用户名: 密码: 验证码:
骨髓基质干细胞治疗淋巴水肿和RA-PTAS对血压、肾功能影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:骨髓基质干细胞治疗淋巴水肿的实验研究
     背景:
     淋巴水肿(Lymphedema)是指机体的某些部位,由于淋巴引流障碍而引起组织和器官的肿胀。1983年,国际淋巴学会主席Casley-Smith JR估计,全世界大约有1亿4千万人患有各种类型的淋巴水肿,其中大约有四千五百万是肢体的淋巴水肿,并且人数越来越多。遗憾的是,目前从国内到国际淋巴水肿的研究没有引起医学界的重视,WHO也没有发布权威的专门的淋巴水肿性疾病的发病人数统计、分布、治疗等方面的数据,相对于其他疾病的研究,严重滞后。然而我们仍然可以从其它方面获得一些此类疾病的相关情况。
     1994年以前,我国淋巴水肿的病人主要为丝虫病所致象皮肿病人,1994年我国终于实现了“全国基本上消除了丝虫病流行”。此时我国没有此病的权威统计资料,据多年从事淋巴回流障碍性疾病治疗和研究的中国工程院张涤生院士估计,全国象皮肿的病人数在500万以上。另外,乳癌术后继发上肢淋巴水肿需外科治疗的病人每年新增至少1万人。现在我国淋巴水肿的发病率越来越高,从乳腺癌术后淋巴水肿的情况,便可推知一二。
     据世界卫生组织国际癌症研究中心发布的GLOBOCAN2008报道,中国2003-2007年全国32个肿瘤登记点的数据显示中国乳腺癌发病率为29.18/10万,每年中国乳腺癌新发病例数约为38万人。据2008年的数据显示乳腺癌手术后,有4%-56%的患者会发生患侧上肢的淋巴水肿。据此估计我国仅乳癌术后淋巴水肿病人每年新增1.5-21万人。由此可见,我国每年新增各种类型的淋巴水肿病例数将远超过1.5-21万人次。
     迄今为止,在淋巴水肿的治疗方面尚无理想措施,国内外在临床上治疗淋巴水肿的方法主要是各种手术方法、物理按摩、电热和微波、苯吡喃酮药物治疗等方法,但这些方法均不理想,效果短暂、复发率高或者并发症多,都不能从根本上治愈淋巴水肿。这些淋巴水肿的病人每天忍受着肢体肿胀带来的生活和心理的双重折磨,因为组织间隙内蛋白的积聚,更易发生淋巴管炎和肢体的溃烂,使病人苦不堪言。
     骨髓基质干细胞(Bone Marrow Stromal Cells, BMSCs)是成体骨髓细胞中,除造血干细胞之外的另一类骨髓干细胞,是多能或全能干细胞,来源于中胚层的间充质,属成体干细胞。1968年,Friendenstein等首次从骨髓中分离出。可在特定的体内为微环境下,能够诱导分化为多种组织细胞,其主要优点有:1.骨髓基质干细胞具有强大的增殖能力和多向分化潜能;2.骨髓基质干细胞易于分离、培养、扩增、纯化,不存在免疫排斥的特点,多次传代扩增和冷冻保存后仍具有干细胞特性;3.骨髓基质干细胞为成体干细胞,在应用方面涉及较少的伦理问题;4.可以转染外源基因并稳定高效表达。因此,骨髓基质干细胞在组织器官再生研究,组织器官老化和功能衰退,先天性或者遗传性疾病等方面均有广阔的发展空间,是目前公认的最理想的细胞治疗和基因治疗工具。
     1996年,VEGF-C (vascular endothelial growth factor C)被瑞典的Joukov等人首次分离出,他们从前列腺癌的细胞中克隆了VEGF-C的cDNA。它的基因定位在人染色体4q34上,分子量约为46.9KD。Joukov等研究认为它是VEGF家族的成员,并命名为VEGF-C,同时提出了VEGF-C的受体为FLT-4(即VEGFR-3)。VEGF-C的信使RNA几乎在整个人体的组织中表达,包括胚胎。成体组织中,心脏,胎盘,卵巢癌和小肠的VEGF-C是高表达的。从1996年开始,VEGF-C的研究进度飞快,使其得到了深入的研究。有很多研究资料证明并阐述了它的基因构成,而且转录表达后其产物的微观结构以及生物学功能等也已经有很多报道。目前,此研究的热点还集中于受体、表达调节等方面,同时随着研究的深入,研究者发现VEGF-C与淋巴管内皮标志物的表达有很紧密的联系,它能够促进淋巴管内皮细胞的增生,调节其生物学活性。众多关于其受体的研究发现,VEGF-C的受体为VEGFR-2、VEGFR-3。它与VEGFR-2结合激活后,能够促进血管新生;当它与其另外一种受体-VEGFR-3结合激活后,能够促进淋巴管新生。大鼠VEGF-C152S是一点突变型VEGF-C,其第二个保守的半胱氨酸残基被丝氨酸残基所替代,与人的VEGF-C156S突变体相似,与野生型VEGF-C相比,它只能结合VEGFR-3,无法结合VEGFR-2,从而达到只促进淋巴管增生的目的。
