用户名: 密码: 验证码:
高效短流程多头纺PET POY成型工艺技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以德国巴马格公司WINGS POY纺丝设备为平台,以经典的熔融纺丝成形理论为指导,通过解析该纺丝设备基本原理和工艺流程,建立WINGS POY同轴卷绕不同丝饼纺丝成形模型,分析同一纺丝位(同一卷绕轴)上不同丝饼间成形纤维的超分子结构及其热力学性能间的差异,并与传统ACW POY纺丝工艺进行对比分析,分析产生差异的主要因素,并得到一些有效的结果,可为减小丝饼间的结构与性能的差异,提高产品品质、改进设备和优化工艺提供理论指导。
     本文选取PET POY (277dtex/288f)长丝为研究对象,以所建立的模型为基础,结合纺丝成形理论对同一卷绕轴不同丝饼纤维的结晶取向结构及热力学性能进行测试分析。通过声速法测试试样的取向度;利用差热分析仪测试了试样的结晶度;利用条干均匀度分析仪测试试样条干不匀率;利用电子单纱强力仪测试了试样的断裂强度、断裂伸长率、初始模量、60%伸度时强力波动值等力学性能指标;以及测试试样沸水收缩率等指标,综合分析同一纺丝位不同丝饼试样的结构性能的差异,发现:
     (1)同一纺丝位不同丝束由于在纺丝过程中各自的纺丝路径不同,外部丝饼丝束的纺程长度大于中间丝束,且外部丝束与导丝钩的包覆角大于中间丝束,导致丝束在纺丝线上所受到的张力以及波动情况不同,使得最终形成的纤维在结构性能及结构性能的稳定性上存在差异。
     (2)同轴卷绕中间丝饼的取向度低于外部丝饼,结晶度也是中间丝饼低于外部丝饼,但是中间丝饼结晶的结构的均匀性规整性优于外部丝饼。
     (3)在丝束宏观形态方面,同一纺丝位外部丝饼试样的条干不匀率高于中间丝饼。同轴卷绕的不同丝饼,中间丝饼虽然取向度与结晶度略低于外部丝饼,但中间丝饼的微观结构的规整性好于外部丝饼,使得中间丝饼的拉伸断裂强度、断裂伸长率以及沸水收缩率均大于外部丝饼,且各值的波动性也是中间丝饼低于外部丝饼,表征POY结构均匀性的60%伸度强力波动值也是中间丝饼低于外部丝饼。
     (4) WINGS系统由于将传统POY纺丝系统中的导丝辊、网络空气喷嘴等部件都集合到卷绕头上,使得纺程大大缩短,减少了车间内空气流动对纺丝线上丝束的扰动;又在丝路上丝束与导丝辊的包覆角减小,减少了丝束与导丝辊的接触面积,降低了纺丝线上导丝辊等部件由于机械振动对丝束的影响,使得所生产同轴卷绕不同丝饼的POY长丝具有更均一的微观结构,中间丝饼与外部丝饼结构与性能各项指标的差异小于传统POY工艺,力学性能指标均优于传统工艺,且各项指标的波动值(CV值)小于传统工艺,使得WINGSPOY工艺产品品质总体优于传统工艺。
This paper is based on the WINGS POY spinning process of Barmag company in Germany, and the classic melt spinning theory is taken as a guide, also through studying and analysis the formation mechanism and difference of structure and properties about different wire cake at same spinning position. Finding out the main factors that cause differences, by improving the equipment and optimizing the process to reduce the difference of the structure and properties between wire cake at same spinning position, so as to improve the quality of product.
     About the spinning experiment, we obtain 277dtex/288f PET POY under the traditional ACW POY spinning process and the WINGS POY spinning process. The crystallinity, the sonic velocity of orientation factor, velocity modulus, boiling water shrinkage are tested and analyzed by DSC, the digital fiber sound velocimeter and so on. Through the research and analysis, we can find that:
     (1) At the same spinning position, the length of spinning path of two sides tows is longer than the tows middle of spinning position, the angle of external tow coated with wire guide hook is greater than the tow middle of spinning position, leading to the spinning tension and fluctuation of the tow at side of spinning position is larger than the tow middle of spinning position. There are differences of structure and properties between different rolls at same spinning position.
     (2) The orientation degree and the crystallinity of intermediate filament winding cake are lower than the external yam cake, but the crystal structure of intermediate filament winding cake is more even.
