用户名: 密码: 验证码:
熔融纺丝高速卷绕机复杂转子系统动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
熔融纺丝高速卷绕机是整个长丝生产的关键设备,目前国产高速卷绕机与国外同类产品相比仍有一定差距,尤其表现在高速卷绕头的动力学性能方面。高速卷绕头是高速卷绕机的核心,是由锭轴夹头和卷装构成的一个变质量、变刚度、变转速的柔性支撑悬臂细长薄壁高速复杂转子系统。
     本文结合上海市科委立项项目(高速卷绕机的设计制造与关键技术研究)、与高速卷绕机生产企业合作对高速卷绕头(卷绕线速度5500m/min以上、锭轴长度1500mm)系统的动态性能进行研究,为高速卷绕头的自主设计提供相关理论技术指导。
     本文采用理论建模、动态仿真和试验测试相结合的方法对高速卷绕头时变系统进行动力学研究。主要工作如下:
     1、考虑卷装变质量、变转动惯量和“O”型橡胶圈频变支撑刚度特性,运用空间梁单元、质量单元和弹簧单元对高速卷绕头进行理论建模,并给出可适应时变振动系统动力学方程求解的改进算法。
     仿真得出:过盈联接可按固结方式简化,转动件和非转动件可简化为空间梁单元。而轴承和“O”型橡胶圈可简化为具有等效弹簧和阻尼的弹簧单元,卷装可简化为质量单元。建模得到一个考虑剪切变形对横向位移的影响,计入轴向变形与横向变形的影响,引入卷装变质量变转动惯量,考虑“O”型橡胶圈频变支撑刚度的变质量、变刚度、变转速高速卷绕头时变振动系统有限元数学模型。改进Newmark法,以适应高速卷绕头时变振动系统动力学方程的求解。
     2、考虑陀螺效应和“O”型橡胶圈频变支撑刚度特性,计算分析了高速卷绕头在“空卷”和“满卷”两特定状态下时不变参数系统动态特性,并进行了相应分析比较。
     从而得出:高速卷绕头工作过程中不存在像定常系统那样恒定不变的固有频率与振形;陀螺效应对满卷状态高速卷绕头的同步临界转速影响较大,而对空卷状态的同步涡动临界转速影响较小;“O”型橡胶圈的频变特性在高速卷绕头宽频转速(4547~14252r/min)工作范围内的动力学分析中不可忽略。高速卷绕头全工作过程的动态性能并非针对某一“定卷状态”进行分析就能获得,实际研究需全面考虑其变质量、变刚度、变转速的时变特性。
     3、考虑高速卷绕头系统变质量、变刚度、变转速的时变特性,对其空卷启动、恒线速度卷绕(恒线速度变转速转动)和满卷停止全工作过程动态响应进行计算仿真,分析了其响应峰值速度特性:
     当高速卷绕头空卷状态以不同等角加速启动时,不平衡激励的频变快慢对空卷高速卷绕头启动过程响应幅频曲线峰值所对应临界转速大小无明显影响;当高速卷绕头在不平衡质量的激励下空卷启动、恒线速度卷绕和满卷停止工作时,其全工作过程中最大不平衡响应峰值转速对应在空卷启动过程的最高转速,这为目前该型高速卷绕头仅针对空卷状态进行有效动平衡即可满足高速卷绕头全工作过程运转稳定要求,提供了可靠的理论依据。
     4、在专用动平衡机上对空卷状态高速卷绕头进行动平衡,在高速卷绕头样机上对空卷状态启动、稳定高速、停车三阶段过程进行动态响应测试分析,并与对应动力学模型计算结果进行了验证。
     动平衡试验中得到与理论计算结果对应的空卷状态高速卷绕头临界转速点;响应测试结果表明动态启动激励快慢即等角加速度角大小对空卷高速卷绕头启动响应的影响与理论分析基本一致,引起高速卷绕头振动的主要原因是其转子系统的不平衡。通过以上试验结果验证本文理论模型是可行的、有效的,能反映工程实际。
     5、对高速卷绕头系统及其组成部件主要参数的关系进行研究,分析其影响,综合考虑给出了高速卷绕头进一步自主设计指导。
     分析薄壁筒管(白套)、细长驱动轴、轴承支承位置调节、“O”型橡胶圈及悬臂支撑架等零部件相关参数与高速卷绕头系统的动态响应关系,得出在不改变高速卷绕头现有装配结构的前提下,可通过把薄壁筒管材料替换为碳纤维复合材料,减小悬臂支撑架外端“O”型橡胶圈的个数以减小其支撑刚度,增大悬臂支承架的壁厚来改善高速卷绕头系统的动态响应,综合优化以上参数对改善高速卷绕头系统的动态响应效果更明显。
     本文创新点在于:
     考虑变质量、变刚度、变转速特性,建立了一个包括卷装变质量变转动惯量、“O”型橡胶圈频变支撑刚度的高速卷绕头时变系统动力学模型,并给出了可适应时变振动系统动力学方程求解的改进算法。
     按实际工况,全面研究了高速卷绕头空卷启动、恒线速度变转速卷绕和满卷停止整个工作过程时变系统动态性能,并通过分析计算关键点在整个工作过程的动态响应幅频特性曲线,发现:高速卷绕头全工作过程中最大不平衡响应峰值转速对应在空卷启动过程的最大转速,这为目前该型高速卷绕头只针对空卷状态进行有效动平衡提供了可靠的理论依据。
     研究了高速卷绕头系统及其组成部件主要参数的关系,分析了其对卷绕过程动态响应性能影响,给出了高速卷绕头进一步自主设计指导,包括在满足工程结构要求条件下通过把薄壁筒管材料替换为碳纤维复合材料,减小悬臂支撑架外端“o”型橡胶圈的个数以降低其支撑刚度,增大悬臂支撑架的壁厚等,均可有效改善高速卷绕头系统的动态响应性能。
High-speed melt spinning winding machine play the key role in filament production process. Currently, home-made high-speed winding machine still lags far behind compared with similar overseas products, especially in the dynamic performance of the high-speed winder. As the core of the high-speed winding machine, the high-speed winder is essentially a complex high-speed thin-walled rotor system with long and thin flexible cantilever, which is mass-variable, stiffness-variable, and rotation-speed-variable. It is composed of a spindle chuck and several filament packages.