     骨髓基质干细胞在淋巴水肿的治疗方面,以及在干细胞向淋巴管内皮细胞诱导方面尚处于起始阶段。因此,为了获得VEGF-C152s在大鼠淋巴管内皮细胞的调节作用和在淋巴管生成作用中的有关线索,我们利用重组的大鼠VEGF-C152S诱导大鼠骨髓基质干细胞,并通过RT-PCR、免疫印迹法及免疫荧光技术,来观察VEGF-C152S诱导大鼠骨髓基质干细胞分化为淋巴管内皮细胞的情况,然后利用大鼠后肢环形切除部分皮肤并清扫深部淋巴管和淋巴结构建大鼠继发性淋巴水肿模型,并将经VEGF-C152S诱导分化后的骨髓基质干细胞移植入模型中,观察其治疗效果,为淋巴水肿性疾病的研究提供新的思路,以及理论和实验基础。
     目的:
     本实验旨在探讨VEGF-C152S诱导大鼠骨髓基质干细胞分化为淋巴管内皮细胞的情况,以及骨髓基质干细胞对大鼠淋巴水肿模型的治疗作用及对淋巴管新生的作用。为淋巴水肿性疾病的研究提供新的思路,以及理论和实验基础。
     方法:
     1、体外获取、分离、培养、扩增、鉴定大鼠骨髓基质干细胞。
     2、取第三到五代细胞,利用重组的大鼠VEGF-A和VEGF-C152S在体外诱导分化大鼠骨髓基质干细胞,并通过RT-PCR.免疫印迹法及免疫荧光技术,观察确定大鼠骨髓基质干细胞是否表达淋巴管内皮细胞特异性的标志物Prox-1和LYVE-1,以及血管内皮细胞标志物CD34和CD31,来观察VEGF-A和VEGF-C152S诱导大鼠骨髓基质干细胞分化为淋巴管内皮细胞的可能性。
     3、制作大鼠继发性淋巴水肿模型,将VEGF-C152S诱导后的骨髓基质干细胞注射到模型大鼠手术处的皮下组织,用测量水肿体积、B超、免疫荧光等方法检测,观察对淋巴水肿的治疗作用。
     结果:
     1、体外利用贴壁培养法成功培养、扩增了大鼠骨髓基质干细胞,并用流式细胞术检测了细胞表型及经不同方向的诱导分化,证实培养的细胞是大鼠骨髓基质干细胞。
     2、应用大鼠VEGF-A与重组大鼠VEGF-C152S体外环境下,诱导大鼠骨髓基质干细胞,应用免疫荧光标记染色、Western Blot、RT-PCR等方法证实诱导后的细胞表达了淋巴管内皮标志物Prox-1和LYVE-1,而没有表达血管内皮标志物CD31和CD34。
     3、在以往制作淋巴水肿模型的基础上,我们创新出了“肌肉皮肤离断缝合后二次手术环切法”来制作大鼠肢体淋巴水肿模型,成模率较高。在此模型上我们应用经大鼠重组VEGF-C152S诱导分化后的大鼠骨髓基质干细胞进行移植治疗,发现淋巴管新生增加,并可以明显缓解模型动物肢体淋巴水肿,说明其对大鼠淋巴水肿模型有治疗作用。
     结论:
     1、利用贴壁培养法获得骨髓基质干细胞的方法是可行的;应用大鼠VEGF-A与重组大鼠VEGF-C152S体外环境下,可以诱导大鼠骨髓基质干细胞淋巴管内皮细胞。
     2、我们应用创新出的“肌肉皮肤离断缝合后二次手术环切法”来制作大鼠肢体淋巴水肿模型,效果可靠、成模率较高。
     3、在大鼠肢体淋巴水肿模型上,我们应用经大鼠重组VEGF-C152S诱导分化后的大鼠骨髓基质干细胞进行移植治疗,发现淋巴管新生增加,并可以明显缓解模型动物肢体淋巴水肿,说明其对大鼠淋巴水肿模型有治疗作用。并且其治疗效果与细胞移植量有关,5×10^6个/每次与1×10^6/每次的剂量均有效,但是5×10^6个/每次的剂量效果更明显。
     创新点:
     1、根据我们诱导细胞分化的结果,我们首次提出了VEGF-A促进淋巴管新生的机制的假设,就是其通过VEGFR-2信号通路,促进了VEGFR-2高表达从而引起了Prox-1的表达上调,从而引起了细胞表达淋巴管内皮标志物。此研究可以为治疗淋巴管缺陷性疾病和抑制肿瘤淋巴管新生方面的研究,提供新的思路和理论支持。
     2、我们创新出了“肌肉皮肤离断缝合后二次手术环切法”应用于制作大鼠肢体淋巴水肿模型,此法造模的成功率较高为68.1%,效果可靠。
