition. Physiologia Plantarum,2002,116:489-496.
    Croce R., Amerongen, H.V. Light-harvesting and structural organization of Photosystem Ⅱ:From individual complexes to thylakoid membrane. Journal of Photochemistry and Photobiology B: Biology,2011,104:142-153.
    Curty, C., Engel, N., Gossauer, A. Evidence for a monooxygenase-catalyzed primary process in the catabolism of chlorophyll. Febs Letters,1995,364 (1):41-44.
    Danielsson R, Albertsson P, Mamedov F, et al. Qualification of photosystem I and II in different parts of the thylakoid membrane from spinach. Biochimica et Biophysica Acta,2004,1608: 53-61.
    Daum B, Kuhlbrandt W. Electron tomography of plant thylakoid membranes. Journal of Experiment Botany,2011,62:2393-2402.
    Desikan R, Mackerness SAH, et al. Regulation of the Arabidopsis transcriptosome by oxidative stress. Plant Physiology,2001,127:159-172.
    Eshaghi, S., Andersson, B., Barber, J. Isolation of a highly active PS Ⅱ-LHCⅡ super-complex from thylakoid membrane by a direct method. Febs Letters,1999,446:23-26.
    Eggleston, V., Tanner, D. J. Are carrots under pressure still alive?-The effect of high pressure processing on respiration rate of carrots. Acta Horticluture,205,687,371-374.
    Finazzi, G., Chasen, C., Wollman, F.A., et al. Thylakoid targeting of Tat passenger proteins shows no ApH dependence in vivo. The EMBO Journal,2003,22 (4):807-815.
    Fukuda, H. Xylogenesis:initiation, progression, and cell death. Annual Review of Plant Physiology and Plant Molecular Biology,1996,47:299-235.
    Funamoto, Y., Yamauchi, N., Shigyo, M., et al. Involvement of peroxidase in chlorophyll degradation in stored broccoli and inhibition of the activity by heat treatment. Postharvest Biology and Technology,2003,28:39-46.
    Friso G, Giacomelli L, Ytterberg A.J.,et al. In-depth analysis of the thylakoid membrane proteome of Arabidopsis thaliana chloroplasts:New proteins, new functions, and a plastid proteome database.The Plant Cell,2008,16(2):478-499.
    Gan, S., Amasino, R.M. Inhibition of leaf senescence by autoregulated production of cytokinin. Science,1995,270:1986-1988.
    Garcia-Palazon, A., Suthanthangjai, W., Kajda, P., et al.. The effects of high hydrostatic pressure onb-glucosidase, peroxidase and polyphenoloxidase in red raspberry (Rubus idaeus) and strawberry (Fragaria x ananassa). Food Chemistry,2004,88:7-10.
    Ginkel G V, Hammans J W K. Action spectra of photophosphorylation-II ATP formation catalyzed by phenazinemethossulphate suggesting the involvement of long wavelength pigment forms in the light-harvesting process for PS II and PS I. Photochemistry Photobiology,1980,31:385-395.
    Gong, Y.P., Mattheis, J.P. Effect of ethylene and 1-methylcyclopropene on chlorophyll catabolism of broccoli florets. Journal of Plant Growth Regulation,2003,40:33-38.
    Govindjee. Sixty-three years since Kautsky:chlorophyll a fluorescence. Austraian Journal of Plant Physiology,1995,22:131-160.
    Guskov, A., Kern, J., Gabdulkhakov, A., et al. Cyanobacterial photosystem II at 2.9-angstrom resolution and the role of qnones, lipids, channls and chloride. Nature Structural and Molecular Biology,2009,16:334-342.
    Haltia T, Freire E. Forces and factors that contribute to the structural stability of membrane bound proteins. Biochimicaet et Biophysica Acta,1995,1228:1-27.
    Havaux M. Stress tolerance of photosystem Ⅱ in vivo. Antagonistic effects of water, heat, and photoinhibition stresses. Plant Physiology,1992,100:424-422.
    Havaux M. Characterization of thermal damage to the photosynthetic electron transport system in potato leaves. Plant Science,1993,94:19-33.