     As the proposed project of Shanghai Science and Technology Commission, the dynamic performance of the high-speed winder is studied in this thesis so as to provide related theoretical and technical guidance for the design of high-speed winder (the winding linear velocity is above5500m/min, the length of spindle isl500mm). Cooperation of the high-speed winding machine manufacturers is acknowledged.
     Theoretical modeling, dynamics simulation and experimental testing methods are adopted in this thesis in the dynamic research of the time varying system of high-speed winder. The main contents include:
     1. Theoretical modeling of high-speed winder considering the variable mass, variable rotary inertia and frequency-independent stiffness of "O" type rubber ring is developed by using space beam element, mass element and spring element. Moreover, an improved Newmark method is provided which is adaptable to solutions of time-varying vibration system dynamics equation.
     It can be concluded from the simulation that interference fit connection can be simplified as consolidation; rotating parts and non-rotating parts can be simplified as space beam element. Bearing and "O" type rubber ring can be simplified to equivalent spring and damping spring element, and packages can be simplified as the mass element. Considering the effect of shear deformation on lateral displacement and the effect of axial deformation and lateral deformation, variable mass and variable rotary inertia of package are integrated in the finite-element model which described the time varying vibration system of high-speed winder with variable mass, variable stiffness and variable rotation speed. The frequency-independent stiffness of "O" type rubber ring is considered as well. Newmark method is improved so as to adapt to the solution of the time-varying vibration dynamic equation of high-speed winder.
     2. Considering the gyroscopic effect and the frequency-independent stiffness of "O" type rubber ring, the time-invariant system, which describes the dynamic performance of the high-speed winder under "empty package" and "full package" condition, is analyzed, and corresponding comparison is made.
     It is concluded that unlike the constant system, the high-speed winder has constant natural frequencies and modes of vibration during the working process; gyroscopic effect has a greater influence on the synchronous critical speed of high-speed winder under full package state, with a smaller influence on the synchronous eddying motion critical speed under empty package state; frequency-dependent characteristics of "O" type rubber ring should not be neglected in the dynamic analysis within the scope of work of broadband speed (4547-14252r/min) of high-speed winder. The dynamic performance of high-speed winder during the entire working process cannot be predicted by analyzing a certain "fixed package state". Time varying characteristics of high-speed winder, such as variable mass, variable stiffness and variable rotation speed should be fully considered.