     3、首次应用经大鼠重组VEGF-C152S诱导分化后的大鼠骨髓基质干细胞,进行移植治疗,发现淋巴管新生增加,并可以明显缓解模型动物肢体淋巴水肿,说明其对大鼠淋巴水肿模型有治疗作用。其治疗效果与细胞移植量有关,5×10^6个/每次的剂量与1×10^6/每次的剂量均有效,但是5×10^6个/每次的剂量效果更明显。为人类继发性淋巴水肿的治疗提供了新的思路和实验基础。
     第二部分:RA-PTAS对血压、肾功能影响的研究
     背景:
     肾动脉狭窄(RAS)被认为是继发性高血压的最常见的原因之一,多种因素可以导致肾动脉狭窄,如动脉粥样硬化,大动脉炎,肌纤维发育不良,支架内再狭窄等。肾动脉狭窄继续发展可引起肾血管性高血压和缺血性肾病,经常导致终末期肾功能衰竭,并增加心血管疾病的发病率和死亡率。由于肾动脉性高血压,有时口服降压药物没有反应。相比传统的手术方法,最近血管内介入治疗被作为治疗的肾动脉狭窄的主要手段,行经皮肾动脉成形术或支架植入术(Percutaneous renal artery angioplasty and/or stenting, RA-PTAS),以防止慢性肾功能不全。然而,此法是否能有效地控制血压,改善肾功能仍存在争议。目前,还没有明确的证据表明,这种方法可以防止肾功能逐渐恶化。
     经皮肾动脉成形术或支架植入术与经典的手术方法相比,因为它的微创和较高的技术成功率,目前使用较多,但对于其预后,仍没有确切可靠的结论。在这项研究中,我们对115例行血管内介入治疗的患者进行回顾性分析,评价PTA治疗RAS的安全性和有效性。
     目的:
     评价血管内介入治疗术后肾动脉狭窄(RAS)的高血压患者的血压控制和肾功能的临床效果。
     方法:
     2004年1月至2011年12月,115名高血压患者共120条肾动脉,对手术前、后的血压和肾小球滤过率(GFR)进行了监测。术后口服抗血小板和抗高血压药物治疗。所有患者术后随访至少6个月。
     结果:
     110例患者成功地进行球囊血管成形术,并放置了94例肾动脉支架。高血压治愈19例,减轻61例。血压平稳26例,恶化9例。肾功能改善23例,肾功能稳定57例。肾功能恶化患者11例患者。出院6个月后多普勒超声检查,显示有87例病人肾动脉通畅。
     结论:
     经皮肾动脉成形术或支架植入术是有效和安全的,可以帮助控制血压,改善肾功能。
     创新点:
     我们的研究表明,对于高血压病人伴有肾动脉狭窄,应该进行积极的介入治疗,有助于控制血压和维持肾功能。
Part Ⅰ:Study of Bone Marrow Stromal Cells to Treat Lymphedema Background:
     Lymphedema refers to certain parts of the body, caused by the swelling of the tissues and organs of the lymphatic drainage barriers. In1983, the International Society of lymphatic President Casley-Smith JR is estimated that there are about140million people worldwide suffer from various types of lymphedema, which is about45million limb lymphedema, and the number is increasing. Unfortunately, the lymphedema from domestic to international research did not arouse the attention of the medical profession, WHO has not released the number of authoritative specialized lymphedema disease incidence statistics, data distribution, treatment, relative to other diseases study. However, we can be obtained some information from other diseases.