    Havaux M. Rapid photosynthetic adaptation to heat stress triggered in potato leaves by moderately elevated temperatures. Plant Cell Environmental,1993,16:461-467.
    Havaux M. Short-term responses of photosystem I to heat stress. Photosynthesis Research,1996,7: 85-97.
    Heaton J W, Marangoni A. G. Chlorophyll degradation in processed foods and senescent plant tissues. Trends in Food Science & Technology,1996,7:8-15.
    Her Herendeen S L, Vanbogelen R A, Neidhardt F C. Levels of major proteins of Escherichia coli during growth at different temperatures. Journal of Bacteriology,1979,139:185-194.
    Hendeen S L, Vanbogelen R A, Neidhardt F C. Levels of major proteins of Escherichia coli during growth at different temperatures. Journal of Bacteriology,1979,139:185-194.
    Herrin, D L, Battey, J F, Greer, K, et al. Regualtion of chlorophyll apoprotein expression and accumulation.Requirements for carotenoids and chlorophyll. The Journal of Biological Chemistry, 1992,267(12):8260-8269.
    Hill, R., Bendall, F. Function of two ytochrome components in chloroplasts:A working hypothesis. Nature,1960,186:136-137.
    Hortensteiner, S., Vicentini, F., Matile, P. Chlorophyll breakdown senescent cotyledons of rape, B rassica napus L.:Enzymatic cleavage of phaeophorbide a in vitro. New Phytologist,1995,129: 237-246.
    Hortensteiner, S., Wuthrich, K.L., Matile, P., et al. The key step in chlorophyll breakdown in higher plants.Cleavage of pheophorbide a macrocycle by a monooxygenase. The Journal of Biological Chemistry,1998,273(25):15335-15339.
    Horton, P. Are grana necessary for regulation of light harvesting? Australian Journal of Plant Physiology,1999,26:659-699.
    Jacobo-Velazquez D.A., Hernandez-Brenes C. Biochemical Changes during the Storage of High Hydrostatic Pressure Processed Avocado Paste. Journal of Food Science,2010,75(6):264-270.
    Jacob-Wilk, D., Holland, D., Goldschmidt, E E., et al. Chlorophyll breakdown by erioroohyllase: isolation and functional expression of the Chlase gene from ethylene-treated Citrus fruit and it regulation during development. The Plant Journal,1999,20(60):653-661.
    Jarvis, P., Li, H M, Chen, L J, et al. An Arabidopsis mutant defective in the plastid general protein import apparatus. Science,1998,282(5386):100-103.
    Jenkins, G.I., Woolhouse, H.W. Photosynthetic Electron Transport During Senescence of the Primary Leaves of Phaseolus vulgars L. Journal of Experimental Botany,1981,32:989-997.
    Kato, M., Shimizu, S. Chlorophyll metabolism in higher plants IV. Involvement of peroxidase in chlorophyll degradation. Plant and Cell Physiology,1985,26:1291-1301.
    Knorr D. High pressure effects on plant derived foods. In High pressure processing of foods, Ledward,D. A., Johnston, D. E., Earnshaw, R. G., Hastings, A. P. M., Eds.; Nottingham University Press:Loughborough,1995:123-135.
    Kouniaki, S., Kajda, P., Zabetakis, I.The effect of high hydrostatic pressure on anthocyanins and ascorbic acidin blackcurrants (Ribes nigrum). Flavour and Fragrance Journal,2004,19:281-286.
    Krause G.H., Weis, E. Chlorophyll fluorescence and photosynthesis:the basics. Annual Review of Plant Physiology and Plant Molecular Biology,1991,42:313-349.
    Krebbers B., Matser A. M., Koets M., et al. Quality and storage-stability of high-pressure preserved green beans. Journal of Food Engineering,2002,54:27-33.
    Kuwabara, T., Murata, N. Inactivation of photosynthetic oxygen evolution and concomitant release of three polypeptides in the photosystem Ⅱ particles of spinach chloroplasts. Plant and Cell Physiology,1982,23(3):533-539.