     3. Considering the time varying characteristics, such as variable mass, variable stiffness and variable rotation speed, the dynamic response of the entire working process including the high-speed winder starting from the empty package, evolving to winding at constant linear velocity (rotate at constant linear velocity and variable rotation speed), and ending at full package is calculated and simulated. The peak speed characteristics of the response are analyzed as well.
     When the high-speed winder starts with different isogonism accelerations under empty package, speed of frequency change of unbalance excitation has no significant effect on the critical speed corresponding to the peak value on the amplitude frequency diagram; when the high-speed winder starts up at empty package, winds at constant linear velocity and stops working at full package under excitation by unbalanced mass, the maximum unbalanced response peak speed during the entire working process corresponds to the maximum speed during the starting process at empty package. This provides theoretical verification for the fact that conducting effective dynamic balance in empty package state stables operation of high-speed winder during the whole working process.
     4. Conduct dynamic balance on high-speed winder with special dynamic balancing machine under empty package condition and dynamic response test analysis on high-speed winder model machine. Dynamic response test analysis of the entire processes, namely starting, stabilizing in the speed, and stopping is made. The results are verified by comparison with that predicted by the corresponding dynamic model.
     Critical speed of high-speed winder in empty package has been obtained in the dynamic balance experiment; this is coordinated with the theoretical calculation. Response test result shows that the theoretical analysis well predicts the effect of the speed of dynamic starting excitation, namely the angle of isogonal acceleration, on the starting response of high-speed winder under empty package. The primary reason for the vibration of high-speed winder is imbalance of the rotor system. The above experiments results prove that the theoretical model established in this thesis is accurate, effective and well explain the practical phenomenon.
     5. Study the relationship between high-speed winder system and primary parameters of its parts, and analyze the influence based on the relationship, then provide guidance for the design of high-speed winder after comprehensive consideration.
     By analyzing the relationship between the parameters with regard to the thin-walled bobbin, long and thin driving shaft, changing the position of bearing,"O" type rubber ring, the cantilever frame together other components and dynamic response of the high-speed winder, it can be concluded that the dynamic response of high-speed winder system can be improved by the following operations:1. reducing the supporting stiffness of "O" type rubber ring at the outer end of the cantilever by changing the number of "O" type rubber ring;2.increasing the wall thickness of the cantilever;3. employing carbon fiber composite instead of the thin-walled bobbin without changing the original assembly structure. Optimizing the above parameters comprehensively is better for improving the dynamic response of the high-speed winder system.
     Innovation in this thesis lies in:
     Based on variable mass, variable stiffness and variable rotation speed, a dynamic model of the time varying system of the high-speed winder including packages with variable mass and variable rotary inertia and "O" type rubber ring with frequency-dependent stiffness is developed.
     through analysis on the amplitude frequency characteristics of the dynamic response of of key positions of the high-speed winder in the entire working process, it is found that the maximum unbalance response peak speed corresponds to the maximum speed in the starting process under empty package, which provides theoretical basis for the fact that the high-speed winder conducts effective dynamic balance in empty package state.
     Study the relationship between high-speed winder system and primary parameters of its parts, and analyze the influence based on the relationship, it provides guidance for independent design of high-speed winder. By employing the carbon fiber composite instead of the thin-walled bobbin material, the supporting stiffness of "O" type rubber ring at the outer end of the cantilever frame can be reduced by changing the number of "O" type rubber ring, and the wall thickness of the cantilever can be increased to improve the dynamic response of high-speed winder system.
引文
[1]工业和信息化部.工业和信息化部关于纺织机械工业结构调整的指导意见[EB/OL].http://www.miit.gov.cn/n11293472/n11293832/n11293907/n1136822 3/12873951.html,2009-12-11.
    [2]D, Hans,H. Franz. Dynamics of Machinery [M]. Berlin:Springer.2010
    [3]张策著.机械动力学史[M].北京:高等教育出版社.2009.
    [4]温诗铸,黎明.机械学发展战略研究[M].北京:清华大学出版社.2003.
    [5]廖伯瑜,周新民.尹志宏.现代机械动力学及其工程应用[M].北京:机械工业出版社.2004:1-80.
    [6]方英武.机床结构动力学边界元建模解析中的关键问题研究[D].西安:西安理工大学.2006:2-5.