     (3) At the same spinning-bit, the yarn irregularity of external wire cake is higher than the middle filament roll. About different filament rolls winded by same winder and meantime, as the orientation degree and crystallinity of external filament winding cake is higher, but crystal structure of intermediate filament winding cake is more even. The breaking strength, elongation at break and boiling water shrinkage rate of intermediate filament cake are higher than the external wire cake, and the CV values of all three indicators of intermediate filament cake are lower than the external wire cake. The fluctuations of strength when being extended to 60% of elongation at break is a characterization that shows structural uniform of POY. The intermediate filament cake has lower fluctuation compared with the external wire cake cakes. That means the structure of the intermediate filament uniformity is better than the external wire cake.
     (4)Compared with the traditional ACW POY spinning process, the WINGS POY spinning system gathers the guide wire roller, network air nozzles and other components to the winding head, makes the spinning length significantly reduced, also reduce the disturbance caused by air flow inside the shop. The angle of tow coated with wire guide hook is reduced. That reduces the contact area of tow with the guide wire roller, and the impact of mechanical vibration. Making the filament rolls at the same spinning position has more even structure. The difference is less than the traditional ACW POY spinning process between different filament roll spun at coaxial winding. The mechanical properties are superior to the traditional process. Coefficient of variation of the experimental values of WINGS POY system are lower than the traditional ACW POY system. The quality of WINGS POY process product is superior to the traditional process.
引文
[1]. 韩枫,张运启,李倩.多头纺改造技术探讨[J].合成纤维,2007(5):33-38
    [2]. 高亚林.超细纤维的研究进展[J].陕西纺织,2007,1:49-50
    [3]. 邵瑜.超细纤维市场前景看好[J]中国纤检,2007,10:70-72
    [4]. 王素霞.粗纺毛织物发展趋势[J].天津纺织科技,2007,(3):20
    [5]. 李素敏.国内外化纤设备中高速卷绕头的发展现状[J].纺织导报,2009(12):45-48
    [6]. 汪丽霞,刘政.涤纶长丝多头纺丝技术的开发[J].聚酯工业,2005,18(3):9-11
    [7]. 王志超.熔体直纺全拉伸丝双头纺技术改造分析[J].合成纤维,2005(6):29-31
    [8]. 李素敏.国内外高速卷绕头的发展及趋势[J].纺织机械,2008,(2):9-12
    [9]. 詹琏,涤纶长丝基础[M].中国纺织出版社,1997,16-20
    [10]. 郭大生,王文科,聚酯纤维科学与工程[M].中国纺织出版社,2001
    [11]. Oerlikon Barmag.Solutions for FDY manufacturing[EB/OL]. [2011-10-30].http://www.barmag.oerlikontextile.com/zh/Portaldata/1/Resources/barmag/ pdf/OBA FDY.pdf
    [12]. Oerlikon Barmag. The solution of FDY manufacturing[EB/OL].[2011-10-30].http://www.barmag.oerlikontextile.com/zh/Portalda ta/1/Resources/barmag/pdf/OBA 204 POY.pdf
    [13]. 巴马格.巴马格将在“第九届中国国际纺织机械展览会”上一聚焦领先的设备与解决方案[J].合成纤维,2004,增刊:42
    [14]. 黄兴山.欧瑞康巴马格开发新型卷绕单元[J].合成技术及应用,2008,(4):52
    [15]. Reichwein, M., J. Stehr,骆为林.用于聚酯POY生产的WINGS[J]国际纺织导报,2009,(12):22-23,26
    [16]. 王学利.化纤机械最新发展趋势[J].纺织导报,2005(8):63-64
    [17]. 王冶铁.论熔融纺涤纶长丝发展方向[J].山西化纤,1998(2):130-132