    Leadley, C., Tucker, G., Fryer, P. A comparative study of high pressure sterilisation and conventional thermalsterilisation:Quality effects in green beans. Innovative Food Science & Emerging Technology,2008,9:70-79.
    Lopez-Malo A., Palou E., Barbosa-Canovas G.V., et al. Polyphenoloxidase activity and color changes during storage of high hydrostatic pressure treated avocado puree. Food Research International, 1998,31(8):549-556.
    Loll, B., Kern, J., Saenger, W., et al. Towards complete cofactor arrangement in the 3.0 angstrom resolution structure of photosystem Ⅱ. Nature,2005,438:1040-1044.
    Lu, C., Vonshak, A. Photoinhibition in outdoor spirulina platensis cultures assessed by polyphasic chlorophyll fluorescence transients. Journal of Applied Phycology,1999,11:355-359.
    Matile P, Hortensteiner S, Thomas, H., et al. chlorophyll breakdown in senescent leaves. Plant Physiology,1996,112:1403-1409.
    Matser, A.A., Krebbers, B., Van Den Berg R. W., et al. Advantages of high pressure sterilisation on quality offood products.Trends in Food Science and Technology,2004,15(2):79-85.
    Meyer R. S., Cooper K. L., Knorr D., et al. High-pressure sterilization of foods. Food Technology, 2000,54:67-72.
    Moser, D., Matile, P. Chlorophyll breakdown in ripenin fruits of Capsicum annuum. Journal of Plant Physiology,1997,150:759-761.
    Mozhaev V. V, Lang R, et al. Application of high hydrostatic pressure for increasing activity and stability of enzymes. Biotechnology and Bioengeering,1996,52(2):320-331.
    Murphy, D.J. The organization of the photosynthetic membranes of higher plants. Biochimica et Biophysica Acta,1986,864:33-94.
    Naus J, Dvorak L, Kuropatwa R, et al. Transition in the thylakoid membranes of barley leaves studied by chlorophyll fluorescence temperature curve. Photosynthetica,1992,27(4):563-570.
    Nuray, K., Feryal, K., Hande S.B. Effect of pH on chlorophyll degradation and color loss in blanched green peas. Food Chemistry,2006,100:609-615.
    Oey I., Lille M., Van Loey V., Hendrickx, M. Effects of high pressure processing on colour, texture and flavor of fruit and vegetable-based food products:a review. Trends in Food Science and Technology,2008,19:320-328.
    Palou E., Hernandez-Salgado C., Lopez-Malo A.,et al. High pressure-processed guacamole. Innovative Food Science and Emerging Technologies,2000,1(1):69-75.
    Patras, A., Brunton, N.P., Da Pieve, S.,et al. Impact of high pressure processing on total antioxidant activity.phenolic, ascorbic acid, anthocyanin content and colour of strawberry and blackberry purees. Innovative Food Science& Emerging Technology,2009,10(3):308-313.
    Renganathan, M, Dilley, R.A. Evidence that the intrinsic membrane protein LHC II in thylakoid is necessary for maintaining localized ∧μh-energy coupling. Journal of Bioenergetics and Bilmembranes,1994,26:117-125.
    Rodoni, S., Schellenberg, M., Matile, P.Chlorophyll breakdown in senescing arleyleaves as correlated with phaeoph-orbide an oxygenase activity. Plant Physiology,1998, 152:139-144.
    Salter, A.H., Virgin, I., Hagman, U., et al. On the molecular mechanism of light induced D1 protein degradation in photosystem II core particles. Biochemistry,1992,31:3990-3998.
    Schluter, O., Foerster, J., Geyer, M., et al. Characterization of high-hydrostatic-pressure effects on fresh produce using chlorophyll fluorescence image analysis. Food and Bioprocess Technology, 2009,2,291-299.
    Sharkey, T.D. Some like it hot. Plant biology,2000,287(5452):435-436.
    Smart, C.M. Gene expression during leaf senescence. New Phytologist,1994,126:419-448.