    [7]王文亮,张文,罗惟德等.结构动力学[M].上海:复旦大学出版社.1993.
    [8]曾攀.有限单元分析及应用[M].北京:清华大学出版社.2004.
    [9]Belytsehko T, Krongauz Y, Organ D,Fleming M,Krysl P. Meshless methods:an overview and recent developments.Comput.MethodsAppl.Mech.Engrg,1996,139: 3-47.
    [10]LS,Liu W K. Meshfree and Particle methods and their applications. Applied Meehanies Review,2002,55:1-34.
    [11]杜庆华,岑章志,稽醒等.边界积分方程方法—边界元法[M].北京:高等教育出版社.1989.
    [12]G W. Xiao, G D. Trevor. Boundary element programming in mechanics.America: Cambridge University Press,2002.
    [13]L. Gaul, M. Kogl. Boundary element methods for engineers and scientists [M].Germany:Springer.2003.
    [14]杨光,王玉丹.传递矩阵法进行电主轴的动力学特性分析[J].机械设计与制造:2001.3(3):50-51.
    [15]Inagaki T.Response analysis of a general asymmetric rotor-bearing system [J]. Journal of Mechanical Design.1980.102:147-157.
    [16]Brain Timothy Murphy.Eigenvalues of Rotating Machinery[D].Doctoral dissertation.University of Florida.1984.
    [17]方之楚.质量任意分布下的柔性转子过临界点时的瞬态响应[J].固体力学学报:1990.11(1):11-22.
    [18]柴山,刚宪约,计算多转子系统临界转速的整体传递矩阵法[J].上海理工大学学报:2002.24(1):8-12.
    [19]徐华,朱均.机械密封对转子轴承系统动力学性能的影响[J].西安交通大学学报:2004.38(7):665-669.
    [20]韩军,高德平,胡绚.一种基于模型的双转子不平衡故障诊断方法[J].航空动力学报:2008.23(5):932-938.
    [21]郭策,孙庆鸿,蒋书运.高速高精度数控车床主轴内外转子耦合系统的动力学建模方法研究[J].机械科学与技术:2005.24(9):1009-1012.
    [22]王助成.有限单元法[M].北京:清华大学出版社.2003.
    [23]胡海昌.弹性力学的变分原理及其应用[M].北京:科学出版社.1981.
    [24]Daniel S Pipkinsay.Satya N Atlurib. Applications of the three dimensional method finite element alternating method[J].Finite Elements in Analysis and Design: 1996.(23):133-153.
    [25]Birgersson F,Finnveden S. Application of the Spectral Finite Element Method to Turbulent Boundary Layer Induced Vibretion of Plates[J].Journal of Sound and Vibration:2003.259(4):873-891.
    [26]Nguyen Dang Hung, Tran Thanh Ngoc.Analysis of cracked plates and shells using"metis" finite element model[J].Finite Elements in Analysis and Design,: 2004.(40):855-878.
    [27]R.D.库克.有限元分析的概念和应用[M].程耿东,何穷,张国荣译.北京:科学出版社.1989.
    [28]Ruhl R L and Booker R L.A finite element model for distributed parameter turbo rotor systems, Transactions of ASME[J].Journal of Engineering for Industry: 1972.(94):128-132.
    [29]H D Nelson, J M Mc Vaugh.The dynamics of rotor-bearing systems using finite elements[J] Journal of Engineering for Industry:1976.(98):593-600.
    [30]E S Zorzi, H D Nelson.Finite element simulation of rotor-bearing systems with internal damping[J] Journal of Engineering Power ASME:1977.(99):71-76.
    [31]H D Nelson.A finite rotating shaft element using Timoshenko beam theory [J]. Journal of Mechanical Design ASME:1980.(102):793-803.
    [32]Madhumita Kalita.Analysis of whirl speeds for rotor-bearing systems supported on fluid film bearings[J].Mechanical Systems and Signal Processing:2004.(18): 1369-1380.
    [33]J K Dutt.Stability characteristics of rotating systems with journal bearings on visco-elastic support[J].Mechanism and Machine Theory:1996.31(6):77'1-779.
    [34]Y Kang.An investigation in stiffness effects on dynamics of rotor-bearing-foundation systems[J]. Journal of Sound and Vibration:2000.231(2): 343-374.