    [18]. 王殿军.涤纶长丝现状及发展浅析[J].黑龙江纺织,2007(4):11-12
    [19].王玉萍.国产化纤机械的新水平——中纺院机械厂研发的高速卷绕头[J].纺织导报,2002,(4):41-42
    [20].钱伯章.上海金纬化纤机械公司批量推出新型1680全自动卷绕头[J].合成纤维,2010,(7):53
    [21]. 董庆奇.16头直纺FDY项目的设计及生产工艺研究[D].苏州大学,2006
    [22]. 郑正举.24头涤纶FDY细旦丝生产技术的应用[J].合成纤维,2007,(11):39-41
    [23]. 曲小奇,金辉,刘春芳.FDY8头纺改造为16头纺的工艺[J].聚酯工业,2003,16(4):45-47
    [24]. 闫新,朱军营,徐现玉,张瑞霞,吴泽华,李倩.涤纶FDY12改18头纺技术探讨[J].合成纤维,2009,(5):3740
    [25]. 石彩杰,崔再治,王永恒.涤纶FDY12头纺改18头纺设备及工艺[J].聚酯工业,2008,21(3):33-35
    [26]. 侯建国,王双睿.涤纶FDY(12丝饼/位)纺丝设备与工艺[J].聚酯工业,2001,14(2):45-47
    [27]. 戴玉萍.涤纶FDY双饼丝生产影响因素的分析[J].聚酯工业,2006,19(2):44-46
    [28]. 陈海林,涤纶POY多头纺双丝饼生产技术探讨[J].江苏丝绸,2003,(5):5-6
    [29]. 胡长虹,徐艳.涤纶POY高速纺丝设备改造的探讨[J].广西化纤通讯,1999,(1):40-44
    [30]. 王百顺,曹利红,曹勇.涤纶多头纺双饼丝生产技术探讨[J].合成纤维,2001,30(6):32-36
    [31]. 张德国,刘梅堂.涤纶细旦POY条干不匀率和卷绕成形影响因素探讨[J].合成纤维工业,1999,22(6):55-57
    [32]. 李贵华,贾传兵.东丽TW—717/12型卷绕头丝饼成形不良的原因分析及对策[J].合成技术及应用,2009,24(2):60-62
    [33]. 董文涛.多头纺FDY牵伸、卷绕设备及工艺技术的探讨[J].纺织机械,2009,(6):42-45
    [34]. 吴吕木.国产锦纶6工业丝一步法多头纺技术的开发[J].纺织机械,2007,(5):10-13
    [35]. 李惊涛.国产高强多头涤纶产业用丝纺丝设备及工艺控制[J].纺织机械,2008,(4):16-18
    [36]. 中花玉.双排组件纺丝箱在化纤纺丝设备中的应用[J].纺织机械,2010,(4):40-42
    [37]. 王辉.节能新技术在化纤纺丝中的应用[J].纺织科学研究,2008,(1):11-16
    [38]. 周卫中,王金香,陈荣荣.熔体直纺20头纺涤纶FDY生产工艺[J].聚酯工业.2005,18(6):27-29
    [39]. A.Ziabicki.H.Kawai. High-Speed Fiber Spinning Science and Engineering Aspects[M] John-Wiley, New York.1985:67-75
    [40]. A.Ziabicki. Fundamentals of Fibre Formation:The Science of Fibre Spinning and Drawing[M]. John-Wiley, New York.1976:211-221
    [41]. S.Kase and T.Matsuo. Studies on melt spinning. Ⅰ.Fundamental Equations on the Dynamics of Melt Spinning[J]. J Appl.Polym.Sci:Part A,1965.3(7):2541-2554
    [42]. S.Kase and T.Matsuo. Studies on melt spinning. Ⅱ.Steady-state and Transient Solutions of Fundamental Equations Compared with Experimental Results[J]. J Appl.Polym.Sci: Part A,1967,11(2):251-287
    [43]. T.Nakajima. Advanced fiber spinning technology.[M].Woodhead Publishing Ltd,Cambridge.1994:25-64
    [44]. J.S.Denton, J.A.Cuculo and P.A.Tucker.Computer Simulation of High-Speed Spinning of PET[J].J.Appl.Polym.Sci.,1995,57:935-951
    [45]. J.EHother,J.A.Cuculo and Tucker P A.Effect of Modified Air Quenches on the High-Speed Melt Spinning Process[J].J.Appl.Polym.Sci.,1991,43:1511-1520
    [46]. C.Y.Lin,P.A.Tucker and J.A.Cuculo.Poly(Ethylene Terephthalate)melt Spinning Via Controlled Threadline Dynamics[J].J.Appl.Polym.Sci.,1992,46:531-552
    [47]. H.H.Cho,K.H..Kim,H.Ito,T.Kikutani.Fine-structure and Physical Properties of Polyethylene Fibers in High-Speed Spinning, Ⅰ.Effect of Melt-flow Rate in the High-Density Polyethylene[J].J.Appl.Polym.Sci.,2000,77:1182-1194
    [48]. H.H.Cho,K.H..Kim,H.Ito,T.Kikutani. Fine-structure and Physical Properties of Polyethylene Fibers in High-Speed Spinning, Ⅱ.Effect of Catalyst Systems in Linear Low-density Polyethylene[J]..J.Appl.Polym.Sci.,2000,77:1195-1206
