用户名: 密码: 验证码:
目标RCS动态测量与数据处理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
成像雷达作为一种先进的探测工具,能全天时、全天候、远距离提供高分辨率的雷达图像,在军用和民用的众多领域具有广泛的应用前景。为获得高分辨雷达图像,回波信号间必须保持精确的相位关系,但是雷达与散射点间的相对运动会引入一定的初相误差,破坏雷达信号间的相位相干性,从而影响所得图像质量。因此为保持雷达信号间的相位相干性,必须进行精确的运动补偿。
     本文在实测雷达数据处理中发现,当群体目标高速机动飞行时,现有的运动补偿算法和成像算法的应用都受到很大的限制。为了满足高速机动多目标成像的需要,本文进行了相应的研究,提出了机动多目标相对运动的运动补偿算法以及目标自旋运动的运动补偿算法,并通过实验与仿真数据的处理予以验证。
     本文的主要贡献如下:
     提出了一种新的相对运动补偿算法。常规运动补偿算法,包括相关法及最小熵方法,均是基于目标为刚体进行的,当多目标间存在着相对运动时,直接利用常规补偿方法通常得不到满意的结果。针对这一问题,本章建立了目标相对运动的模型,分析相对运动对成像的影响,提出了一种新的相对运动补偿算法。该算法对存在相对运动目标在距离上利用Keystone变换进行分离,提取相对运动目标的回波分别利用auto-cleans算法进行运动补偿。模拟和实测数据的成像结果说明该算法是有效的。
     提出了一种新的自旋运动补偿算法。建立了自旋运动目标的运动模型,研究自旋运动对ISAR成像的影响,推导出自旋运动产生的多普勒频率的表达式,采用基于“CLEAN”多分量线性调频信号的分解以及AJTF技术对回波相位进行参数估计,去掉旋转产生的相位高次项的影响,消除自旋对ISAR成像的影响,仿真及实验结果表明该补偿方法效果明显。
     利用改进的时频分布级数法提高图像分辨能力。时频分布级数法(TFDS)在保持高时频分辨率的前提下,有效抑制了Wigner分布的交叉项,但算法的实现速度已经成为制约TFDS方法在实际中推广的关键问题。本章一方面采用实数形式代替复数形式的Gabor展开,另一方面去掉对时频原子的冗余计算,大大降低了运算量。通过对多分量非平稳信号的仿真表明,对TFDS方法的改进是有效的,信号处理时间明显缩短,可用于对目标回波时频特征的快速提取。
     研制了数据处理软件,在工程上实现高速群体运动目标ISAR二维成像。利用现有窄带雷达系统的数据接口,设计了一种用于改造数据采集系统的I/Q解调器,在现有窄带单脉冲雷达给出的目标回波和目标运动轨迹数据的基础上,利用前几章研究的算法,编制数据处理软件,实现高速运动多目标的距离压缩、运动补偿、横向成像处理、RCS定标。
     本文在以上工作的基础上,完成了对高速运动群体目标目标特性(RCS)的动态测量,并对结果动态显示。实验表明本文的ISAR成像结果与光学成像一致。
Imaging radar, which can provide an all-weather day/night capability to generate a high-resolution representation of radar reflectivity of targets over a long range, has received intensive attention because of its potential applications in both civilian and military applications. In order to obtain high-resolution radar images, it is necessary to maintain the precise phase relationship between return signals. This requires precise motion compensation, because the unplanned perturbations of the relative motion between the radar and the scatters causes phase errors, which may destroy the phase coherent of return signals and then blur the image.
     The study on the raw radar data shows that the traditional algorithms of motion compensation and imaging to ISAR available cannot suit to high-speed maneuvering targets. In this paper some algorithms of motion compensation and imaging to high-speed maneuvering targets are proposed and verified by raw and simulation data.