    [35]曹树谦,陈予恕.多跨不平衡轴系的非线性动力学建模[J].非线性动力学学报:2002.9(1):26-32.
    [36]陈萌,洪杰,朱彬,刘书国.基于实体单元的转子动力特性计算方法[J].北京航空航天大学学报:2007,33(1):10-13.
    [37]李松生,张钢等.高速电主轴球轴承—转子系统动力学性能分析[J].机械科学与 技术:2006.25(12):1447-1450,1470.
    [38]王文亮,杜作润.结构振动与动态子结构方法[M].上海:复旦大学出版社.1985.
    [39]郑兆昌.复杂结构振动研究的模态综合技术[J].振动与冲击:1982.1:28-36.
    [40]赵兴玉,黄田.基于子结构技术的并联装备动力学分析[J].自然科学进展:2005.15(7):849-855.
    [41]J. B. Qiu, F. W. Williams, R. X. Qiu. An exact substructure method using mixed modes[J]. Journal of Sound and Vibration:2003.266:737-757.
    [42]向树红,邱吉宝,王大钧.模态分析与动态子结构方法新进展[J].力学进展:2004.34(3):289-303.
    [43]张雄,刘岩.无网格法[M].北京:清华大学出版社.2004:1-6.
    [44]T. Belytschko, YKrongauz, D.Organ, et al. Meshless methods:An overview and recent developments [J]. Comput. Appl. Engrg:1996.139:3-47.
    [45]S. Li, W K. Liu. Meshfree and particle methods and their applications[J]. Appl. Mech.Rev:2002.55(1):1-34.
    [46]周维垣,寇小东.无单元法及其工程应用[J].力学学报:1998.30(2):193-202.
    [47]C. A. Brebbia.对边界元若干基本概念和重要文献的综述[J].力学进展:1993.1(Ⅰ):122-134.
    [48]杜庆华,姚振汉.边界积分方程一边界元法的基本理论及其在弹性力学方面的若干工程应用[J].固体力学学报:1982.1:1-22.
    [49]杨德全,赵忠生.边界元理论及应用[M].北京:北京理工大学出版社.2002.
    [50]余德浩.自然边界元方法的数学理论[M].北京:科学出版社.1993.
    [51]稽醒,减跃龙,程玉民.边界元法进展及通用程序[M].上海:同济大学出版社.1997.
    [52]姚振汉,蒲军平,尹欣等.边界元法应用的若干近期研究[J].力学季刊:2001.22(1):10-17.
    [53]姚振汉,段小华,尹欣等.边界元法软件及其在工程与教学中的应用[J].重庆建筑大学学报:2000.22(6):4-87.
    [54]袁士杰,吕哲勤.多刚体系统动力学[M].北京:北京理工大学出版社.1996.
    [55]陆佑方.柔性多体系统动力学[M].北京:高等教育出版社.1996.
    [56]洪嘉振.计算多体系统动力学[M].北京:高等教育出版社.1999.
    [57]刘铸永,洪嘉振.柔性多体系统动力学研究现状与展望[J].计算力学学报:2008.25(4):411-415.
    [58]Wallrapp, Schwertassek R. Representation of geometric stiffening in multibody system simulation[J].Int Journal for Numerical Methods in Engineering:1991.32: 1833-1850.
    [59]Winfry R C. Elastic link mechanism dynamics[J].ASME Journal o f Engineering for Industry:1971.93(1):268-272.
    [60]Likins P W. Finite element appendage equations for hybrid coordinate dynamic analysis [J]. Journal of Solids and Structures:1972.8:709-731.
    [61]Meirovitch L. A new method of solution of the eigenvalue problem for gyroscopic system[J].AIAA Journal:1974.14(2):453-465.
    [62]eirovitch L, Stemple T. Hybrid equations of motion for flexible multibody systems using quasi-coordinates[J]. Journal of Guidance, Control, and Dynamics: 1995.18(4):678-688.
    [63]Cyril X. Dynamics of flexible-link manipulators [D]. McGill University.1988.
    [64]Kane T R, Ryan R R, Banerjee A K. Dynamics of a cantilever beam attached to a moving base[J]. Journal of Guidance, Control and Dynamics:1987.10(2): 139-151.
    [65]尤超蓝.大变形多体系统刚柔耦合动力学建模理论研究[D].上海交通大学博士学位论文.2006.