     Before1994, China's lymphedema patients with elephantiasis is caused by filariasis. Zhang Disheng,is an Academy of Chinese Engineering Academy, say that the National elephantiasis of the number of patients is more than five million. In addition, upper extremity lymphedema patients required surgical treatment caused by breast cancer surgery is increasing of at least10,000people.
     According to the World Health Organization International Cancer Research Center released GLOBOCAN2008,2003-2007,32tumor registries point's data show that Chinese breast cancer incidence is29.18/10million, new cases is about38million people. According to the2008data show that4%-56%of patients occurred upper limb lymphedema. So only the number of breast cancer lymphedema patients is increasing of15-210thousand.
     So far, there is no good method for the treatment of lymphedema. in the clinical, still use surgical, physical massage, electric and microwave, drugs treatment, but these methods are not satisfactory, the effect is short-lived, high recurrence rate or complications, it can not cure lymphedema.
     Bone marrow stromal cells is the adult bone marrow cells, except hematopoietic stem cells, and more able or totipotent stem cells, derived from the mesoderm. In1968, Friendenstein first isolated it from the bone marrow. Specific in vivo microenvironment induced differentiation of a variety of tissue cells, its main advantage is:1. Marrow stromal cells has a strong proliferation capacity and multi-directional differentiation potential;2. easy separation, training, amplification, purification, there is no immune rejection characteristics, repeatedly passaged amplification and after cryopreservation still has the characteristics of stem cells;3. fewer ethical issues;4. can transfer exogenous gene and efficient and stable expression. Therefore, have broad space for development in the study of regeneration of tissues and organs.
     In1996, vascular endothelial growth factor C, Swedish Joukov et al isolated it for the first time. Its gene is located on human chromosome4q34, molecular weight about46.9KD. Joukov and other studies suggest that it is a member of the VEGF family, and named the VEGF-C, VEGF-C receptor FLT-4(VEGFR-3). Messenger RNA of the VEGF-C is expressed in almost the entire human tissue, including embryonic. Into the body tissue in the heart, placenta, ovarian cancer, and small intestine of VEGF-C is highly expressed. The progress of the study of the VEGF-C is fast. Many studies have documented and elaborated its genetic makeup, the microscopic structure of the product as well as the biological function and transcriptional expression has also been a lot of reports. Currently hot research also focused on receptor expression regulation, etc. With further research, the researchers found that the expression of VEGF-C and lymphatic endothelial marker very closely linked to its ability to promote lymphatic endothelial cell proliferation, regulating its biological activity. Many studies show that it has two receptors, VEGFR-2and VEGFR-3. Combination with VEGFR-2can induce angiogenesis, combined with VEGFR-3can promote lymphangiogenesis. VEGF-C152S is a point mutant generated by the replacement of the second conserved Cys residue of the recombinant processed VEGF-C by a Ser residue. VEGF-C152S is analog to the human VEGF-C156S mutant and only active toward VEGFR-3/FLT-4but, unlike wild type VEGF-C, is unable to bind to and to activate signaling through VEGFR-2/KDR.
     Bone marrow stromal cells in the treatment of lymphedema is still in the initial stage, therefore, in order to obtain the VEGF-C152S how to regulation of rat lymphatic endothelial cells and lymphangiogenesis, using VEGF-C152S to induce bone marrow stromal cells. And use RT-PCR, Western blot and immunofluorescence techniques to observe. And then use removing a part of the skin and clean the deep lymphatic vessels and lymph nodes to make a secondary lymphedema model, and transplanted BMSCs into the model, observed treatment effect.