    Siffel P, Braunova Z. Releas and aggregation of the light-harvesting complex in intact leaves subjected to strong CO2 deficit. Photosynthesis Research,1999,61:217-226.
    Strasser, B. Donor side capacity of photosystem Ⅱ probed by chlorophyll a fluorescence ransients. Photosynthesis Research,1997,52(2):147-155.
    Tang, Y. L., Wen, X. G., Lu, Q. T, et al. Heat stress induces an aggregation of the light-harvesting complex of photosystem Ⅱ in spinach plants. Plant Physiology,2007,143:629-638.
    Takeuchi, T.S., Thornber, J.P. Heat-induced alterations in thylakoid membrane protein composition in barley. Australian Journal of Plant Physiology,1994,21(6):759-770.
    Teng S.S.,Chen B.H.Formation of pyrochlorophylls and their derivatives in spinach leaves during heating. Food Chemistry,1999,65:367-373.
    Thompson, J.E. The Molecular Basis for Membrane Deterioration During Senescence'in Senescence and Aging in Plants (Nooden, L.D. and Leopold, AC, eds), pp. Academic Press,1988,52-84.
    Thomas, H., Schellenberg, M., Vicentini, F, et al. Gregor Mendels green and yellow pea seeds. Botanica Acta,1996,109:3-4.
    Trejo Araya X, Hendrickx M, Verlinden B E, et al. Understanding texture changes of high pressure processed fresh carrots:A microstructural and biochemical approach. Journal of Food Enginerring. 2007,80:873-884.
    Van Buggenhout S., Messagie I., Van Der Plancken I., et al. Influence of high-pressure-low-temperature treatments on fruit and vegetable quality related enzymes. European Food Research and Technology,2006,223(4):475-485.
    Van Kooten, O., Meurs, C., Van Loon, L.C. Photosynthetic electron transport in tobacco leaves infected with tobacco mosaic virus. Physologia Plantarum,1990,80(3):446-452.
    Van Loey A., Ooms V., Weemaes C., et al. Thermal and pressuretemperature degradation of chlorophyll in broccoli (Brassica oleracea L.italica) juice:a kinetic study. Journal of Agriculture and Food Chemistry,1998,46(12):5289-5294.
    Vicentini, F., Hortensteiner, S., Schellenberg, M., et al. Chlorophyll breakdown in senescent leaves:identification of the lesion in a stay-green genotype of Festuca pratensis. New Phytologist,1995,129:247-252.
    Waloszek A, Tulej M, Wieckowski S. Spectroscopic analysis of chlorophyll bleaching in heat-prestreated thylakoid membranes isolated from cucumber cotyledons. Photosynthetica,1992, 27:109-118.
    Wang, R. R., Wang, T. T., Zheng, Q., et al. Effects of high hydrostatic pressure on color of spinach puree and related properties. Journal of the Science of Food and Agriculture,2012,92,1417-1423.
    Wang, R.R., Xu, Q., Yao, J., et al. Post-effects of high hydrostatic pressure on green color retention and related properties of spinach puree during storage. Innovative Food Science & Emerging Technologies,2013,17,63-71.
    Wei, H.M., Chen, Y.W., Zhang, N.H., et al. Study on the spectra properties of cotyledon thylakoid membranes in chlorophyll-reduced rapeseed mutant Cr3529 and its wild type. Acta Botanica Boreali-Occidentalia Sinia,2005,25,250-255.
    Wraight, C.A., Kraan, G.P.B, Gerrits, N.M. The pH dependence of delayed and prompt fluorescence in uncouled chloroplasts. Biochimica et Biophysica Acta,1972,83:259-267.
    Yamauchi, N., Watada, A.E. Regulated chrolophyll degradation in spinach leaves during storage. Journal of Amercan Society for Horticultural Science,1991b,116:58-62.
    Yang G D, Zhu ZH J, et al. Effect of light intensity and magnesium deficiency on chlorophyll fluorescence characteristics and active oxygen in cucumber leaves. Plant Nutrition and Fertilize Science,2002,8:115-118.