     The main contributions of the dissertation are as following:
     A new algorithm for relative motion compensate is proposed. Because conventional motion compensation methods assume that targets' positions are almost fixed during the imaging time, which requires the targets be rigid. It is not easy for us to obtain good result for several relative motion targets using these methods. In this chapter the model of relative motion targets is established, and a new algorithm for relative motion compensation based on Keystone transformation and auto-clean algorithm is proposed. The imaging results based on simulation and real data validate the new relative motion compensation method.
     A new algorithm for spinning motion compensation is presented. ISAR imaging of a self-spinning motion target is described, and the effect of self-spinning motion for ISAR image is analyzed, the Doppler-frequency expression produced by self-spinning motion is deducted. Using multi-component linear frequency-modulated signals decomposition method based on "CLEAN" in frequency domain and AJTF to estimate parameter of echo's phase, we can remove the influence of high step phase produced by spin and attain clarity ISAR images of self-spinning targets.
     Using the improved time-frequency distribution series (TFDS) to improve Imaging resolution. The TFDS has been tested effectively in the balance of the cross-term suppression and the time-frequency resolution. We replace the complex form discrete Gabor transform with the real one to reduce computing. On the other hand, we get ride of the redundant computing about the time-frequency atom. The simulation of the multi-component non-station signal shows that the improvement of the TFDS method accelerates the computing.
     Exploiting the data processing software to realize RCS dynamic measure of high-speed maneuvering targets. In this chapter, using the data port of the narrowband radar system available, we have designed a sort of I/Q demodulator to alter the data sampling system. Based on received signals of narrow band single pulse radar and its orbit data, using forenamed algorithms, we exploit the data processing software, which realizes range compression and relative motion compensation and cross-rang imaging of high-speed maneuvering targets.
     Based on forenamed works of the dissertation, the whole process can display imaging results and RCS dynamic measure of high-speed maneuvering targets is achieved. ISAR imaging results of experiments are consistent with optical radar images.
引文
[1]Prickett M J,Chen C C.Prineiples of inverse synthetic aperture radar(ISAR) imaging,In EASCON record,1980:340-345
    [2]Chen C.C.,Andrews H C.Target-motion-induced radar imaging.IEEE Tram AES,1980,16(1):2-14
    [3]Erland K K.Application of inverse synthetic aperture radar on aircraft.Proc.International conference on Radar,Paris 1984:618-623
    [4]K.K.Eerland.Application of ISAR on Aircraft.IEEE Int.Radar Conf.Paris,1984:618-623.
    [5]B.D.Steinberg.Expermental Localized Radar Cross-Section of Aircraft.Proc.IEEE,1989,77(5):663-669
    [6]C.W.Sherwin,J.P.Ruina and R.D.Rawcliff.Some Early Developments inSynthetic Aperture Radar Systems.IRE Trans.On Military Electronics,1962,MIL-6(2):563-570
    [7]Steinberg,B.D.,Carlson,D.L.,an Lee,W.Microwave imaging of aircraft.In Proceedings of the IEEE,1988,76:1578-1592