     Objective:
     This study was designed to investigate VEGF-C152S induced bone marrow stromal cells into the lymphatic endothelial cells, and the treatment to lymphedema.
     Methods:
     1. Obtain, separate, culture, amplify, and identify the rat bone marrow stromal cells in vitro.
     2. Take the third to five generations of cells using recombinant rat VEGF-A and VEGF-C152S in vitro to differentiate the rat bone marrow stromal cells, and determine the cells using RT-PCR, Western blot and immunofluorescence techniques, stem cells express the lymphatic endothelial cell-specific flag material Prox-1and LYVE-1, as well as vascular endothelial cell markers of CD34and of CD31, to observe the VEGF-A and of VEGF-C152S induced rat bone marrow stromal cell differentiate to the lymphatic vessels.
     3. Make the rat secondary lymphedema model, VEGF-C152S-induced bone marrow stromal cells were injected into the subcutaneous tissue of the rat model, to observe the therapeutic effect of lymphedema.
     Results:
     1. Obtain, separate, culture and identify the rat bone marrow stromal cells in vitro successfully
     2. Using recombinant rat VEGF-A and VEGF-C152S in vitro to differentiate the rat bone marrow stromal cells, and determine the cells using RT-PCR, Western blot and immunofluorescence techniques, we find that stromal cells express the lymphatic endothelial cell-specific flag material Prox-1and LYVE-1, do not express vascular endothelial cell markers of CD34and of CD31, we observed that the VEGF-A and of VEGF-C152S induced rat bone marrow stromal cell differentiate to the lymphatic vessels.
     3. We use an new method to make the lymphedema model based on the old method, it has a higher rate. We use the rat recombinant VEGF-C152S-induced rat bone marrow stromal stem cells to transplant in the model and found that it can increase lymphangiogenesis, and can treat lymphedema.
     Conclusion:
     1. The method is feasible to obtain, separate, culture, amplify the rat bone marrow stromal cells in vitro, using recombinant rat VEGF-A and VEGF-C152S can differentiate the rat bone marrow stromal cells towards lymphatic endothelial cell in vitro.
     2. Our new mehod "Circumcision after the surgery of cut the muscle and skin" create a good model of rat limb lymphedema, it has a higher rate.
     3. In rat limb lymphedema model, we use the rat recombinant VEGF-C152S-induced rat bone marrow stromal stem cells to transplant and found that it can increase lymphangiogenesis, and can treat lymphedema. And its therapeutic effect is related to the amount of cells, both5×10Λ6/per dose and1×10Λ6/per dose has effection,5×10Λ6/per dose is more pronounced.
     Bring New Ideas:
     1. According to our results induce cell differentiation, we first proposed the mechanism of VEGF-A to promote lymphangiogenesis is that it through the VEGFR-2signaling pathway to promote VEGFR-2high expression and cause Prox-1 upregulated, and then cause the cells express lymphatic endothelial cells markers. This study can provide new ideas and theoretical support for inhibiting tumor lymphangiogenesis and the treatment of lymphatic deficiency diseases.
     2. Our new mehod "Circumcision after the surgery of cut the muscle and skin" create a good model of rat limb lymphedema, it has a higher rate.
     3. We use the rat recombinant VEGF-C152S-induced rat bone marrow stromal stem cells to transplant it in rat limb lymphedema model and found that it can increase lymphangiogenesis for the first time,and find it can treat lymphedema. And its therapeutic effect is related to the amount of cells, both5×10Λ6/per dose and1×10Λ6/per dose has effection,5×10Λ6/per dose is more pronounced. all of those provide new ideas and experimental work for the treatment of human secondary lymphedema.