    Yu Y, Tian S M, Ruan K C, et al. The release of extrinsic polypeptides and manganese cluster from photosystem 2 membranes under high hydrostatic pressure. Photosynthetica,2001,39:115-117.
    蔡梅艳,陶乐仁,张婷玉,等.温湿度对菠菜可溶性蛋白质含量的影响.江苏农业科学,2013,41:250-255.
    蔡淑燕.植物PSⅡ颗粒的特性和活性研究:[硕士学位论文].哈尔滨:东北林业大学生命科学学院,2007.
    陈建明,俞晓平,程家安.叶绿素荧光动力学及其在植物逆境生理研究中的应用.浙江农业学报,2006,18(1):51-55.
    陈新斌,孙锦,郭世荣,等.海水胁迫对菠菜叶绿素代谢的影响.西北植物学报,2012,32(9):1781-1787.
    陈志强,许春辉,匡廷云.叶绿体类囊体膜脂-膜蛋白的相互作用.植物学通报,1994,11(1):20-26.
    党云萍,李春霞.干旱胁迫下八棱海棠中丙二醛及质膜透性的变化.北方园艺,2012,21:33-35.
    杜林方.21世纪青年学者论坛.21世纪青年学者论坛,2007,21(1):58-62.
    付竞峰,秦婷婷,杜林方.暗处理对油菜子叶类囊体膜色素组成和荧光性质的影响.应用与环境生物学报,2008(1):24-31.
    郭春爱,刘芳,许晓明.叶绿素b缺失与植物光合作用.植物生理学通讯,2006,42(5):967-973.
    黄霄.类囊体膜脂组成对番茄抗旱性的影响:[硕士学位论文].泰安:山东农业大学林学院,2008.
    姜东,于振文,李永庚,等.冬小麦叶茎粒可溶性糖含量变化及其与籽粒淀粉积累的关系.麦类作物学报,2001,21(3):38-41.
    姜闯道,高辉远,邹琦.类囊体膜pH梯度在光抑制中的保护机理.植物生理学通讯,2000,36(2):97-102.
    李建武.生物化学实验原理和方法,北京大学出版社,1994,174-176.
    李晓,冯伟,曾晓春.叶绿素荧光分析技术及应用进展.西北植物学报,2006,26(10):2186-2196.
    林宏辉,何军贤,梁厚果,等.叶绿素缺乏大麦突变体PSⅡ色素蛋白复合物的研究.生物化学与生物物理学报,1998,30(50):530-532.
    林宏辉,何礼,代其林,等.叶绿素缺乏大麦突变体叶绿体结构功能及生化特性的研究.四川大学学报(自然科学版),2001,38(6):899-904.
    廖小军.果蔬汁非热加工技术进展.饮料工业,2002,5(6):4-7.
    廖小军.超高压技术在果蔬加工中大有可为.农业工程技术,2009(9):36-38.
    卢然.类囊体膜“超级蛋白复合物”组成结构的初步研究:[硕士学位论文].北京:北京林业大学,2011.
    刘贤德,沈允钢.光合作用各部分反应间的动态衔接与协调,2005,17(4):341-345.
    潘瑞炽.植物生理学(第五版).北京:高等教育出版社,2004:440-448.
    钱啸虎.中国植物志:第16卷第1分册.北京:科学出版社,1985:16-27.
    史典义,刘忠香,金危危.植物叶绿素合成、分解代谢及信号调控.遗传,2009,31(7):698-704.
    宋吉昌.食品超高压保鲜技术理论及实验研究:[硕士学位论文].青岛:青岛科技大学,2009.
    孙磊,陈国祥,程嘉翎,等.低聚壳聚糖处理对低温胁迫下水稻幼苗类囊体膜特性的影响.南京师大学报:自然科学版,2009,32(2):93-97.
    孙梅霞,祖朝龙,徐经年.干旱对植物影响的研究进展.安徽农业科学,2004,32.365-367;384.
    孙瑞雪,杨春虹.光系统Ⅱ的结构与功能以及光合膜对环境因素的响应机制.生物物理学报,2012,28(7):537-548.