    [8]K.h.Rosenbach,J.Schiller.Construction and test of a classifier for non-cooperative air-target identification based on 2-D ISAR images.Proc.International Radar Symposium(IRS'98)Munich,Germany,1998:15-17
    [9]K.h.Rosenbach,J.Schiller.Identification of aircraft on the basis of 2-D radar images.Proc.IEEE International Radar conf.,May 1995:405-409
    [10]Hung-Chih Chiang,Feature Based Classication with Application to Synthetic Aperture Radar.PH.D Thesis,The Ohio State University,Columbus,OH,1999:10-25
    [11]J.Wissinger,R.Washburn,D.Morgan.Search Algorithms For Model-based SAR.ATR,SPIE,April 1996,2757:279-293
    [12]D.A.Ausherman,A.Kozma,J.L.Walker,H.M.Jones,E.C.Poggio.Developments in Radar Imaging.IEEE Trans.On AES,July 1984,20(40):363-399
    [13]M.T.Fennell,R.P.Wishner.Battlefield awareness via synergistic SAR and MTI exploitation.IEEE AES Magazine,1998,13(2):39-45
    [14]W.M.Brown.Synthetic aperture radar.IEEE Trans.AES,1967,3(2):217-229
    [15]C.Elahci,T.Bicknell,R.L.Jordan.Space-borne synthetic aperture imaging radars:application,techniques,and technology,Proc.Of IEEE,1981,70(10):1174-1209
    [16]W.G.Carrara,R.S.Goodman,R.M.Majewski,Spotlight synthetic aperture radar:signal processing algorithms.Artech House,Boston,1995:5-15
    [17]张澄波.综合孔径雷达.北京:科学出版社,1989:1-20
    [18]张直中.微波成像技术.北京:科学出版社,1990:2-15
    [19]朱兆达,邬小青等.逆合成孔径雷达数字式信号处理.逆合成孔径雷达文集(二),1990:42-54
    [20]Steinberg,B.D.,Carlson,D.L..Microwave imaging of aircraft,In Proceedings of the IEEE,1988,76:1578-1592
    [21]C.W.Sherwin,J.P.Ruina and R.D.Rawcliff.Some Early Developments inSynthetic Aperture Radar Systems.IRE Trans.On Military Electronics,1962,MIL-6(2):111-115
    [22]Pricket,M.J.,and Chen C.C.Principle of inverse synthetic radar(ISAR) imaging,IEEE Electronics and Aerospace Systems conference Record,Arlington,VA,1980,340-345
    [23]Jakowatz,Jr,C.V.,Wahl,D.E.,Eichel.Spotlight-mode Synthetic Aperture Radar:A Signal Procesing Approach.Norwell,MA:Kluwer Academic Publishers,1996,4-14
    [24]M.J.Gerry,L.C.Potter,I.J.Gupta.A Parametric Model for Synthetic Aperture Radar Measurements.IEEE Trans.Antennas and Propagation,1999,47(7):1179-1188
    [25]Wang Yang;Chen Jianwen;Liu Zhong.Research on radar imaging of manoeuvering targets.Radar Conference,2003,Proceedings of the International,Sept.2003:42-44
    [26]J.J.Kovaly.High resolution radar fundamentals.In Eli-Broakner,Radar Technology,Dedham,Mass.,Artech House,1977,6-17
    [27]刘永坦等.雷达成像技术.北京:哈尔滨工业大学出版社,2001,3-15
    [28]Wemess,S.,Carrara,W.,Joyce,L.Moving target imaging algorithm for SAR data.IEEE Transactions on Aerospace and Electronic Systems,1994,26(1):57-67
    [29]L.J.Cutrona.A Comparison of Techniques for Achieving Fine Azimuth Resolution.IRE Trans.on Military Electronics,1962,6(2):129-131
    [30]L.J.Cutrona.A High Resolution Radar Combat-surveillance Systems,IRE Trans.on Military Electronics,1961,5(2):127-131
    [31]W.M.Brown,et al.,An introduction to synthetic apurter radar.IEEE Specture,1969,4:52-62
    [32]L.J.Cutrona.On Application of Coherent Optical Processing Techniques to synthetic Aperture Radar.Proc.of IEEE,1966,54(8):1026-1032
    [33]M.Daily,C.Elachi,et al.,Discrimination of Geologic Units in Death Valley using Dual Frequency and Polarization Radar Data.Geophysical Research Letter,1978,6:563-583.