     Part Ⅱ:The Effect of Percutaneous Renal Artery Angioplasty and/or Stenting (RA-PTAS) on Blood Pressure and Kidney Function Background:
     Renal artery stenosis (RAS) can cause renovascular hypertension and ischemic nephropathy, frequently resulting in end-stage renal failure. Several studies reported increased prevalence of ischemic nephropathy with special reference to renal artery stenosis due to atherosclerosis in elderly patients. Hypertension due to RAS is sometimes not responsive to oral antihypertensive drugs. Instead of the traditional surgical approach, endovascular treatment has recently been accepted as the primary line of treatment of renal artery stenosis to revascularize the stenotic artery and prevent chronic renal insufficiency. However, whether this procedure can effectively controlling blood pressure and improve renal function remains controversial. Currently, there is no clear evidence that this procedure can prevent progressive deterioration of renal function.
     Nevertheless, there are patients with satisfactory outcomes in terms of improvement or stabilization of renal function. while a portion of patients may have deteriorated renal function after balloon angioplasty and stent deployment. In this study, we report on endovascular treatment of115patients with RAS who underwent endovascular treatment and evaluate the safety and efficacy of this procedure. Our experience confirm the efficacy of this procedure and provide helpful experiences for clinicians.
     Objective:
     To evaluate the clinical effect of endovascular treatment on postoperative blood pressure control and kidney function of hypertensive patients with renal artery stenosis (RAS).
     Methods:
     Between January2004and December2011, RAS was diagnosed in120renal arteries from115hypertensive patients. Pre-and post-operative blood pressure and glomerular filtration rate (GFR) were monitored. Postoperative oral antiplatelet and antihypertensive agents were administered. Clinical follow-up was available for all patients for at least6months.
     Results:
     Balloon angioplasty was performed successfully in110patients, and stents were deployed in94renal arteries from89patients. Hypertension was cured or lessened in19and61patients, respectively. Blood pressure was stable and worsened in26and9patients, respectively. The renal function improved and was stable in23patients and57patients, respectively. Deterioration of renal function was observed in11patients. Doppler ultrasound after discharge revealed87patent renal arteries and fixed stents in82patients6months after procedure.
     Conclusion:
     Balloon angioplasty and stent deployment is an effective and feasible procedure for patients with RAS that help in controlling blood pressure and improving renal function moderately.
     Bring New Ideas:
     Balloon angioplasty and stent deployment is an effective and feasible procedure for patients with RAS that help in controlling blood pressure and improving renal function.
引文
1. Holden C. Stem cells. Stem cell candidates proliferate. Science. Feb 9 2007;315(5813):761.
    2. Kaiser J. Stem cells. Court rules in favor of California stem cell institute. Science. Apr 28 2006;312(5773):509.
    3. Holden C. Embryonic stem cells. Stem cell science advances as politics stall. Science. Jun 29 2007;316(5833):1825.
    4. Vogel G. Stem cell policy. An embryonic alternative. Science. Jun 8 2001:292(5523):1822.
    5. Vogel G. Stem cell policy. Can adult stem cells suffice? Science. Jun 8 2001;292(5523):1820-1822.
    6. Ahmad S, Stewart R, Yung S, et al. Differentiation of human embryonic stem cells into corneal epithelial-like cells by in vitro replication of the corneal epithelial stem cell niche. Stem Cells. May 2007;25(5):1145-1155.
    7. Wakayama T, Tabar V, Rodriguez I, Perry AC, Studer L, Mombaerts P. Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science. Apr 27 2001;292(5517):740-743.
    8. Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation. Mar 1968;6(2):230-247.
    9. Kafienah W, Mistry S, Williams C, Hollander AP. Nucleostemin is a marker of proliferating stromal stem cells in adult human bone marrow. Stem Cells. Apr 2006;24(4):1113-1120.
    10. Hermann A, Gastl R, Liebau S, et al. Efficient generation of neural stem cell-like cells from adult human bone marrow stromal cells. J Cell Sci. Sep 1 2004;117(Pt 19):4411-4422.
    11. Woodbury D, Reynolds K, Black IB. Adult bone marrow stromal stem cells express germline, ectodermal. endodermal, and mesodermal genes prior to neurogenesis. J Neurosci Res. Sep 15 2002;69(6):908-917.
    12. Black IB, Woodbury D. Adult rat and human bone marrow stromal stem cells differentiate into neurons. Blood Cells Mol Dis. May-Jun 2001;27(3):632-636.