    唐焕伟,曲彦婷,张兴.遮光对郁金香叶片叶绿素含量及叶绿体超微结构的影响.东北农业大学学报,2011,42(4):77-82.
    唐运来.高温和衰老对光合膜结构和功能的影响研究:[博士学位论文].北京:中国科学院植物研究所,2004.
    王萍,张成军,陈国祥,等.低温对水稻幼苗类囊体膜脂肪酸组分和膜脂过氧化的影响.中国水稻科学,2006,20(4):401-405.
    魏慧敏,陈云伟,张年辉,等.黄花油菜突变体Cr3529子叶类囊体膜光谱性质研究.西北植物学报,2005,25(2):250-255.
    韦司棋.低温胁迫下钼对冬小麦类囊体膜组分的影响:[硕士学位论文].武汉:华中农业大学植物科学技术学院,2009.
    项秀兰.杂交水稻衰老过程中功能叶光合膜光能转化特性的研究:[硕士学位论文].南京:南京师范大学,2009.
    辛雅芬,石玉波,沈婷,等.4种植物抗热性比较研究.安徽农业科学,1999,16(4):4431-4432,4501.
    杨胜洪,杜林方,赵云,等.抽墓期叶绿素缺乏油菜突变体类囊体膜的研究.云南植物研究,2001,23(1):97-104.
    阳振乐,李良壁,匡廷云.阴离子表面活性剂存在下光系统Ⅱ中络氨酸残基的性能研究.化学学报,2002,60(3):545-550.
    姚洪军,石玉杰,高荣孚.豌豆类囊体膜脂与膜蛋白交互作用的研究.2006全国博士生学术论坛,2006,1274-1277.
    尹永强,胡建斌,邓明君.植物叶片抗氧化系统及其对逆境胁迫的响应研究进展.植物生理科学,2007,23(1):105-110.
    喻敏,胡承孝,王运华.缺钼对冬小麦不同品种叶绿素含量和叶绿体超微结构的影响.华中农业大学学报,2005,24(5):465469.
    余叔文,汤章城.植物生理与分子生物学.北京:科学出版社,2001:752-753.
    袁海娜.青菜热水浴处理保绿机理研究.食品工业科技,2005(1):81-84.
    张南,秦智伟.低温处理对菠菜生理生化指标的影响.中国蔬菜,2007,11:22-24.
    张守仁.叶绿素荧光动力学参数的意义及讨论.植物学通报,2013,41:444448.
    张文佳.高静压对树莓汁品质影响研究:[硕士学位论文].北京:中国农业大学,2010.
    张亚杰.高等植物光系统Ⅱ大量捕光色素蛋白复合体的稳定性研究:[博士学位论文].北京:中国科学院植物研究所,2006.
    张志良.植物生理学实验指导.北京:高等教育出版社,2003,274-277.
    章中.热和化学因素辅助超高压对枯草杆菌芽孢的灭活研究:[博士学位论文].北京:中国农业大学食品科学与营养工程学院,2013.
    赵江涛,李晓峰,李航,等.可溶性糖在高等植物代谢调节中的生理作用.安徽农业科学,2006,34(24):6423-6425,6427.
    赵云,王茂林,李江,等.幼叶黄花油菜突变体Cr3529叶绿体超微结构观察.四川大学学报(自然科学版),2003,40(5):974-977.
    郑倩.高静压对菠菜浆颜色品质的影响与机制探讨:[硕士学位论文].北京:中国农业大学食品科学与营养工程学院,2011.
    周峰,华春,周泉澄,等.高温胁迫对菠菜类囊体膜蛋白亚基和光谱特征的影响.南京师大学报:自然科学版,2010,33(1):98-101.
    周林燕.食品高压技术研究进展和应用现状.中国食品学报,2009,9(5):165-176.
    左宝玉,李世仪,匡廷云,段续川.玉米不同层次叶片叶绿体的超微结构和叶绿素含量变化.作物学报,1987,13(3):213-219.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700