    [34]W.E.Brow,C.Elachi and T.W.Thompson.Radar Imaging of Ocean Surface Patterns.Joural of Geophysical Research,1976,2:201-207
    [35]B.D.Steinberg,Radar imaging from a distorted array:the radio camera algorithm and experiments.IEEE Trans.on AP,1981,29:740-748
    [36]B.D.Steinberg,MICROWAVE IMAGING WITH LARGE ANTENNA ARRAYS:RADIO CAMERA PRINCIPLES TECHNIQUES.New York:John Wiley and Sons,1983:12-36
    [37]R.K.Raney,A.P.Luscombe.Radarsat.Proe.IEEE,1991,79(8):839-849
    [38]B.Kang,H.M.Subbaram,B.D.Steinberg.Improved adaptive beamforming target for self-Calibrating a distorted phase array.IEEE Trans.on AP,1990,38(2):186-194
    [39]R.Goodman,N.W.Wilhelm,A High Fidelity Ground to air Imaging Radar System,IEEE National Radar Conference Record,1994:29-34
    [40]H.Wu,D.Grenier,G.Y.Delisle et al.,Translation motion compensation in ISAR image Processing,IEEE Trans.on IP,1995,4(11):1561-1571
    [41]Zweig,G,Wohlberg,B.,ISAR imaging and crystal structure determination from EXAFS data using a super-resolution fast Fourier transform,Statistical Signal and Array Processing,2000.Proceedings of the Tenth IEEE,2000:458-462
    [42]国家高技术计划信息获取与处理专家组,“逆合成孔径雷达论文集,”(863)十周年汇,1996.3:356-364
    [43]M.G.Amin,Minium variance time-frequency distribution kernels for signals in additive noise.IEEE Trans.SP.1966,44(9):3252-2356
    [44]L.J.Stankovic,Vi.Ivanovic,Further result on the minimum variance time-frequency distribution kernels,IEEE Trans.SP,1997,45(6):1650-1655.
    [45]Ljubisa Stankovic,Vladirmir Katkovnikm,The Wigner distribution of noisy signals with adaptive time-frequency varying window.IEEE Trans.SP.1999,47(4):1099-1108
    [46]李春升等.基于数据矩阵奇异值分解的时一空二维信号处理.电子学报,1994,7:24-29
    [47]鲍晓红 等.一种新的二维空间谱估计方法-二维组合阵列ESPRIT.信号处,1992,3:25-32
    [48]张晓军.数字图像处理-图像重构论.北京:清华大学出版社,2001,231-263
    [49]Richard G.Baraniuk,Douglas L.Jones,Signal-dependent time-frequency analysis using a radially Gaussian kernel,Signal Processing1993,32:263-284
    [50]Richard G.Baraniuk,Douglas L.Jones,An adaptive time-frequency representation using a cone-shaped kernel,ICASSP'93,1993,4:404-407
    [51]Richard G.Baraniuk,Douglas L.Jones.A signal-dependent time-frequency representation:optimal kernel design.IEEE Trans.SP.,1993,41(4):1589-1602
    [52]Douglas L.Jones,Richard G.Baraniuk,A simple scheme for adapting time-frequency representations,IEEE Trans.SP.1994,42(12):3530-3535
    [53]Richard G.Baraniuk,Douglas L.Jones.A signal-dependent time-frequency representation:fast algorithm for optimal kernel design.IEEE Trans.SP,1994,42(1):134-146.
    [54]M.Bianu,A.Isar,The reduction of interference terms in the time-frequency plane,Signals,Circuits and Systems,2003.SCS 2003.International Symposium,2003,2:461 -464.
    [55]Krishnan,S.Instantaneous mean frequency estimation using adaptive time-frequency distributions.Electrical and Computer Engineering,2001.Canadian Conference,2001,1:141 -146.