    [49]. H.Urabe,H.Ito,T.Kikutani,N.Okui. On-line measurement of orientation development in the high-speed melt spinning process of polypropylene[J].Seikei-Kakou,2000,12(11):729-735
    [50]. H.H.Cho,K.H..Kim,Y.A.Kang,H.Ito,T.Kikutani. Fine-structure and Physical Properties of Polyethylene/Poly(ethylene terephthalate)Bicomponent Fibers in High-Speed Spinning, Ⅰ. Polyethylene Sheath/Poly(ethylene terephthalate) Core Fibers[J]. J.Appl.Polym.Sci.,2000,77:2254-2266
    [51]. H.H.Cho,K.H..Kim,Y.A.Kang,H.Ito,T.Kikutani. Fine-structure and Physical Properties of Polyethylene/Poly(ethylene terephthalate)Bicomponent Fibers in High-Speed Spinning, Ⅱ. Poly(ethylene terephthalate) Sheath/Polyethylene Core Fibers[J]. J.Appl.Polym.Sci., 2000,77:2267-2277
    [52]. W.Takarada,H.Ito,T.Kikutani,N.Okui. Studies on High-Speed Melt Spinning of Noncircular Cross-section Fibers, Ⅰ.Structural Analysis of As-spun Fibers [J]. J.Appl.Polym.Sci.,2001,80:1575-1581
    [53]. W.Takarada,H.Ito,T.Kikutani,N.Okui. Studies on High-Speed Melt Spinning of Noncircular Cross-section Fibers, Ⅲ.Modeling of Melt Spinning Process Incorporating Change in Cross-section Shape[J]. J.Appl.Polym.Sci.,2001,80:1589-1600
    [54]. W.Takarada,H.Ito,T.Kikutani,N.Okui. Studies on High-Speed Melt Spinning of Noncircular Cross-section Fibers, Ⅱ.Measurements of the Spin Line, Including Change in Cross-section Shape[J]. J.Appl.Polym.Sci.,2001,80:1582-1588
    [55].胡学超,黄建华,邵惠丽,侯培民.PET吸管冷却熔融纺丝动力学及计算机模拟[J].合成纤维工业,1992,02:1-4
    [56].李燕立,余天富,陈昀.对熔法纺丝模拟计算的再认识[J].北京服装学院学报1998,04:44-48
    [57].杨涛锋,陈大俊,李瑶君.弹性纤维熔纺动力学模型及模拟计算[J].中国纺织大学学 报,2000,10:24-27
    [58]. H.P.Wang,X.W.Yu and X.CH.Hu.Computer Simulation of Unsymmetry of the Melt-spinning Hollow Fiber[J]. Journal of China Textile Universtiy,1999,16(2):7-10
    [59]. 干华平.熔融纺丝成形理论及HMLS涤纶纤维的研制[D],上海:尔华大学,2001
    [60]. 张传雄.熔融纺丝成形理论应用及聚合物光学纤维开发[D],上海:东华大学,2008
    [61]. A.齐亚别斯基.高速纺丝——科学与工程[M].中国石化出版社,北京,1990:155-162
    [62]. 吴宏仁.涤纶高速纺的基础理论分析[J].合成纤维,1984,02:46-52
    [63]. 于伟东,储才元.纺织物理[M].上海:东华大学出版社,2002
    [64]. 董纪震,孙桐,古大治.合成纤维生产工艺(上册)[M].北京:纺织工业出版社,1987,199-204
    [65]. 汤成坦.一步法PET异收缩混纤复合丝构造机理与成纱工艺研究[D],杭州:浙江理工大学,2010
    [66]. 中国国家标准化管理委员会.GB/T 14346-1993化学纤维电子条干不匀率实验方法[S].北京:中国标准出版社,1993
    [67]. 高绪珊,吴大诚.纤维应用物理学[M].北京:中国纺织出版社,2001:507-512
    [68]. 焦剑,雷渭媛.高聚物结构、性能与测试[M].北京:化学工业出版社,2003:99-102
    [69]. 徐定安.声速法测量高分子材料模量智能仪器的研制[J].电气电子教学学报,2002,24(3):43-45
    [70]. 王光洪,金熹高,何原,等.数字式纤维声速取向度测量仪的研制[J].现代仪器,2006,(4):52-55
    [71].金日光,华幼卿.高分子物理(第三版).北京:化学工业出版社,2009,64
    [72]. 潘志娟.纤维近代测试技术[M].北京:中国纺织出版社,2005:156-161.
    [73]. 中国国家标准化管理委员会.GB/T14344-2008化学纤维长丝拉伸性能试验方法[S].北京:中国标准出版社,2008
    [74]. 中国国家标准化管理委员会.GB/T6505-2001合成纤维长丝热收缩率试验方法进行测试[S].北京:中国标准出版社,2001
    [75]. 于伟东,卜热燕.纤维表层双折射的实用测量法[J].纺织学报,1998,19(02):85-86
    [76]. 黄象安,张文中.用声脉冲法测定纤维取向度和模量的研究[J].合成纤维,1981,02:24-28
    [77]. 于伟东.纺织材料学[M].北京:中国纺织出版社,2006:99-106
    [78]. 徐心华,李允成等.涤纶长丝生产[M].北京:纺织工业出版社,1989:213-214
    [79]. 何曼君,陈维孝,董西伙.高分子物理(修订版)[M].上海:复旦大学出版社,2000:97-101

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700