    [66]吴胜尘,章定国.大范围运动刚体-柔性梁刚柔耦合动力学分析[J].振动工程学报:2011.24(1):1-7.
    [67]Cai G P, Lim C W. Dynamics studies of a flexible hub-beam system with significant damping effect [J]. Journal of Sound and Vibration:2008.318:1-17.
    [68]蔡国平,洪嘉振.中心刚体-柔性悬臂梁系统的动力特性研究[J].航空学报:2004.25(3):248-253.
    [69]邓峰岩,和兴锁,李亮,张娟.计及变形耦合项的平面柔性梁动力学建模及频率分析[J].振动工程学报:2006.19[I]:75-80.
    [70]和兴锁,邓峰岩,王睿.具有大范围运动和非线性变形的空间柔性梁的精确动力学建模[J].物理学报:2010.59(3):1428-1436.
    [71]Liu J Y, Hong J Z. Dynamic modeling and modal truncation approach for a high-speed rotating elastic beam[J]. Archive of Applied Mechanics:2002.72: 554-563.
    [72]Yang H, Hong J Z, Yu Z Y. Dynamics modeling of a flexible hub-Beam system with a tip mass[J]. Journal of Sound of Vibration:2003.266:759-774.
    [73]孟光.转子动力学研究的回顾与展望[J].振动工程学报:2002.(1):1-9.
    [74]闻邦椿等.高等转子动力学——理论、技术与应用[M].北京:机械工业出版社.2000.
    [75]黄文虎等.旋转机械非线性动力学设计基础理论与方法[M]北京:科学出版社.2006.
    [76]闻邦椿等.故障旋转机械非线性动力学的理论与试验[M].北京:科学出版社.2004.
    [77]L. Cveticanin, Dj. Djukic. Dynamic properties of a body with discontinual massvariation[J].Nonlinear Dynamic:2008.(52):249-261.
    [78]L. Cveticanin. Self-Excited Vibrations of the Variable Mass Rotor/Fluid System [J]. Journal of Sound and Vibration:1998.212(4):685-702.
    [79]L. Cveticanin. Normal Mode of Vibration for Continuous Rotors with Slow Time Variable Mass[J]. Mech. Mach. Theory:1997.32(7):881-891.
    [80]L. Cveticanin. Chaos in Rotors with Slowly VaryingMass[J]. Journal of Sound and Vibration:1995.185(5):897-901.
    [81]王宗勇.质量慢变转子系统的碰摩分析[J].东北大学学报:2004.(6):578-581.
    [82]S. K. Sinha. Dynamic characteristics of a flexible bladed-rotor with Coulomb damping due to tip-rub[J].Journal of Sound and Vibration:2004.273:875-919.
    [83]徐晓春,汪希萱.高速悬臂转子—挤压油膜阻尼器系统的瞬态特性研究[J].机械强度:1993.15(2):50-55.
    [84]刘西瑞.木工圆锯机转子系统动力学研究[D].北京:北京林业大学.2007.
    [85]宣海军.EORD支撑转子动力学特性分析及其在超高速旋转机械中的应用研究[D].杭州:浙江大学.2004.
    [86]唐云冰.航空发动机高速滚动轴承力学特性研究[D].南京:南京航空航天大学.2005.
    [87]C.G. Chien, R.F. Fung, C.L. Tsai.non-liner vibration analysis of the coupled textile/rotor system by finite element method[J].Journal of sound and Vibration: 1999.(1):211,67-84.
    [88]李以农,闻邦椿.一类具有参数慢变的非线性振动系统[J].重庆大学学报:2000.23(6):16-18,34.
    [89]姚增忠,肖绍坚.高转速下薄壁转子不平衡质量计算[J].振动工程学报:2004(Z1):81-84.
    [90]魏建.现代化纤卷绕装备计算机控制系统的研究[D].上海:东华大学.2005.
    [91]李素敏.国内外高速卷绕头的发展趋势[J].纺织机械:2008.(2):9-12.
    [92]Hasegawa,Katsumi, Uehara,Junichi, Horikawa. Takeshi. Vibration analysis of high-speed spindle in yarn winder[J]. Journal of the Textile Machinery: 2000.53(5):65-72.