    [56]曹志道,刘永坦,许荣庆等.逆合成孔径雷达的成像质量和运动补偿.逆合成孔径雷达文集(二),1990,13-14
    [57]保铮,邓文彪,杨军.ISAR成像处理中的一种运动补偿方法.逆合成孔径雷达文集(二),1990:55-65
    [58]Attia,E.H.Self-cohering distributed array using the robust minimum variance algorithm.IEEE AP-S Digest,1986:6030-606
    [59]Haywood,B.,and Evans,R.I.Motion compensation for ISAR imaging,Australlian Symposium on Signal Processing and Applications,Adelaide,Austr-alia,1989:112-117
    [60]Kang,B.,Subbaram,H.M.,and Steinderg,B.D.Improved adaptive beamforming targer for self-calibrating a distorted phase array.IEEE Transactions on Antennas and Propagation,1990,38(2):186-194
    [61]Wu,H.,Delisle,G.Y.,and Fang,D.G.Translational motion compensation in ISAR image processing.IEEE Transactions on image processing,1995,4(11):1561-1571
    [62]Bao,Z.,Deng,W.,and Yang,J.,A new motion compensation scheme for ISAR imaging,In proceedings of the 1991 CIE(Chinese Institute of Electronics) International Conference on Radar,Beijing,China,1991:327-330
    [63]Itoh,T.,Sueda,H.,and Watanabe,Y.,Motion compensation for ISAR via centroid tracking,IEEE Transactions on Aerospace and electronic Systems,1996,32(3):1192-1197
    [64]Pricket,M.J.,and Chen C.C.,Principle of inverse synthetic radar(ISAR) imaging,IEEE Electronics and Aerospace Systems conference Record,Arlington,VA,1980:340-345
    [65]Wahl,D.E.,Eichel P.H.,Ghiglia,D.C.,and Jakowatz,Jr.,C.V.Phase gradient autofoeus- a robust tool for high resolution SAR phase correeion.IEEE Transactions on Aerospace and electronic Systems,1994,30:827-635
    [66]Wahl,D.E.,Eiehel,P.H.,Ghiglia,D.C.,and Jakowatz,Jr.,C.V.Phase gradient autofocus- a robust tool for high resolution SAg phase correeion.IEEE Transactions on Aerospace and electronic Systems,1994,30:827-635
    [67]Flores,B.C.,Tariq,S.,and Son,J.S.,Image focus quality indicators for efficient inverse synthetic aperture radar phase correction.Proceedings of SPIE:Algorithms for synthetic Aperture Radar Imagery V.2757,Orlando,FL,Apr.1996:2-13
    [68]Jian Li,Renbiao wu,Victor C.Chen,Robust auto-focus algorithm for ISAR imaging of moving targets,IEEE transacrions on Aerospace and electronic Systems,2001,37(3):1056-1067
    [69]黄源宝,郑义明,保铮.基于多特显点综合的S A R/I s A R自聚焦.西安,电子科技大学学报(自然科学版),2001,28(1):105-109
    [70]朱兆达,邱晓晖,余志舜。用改进的多普勒中心跟踪法进行ISAR运动补偿.电子学报,1997,3:65-69
    [71]Qiu,X.H.;Zhao,Y.;Cao,Y.Udpa,S.;An efficient compensation approach for un-uniform sampling of rotating angle in ISAR imaging.Antennas and Propagation Society International Symposium 2003,IEEE,2003,3:203 -206
    [72]Roa,J.P.;Rivas,F.;Gonzalez,I.;Citedra,M.F.;Numerical determination of ISAR images of objects modeled with nurbs surfaces,Antennas and Propagation Society International Symposium,2003.IEEE,2003,3:183 -186
    [73]Thomas,G.;LoVetri,J.;Chamma,W.;Kashyap,S.;Louie,A.;Sidelobe apodization for high resolution of scattering centres in ISAR images,Antennas and Propagation Society International Symposium,2001.IEEE,2001,2:232-235
    [74]Giret,R.,Meric,S.Chassay G Radar images of vehicles based on SAR/ISAR processing.Antennas and Propagation Society International Symposium,2001.IEEE,2001,4:277-280
    [75]LaHaie,I.J.An overview of advanced processing techniques for RCS measurements,Antennas and Propagation Society International Symposium.IEEE,2001,4:608 -611
    [76]Lazarov,A.;Minchev,C.,Spectral 2-D image reconstruction in ISAR with linear frequency modulated signals Digital Avionics Systems.2001.DASC.The 20th Conference,2001,1:1-10
    [77]Leonard,T.P.;Holden,M.G;The Wigner-Ville transform for the focusing of ISAR images Time-scale and Time-Frequency Analysis and Applications(Ref.No.2000/019),IEE Seminaron,2000:901 -911
    [78]Aleksiejunas,R.,Ivaska,V.Geometric phase applications to ISAR image compression,Microwaves,Radar and Wireless Communications.2000.MIKON-2000.13th International Conference on,2000,2:627 -629
    [79]McFadden,F.E.;Musman,S.A.,Optimizing ship length estimates from ISAR images Neural Networks,2000,IJCNN 2000,Proceedings of the IEEE-INNS-ENNS International Joint Conference on,2000,1:163 - 168
    [80]Sezgin,S.,Dural,G.Use of parametric modelling based techniques in ISAR imagingAntennas and Propagation Society International Symposium,2000,IEEE,2000,4:1944 -1947
    [81]Hao Ling;Junfei Li,Application of adaptive joint time-frequency processing to ISAR image formation Statistical Signal and Array Processing,2000.Proceedings of the Tenth IEEE Workshop on,2000:476 -479
    [82]Zheng Liu,Shouhong Zhang,A novel method of translational motion compensation for hopped-frequency ISAR imaging Radar Conference,2000.The Record of the IEEE 2000International,2000:255 -26
    [83]R P Perry,R C Dipietro,R L Fante,SAR imaging of moving target.IEEE Trans on AES,1999.35(1):188-120
    [84]Victor C.Chen,Hao Ling,Time-Frequency transforms for Radar Imaging and Signal Analysis.London:Artech House,2001:25-44
    [85]Peter T.Gough,A fast spectral estimation algorithm based on the FFT,IEEE Trans.on SP,1994,1SP-42(6):1371-1322
    [86]邹虹,保铮,基于频域“CLEAN”Wigner-ville分布中交叉项的抑制.电子与信息学报,2002,24(1):1-5
    [87]Carrara,W.G.,Goodman,R.S.,and Majewski,R.M..Spotlight Synthetic Radar:Signal Processing Algorithms.Boston:Artech House,1995:125-143
    [88][美]L.科恩著,白居宪 译.时频分析:理论与应用.西安:西安交通大学出版社.1998,114-122
    [89]Leonard,T.P;Holden,M.G.The Wigner-Ville transform for the focusing of ISAR images,Time-scale and Time-Frequency Analysis and Applications,IEE Seminar on,2000:901 - 911
    [90]Wood,J.C.,and Barry,D.T.Radon transformation of time-frequency distributions for analysis of multi-component signals,IEEE Transactions on Signal Processing,1994,42(11):3166-3177
    [91]Yuanxun Wang,Hao Ling,Victor C.Chert,ISAR Motion Compensation Via Adaptive Joint Time-Frequency Technique.IEEE Transactions on Aerospace and Electronic Systems,1998,34(2):670-676
    [92]J.Mittermayer,A.Moreira,and O.Loffeld.The Frequency Scaling Algorithm For Spotlight Processing,IRS' 98,1998,1:1279-1288
    [93]Carrara,W.G.,Goodman,R.S.,and Majewski,R.M.(1995).Spotlight Synthetic Radar:Signal Processing Algorithms.Boston:Artech House,1995:125-143
    [94]Wemess,S.,Carrara,W.,Joyce,L.,and Franczak,D.,Moving target imaging algorithm for SAR data.IEEE Transactions Aerospace and Electronic System,1990,26,1:57-67
    [95]邹红,多分量线性调频信号的时频分析[博士论文].西安:西安电子科技大学,2000
    [96]Tao.L,Kwan.H.K.1-D and 2-D real-valued discrete Gabor transforms,Circuits and Systems,2000.Proceedings of the 43rd IEEE Midwest Symposium on,2000,3:1182 -1185
    [97]Cohen,L.Time-frequency distributions-a review.Proceedings of the IEEE,1989,77:941 -981
    [98]S.Qian and D.Chen.Discrete Gabor transform.IEEE Trans.Signal Processing,1993,10:2429-2439
    [99]S.Qian and D.Chen,Decomposition of the Wigner-Ville Distribution and Time-Frequency Distribution Series.IEEE Trans.Signal Processing,1994,10:2836-2842
    [100]V.C.Chen Joint time-frequency analysis for radar signal and image processing,IEEE Trans.Signal Processing,1999,5:82-93
    [101]Wang.A.,Mao.Y.,Chert,Z.,Imaging of multitargets with ISAR based on the time-frequency distribution,Acoustics,Speech,and Signal Processing.ICASSP-94,IEEE International Conference,1994,5:173 -176
    [102]S.Qian,YongRao,DapangChen,A fast Gabor spectrogram,Acoustics.Speech,and Signal Processing,2000,ICASSP '00,Proceedings,2000,2:653 -656
    [103]邹红星.时频分析:回溯与展望.电子学报,2000,28(9):78-84.