    [93]Hasegawa, Katsumi, Tabei, Tadashi, Hikita, Shiniti, Suzuki, Tamotsu, Horikawa, Takeshi.Development of a system for detecting abnormal vibration during high-speed winder[J]. Journal of the Textile Machinery Society of Japan:2000. 53(4):51-64.
    [94]Hasegawa,Katsumi.Spindle of high speed winder made of carbon fiber reinforced plastics[J].Journal of the Textile Machinery Society of Japan:1999.8.
    [95]魏大昌.化纤机械设计原理[M].北京:纺织工业出版社.1984.
    [96]龚绍堂.论高速纺丝导丝机构[D].上海:东华大学.1981.
    [97]周嘉.高速纺丝卷曲机构的分析研究[D].上海:东华大学.1986.
    [98]祝章琛.高速纺丝的卷曲机构[D].上海:东华大学.1982.
    [99]郑志军.高速卷绕夹头的研究[D].上海:东华大学.1986.
    [100]万一.超高速纺丝卷绕夹头的研究[D].上海:东华大学.1987.
    [101]李旭.超高速纺丝机卷绕头系统动态特性综合分析[D].上海:东华大学.1987.
    [102]李天杰.偏置拨叉导丝机构[D].上海:东华大学.1987.
    [103]金剑.新型高速卷绕头数字化动态仿真分析与优化[D].上海:华东理工大学.2008.
    [104]孔越,孙翠莲,张林鳢,肖田元.基于模态分析的高速卷绕头槽筒结构动力优化[J].系统仿真学报:2009.(21):6883-6885.
    [105]孙翠莲,孔越,张林鍹,肖田元,王冕.基于主模型CAD/CAE集成的卷绕锭轴结构参数优化[J].系统仿真学报:2010.(11):2622-2626.
    [106]王哲,赵银燕,胡仁强,雷彦哲,肖田元.高速卷绕头关重件建模及其工作过程仿真[J].系统仿真学报:2010.(11):2698-2707.
    [107]黄凤根.锭轴传动式高速纺丝卷绕机控制技术的研究[D].上海:东华大学.2004.
    [108]王鹏飞.基于自抗扰控制器的高速卷绕头控制系统的研究与应用[D].济南:山东大学.2005;
    [109]魏建.现代化纤卷绕装备计算机控制系统的研究[D].上海:东华大学.2005.
    [110]濮良贵,纪名刚.机械设计[M].北京:高等教育出版社.2001.
    [111]Shin-Yong Chen, Chieh Kung,Te-Tan Liao and Yen-Hsien Chen. Dynamic effects of the interference fit of motor rotor on the stiffness of a high speed rotating shaft[J].Transactions of the Canadian Society for Mechanical Engineering:2010.34(2):243-261.
    [112]Shin-Yong Chen. An equivalent direct modeling ofarotary shaft with hot-fit component susing contact element modal analysis results[J].Computer sand Mathematics with Applications:2012.64:1093-1099.
    [113]钟一谔,何衍宗,王正.李方泽转子动力学[M].北京:清华大学出版社.1987.
    [114]张启先.空间机构分析与综合(上册)[M].机械工业出版社.1984.
    [115]A.Bazoune and Y. A. Khulief. Shape functions of three-dimensional timoshenko beam element[J]. Journal of Sound and Vibration:2003.259(2):473-480.
    [116]M.Darlow and E.Zorzi. Mechanical Design Handbook for Elastomers[M].New York:National Aeronautics and Space Administration Scientific and Technical Information Branch.1981;
    [117]郑兆昌.机械振动[M].北京:机械工业出版社.1986.
    [118]K. J. Bathe. Finite Element Procedures. Prentice-Hall. Englewood Cliffs.1996.
    [119]O. C. Zienkiewicz. The Finite Element Method[M]. McGraw-Hill Company. London.1977.
    [20]申克专用动平衡机产品描述.上海:上海申克机械有限公司.
    [121]王广萍.阶次跟踪分析在电动汽车车内噪声源识别中的应用[D].江苏大学.2011.
    [122]寇惠,原培新.故障诊断中的振动信号处理.冶金工业出版社[M].1989.
    [123]侯曦,王生泽,张辉等.一种可变支承刚度的卷绕机:中国,201210509357.3[P].2013-03-13.
    [124]侯曦,王生泽,张凯等.一种用于悬臂式空心薄壁转子的调谐质量减振器:中国,201110107528.5[P].2011-09-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700