    [104]魏茂刚,阮成礼.时频分布级数方法的改进.电子科技大学学报,2004,33:46-49.
    [105][美]E.F.克拉特等 著,阮颖铮,陈海等 译.雷达散射截面-预估、测量和减缩.北京:电子工业出版社,1988,156-157
    [106]黄学德.导弹测控系统.北京:国防工业出版社,2000,82-86
    [107]王宏禹.非平稳随机信号分析与处理.北京:国防工业出版社,1999,45-90
    [108]胡广书.数字信号处理-理论、算法与实现.北京:清华大学出版社,1997,241-245
    [109]M.J.Bastiaans.Application of the Wigner distribution fuction to partially coherent light.J.Opt.Soc.Am,1986,3:127-1238
    [110]B.Boashash and H.J.Whitehouse.Seismic applications of the Wigner-Ville distribution.In Proc.IEEE Int.Conf.Systems and Circuits,1986:34-37
    [111]B.Boashash,B.Lovell and L.White.Time frequency analysis and pattern singular value decomposition of the Wigner-Ville distribution,in recognition Advanced Algorithms and Architecture for Signal Processing.Proc.SPIE,1987,1:104-114
    [112]C.F.Boudreaux-Barrels and T.W.Parks.Time-varying filtering and signal estimation using Wigner distribution synthesis techniques,IEEE Traps.Acous.,Speech,Signal Processing,1986,34:442-451
    [113]S.Kay and G.F.Boudreaux-Bartels.On the optimality of the Wigner-Villedistdbution for detection,in Proc.ICASSP'85,1985:1017-1020
    [114]B.V.K.VKumar and W.C.Carroll,Pattern recognition using Wigner distribution function,in IEEE 100' Int.Optical Computing Conf.1983:130-135
    [115]N.M.Marinovic and W.A.Smith.Application of joint time frequency distributions to ultrasonic transducers,in Proc.1986 IEEE Int.Symp.Circuits and Systems,1986:50-54
    [116]E.F.Valez and R.G.Absher.Transient analysis of speech signals using the Wigner time-frequency representation,in Proc.IEEE ICASSP'89,1989:90-95
    [117]B.D.Forrester.Use of the Wigner-Ville distribution in helicopter fault detection,in Proc.ICASSP' 89,1989:78-82
    [118]Franc Hlawatsch.Interference terms in the wigner distribution,in ICASSP'84,1984,363-367
    [119]P.Flandrin.Some features of time-frequency repesentations of multi-component signals,in Pros.IEEE ICASSP'84,1984:1-4
    [120]Patrick J.Loughlin,James W.Pitton and Les B.Atlas.Hilinear time-frequency representations:New insights and properties.IEEE Trans.-SP.1993,41(2):2978-2983
    [121] Hyung-Ill Choi and William J.Williams.Improved time-frequency representation of multicomponent signals using exponeetial kernels.IEEE Trans. ASSP, 1989,37(6):46-51
    [122] Wehner, Donald R. High Resolution Radar.Artech House BostonXondon, 1995:210-225

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700