    13. Bocelli-Tyndall C, Bracci L, Spagnoli G, et al. Bone marrow mesenchymal stromal cells (BM-MSCs) from healthy donors and auto-immune disease patients reduce the proliferation of autologous- and allogeneic-stimulated lymphocytes in vitro. Rheumatology (Oxford). Mar 2007;46(3):403-408.
    14. Parr AM, Kulbatski I, Wang XH, Keating A, Tator CH. Fate of transplanted adult neural stem/progenitor cells and bone marrow-derived mesenchymal stromal cells in the injured adult rat spinal cord and impact on functional recovery. Surg Neurol. Dec 2008;70(6):600-607; discussion 607.
    15. Camp DM, Loeffler DA, Farrah DM, Borneman JN, LeWitt PA. Cellular immune response to intrastriatally implanted allogeneic bone marrow stromal cells in a rat model of Parkinson's disease. J Neuroinflammation.2009;6:17.
    16. Ratajczak J, Wysoczynski M, Zuba-Surma E, et al. Adult murine bone marrow-derived very small embryonic-like stem cells differentiate into the hematopoietic lineage after coculture over OP9 stromal cells. Exp Hematol. Feb 2011;39(2):225-237.
    17. Fuseler JW, Valarmathi MT. Modulation of the migration and differentiation potential of adult bone marrow stromal stem cells by nitric oxide. Biomaterials. Feb 2012;33(4):1032-1043.
    18. Cai L, Wang Q, Gu C, et al. Vascular and micro-environmental influences on MSC-coral hydroxyapatite construct-based bone tissue engineering. Biomaterials. Nov 2011;32(33):8497-8505.
    19. Hass R, Kasper C, Bohm S, Jacobs R. Different populations and sources of human mesenchymal stem cells (MSC):A comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal.2011;9:12.
    20. Colletti EJ, Airey JA, Liu W, et al. Generation of tissue-specific cells from MSC does not require fusion or donor-to-host mitochondrial/membrane transfer. Stem Cell Res. Mar 2009;2(2):125-138.
    21. Molina EJ, Palma J, Gupta D, et al. Reverse remodeling is associated with changes in extracellular matrix proteases and tissue inhibitors after mesenchymal stem cell (MSC) treatment of pressure overload hypertrophy. J Tissue Eng Regen Med. Feb 2009;3(2):85-91.
    22. da Silva Meirelles L, Sand TT, Harman RJ, Lennon DP, Caplan Al. MSC frequency correlates with blood vessel density in equine adipose tissue. Tissue Eng Part A. Feb 2009; 15(2):221-229.
    23. Maharlooei MK, Bagheri M, Solhjou Z, et al. Adipose tissue derived mesenchymal stem cell (AD-MSC) promotes skin wound healing in diabetic rats. Diabetes Res Clin Pract. Aug 2011;93(2):228-234.
    24. Stafford N. Patents cannot be given for research methods that destroy healthy human embryos to obtain stem cells, German court rules. BMJ.2012;345:e8248.
    25. Ning L, Goossens E, Geens M, et al. Mouse spermatogonial stem cells obtain morphologic and functional characteristics of hematopoietic cells in vivo. Hum Reprod. Dec 2010;25(12):3101-3109.
    26. Hurlbut W, Doerflinger R. Can a morally acceptable way be found to obtain embryonic stem cells? Origins. Dec 16 2004;34(27):429-433.
    27. Robertson JA, Kahn JP, Wagner JE. Conception to obtain hematopoietic stem cells. Hastings Cent Rep. May-Jun 2002;32(3):34-40.
    28. Quan RF, Tang YH, Huang ZM, et al. Difference of adherence, proliferation and osteogenesis of mesenchymal stem cells cultured on different HA/ZrO2 composites. Chin J Traumatol. Jun 1 2012;15(3):131-139.
    29. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science. Apr 2 1999;284(5411):143-147.
    1. Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun. Jun 15 1989;161(2):851-858.
    2. Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells.1989. Biochem Biophys Res Commun. Aug 31 2012;425(3):540-547.
    3. Hanrahan V, Currie MJ, Gunningham SP, et al. The angiogenic switch for vascular endothelial growth factor (VEGF)-A, VEGF-B, VEGF-C, and VEGF-D in the adenoma-carcinoma sequence during colorectal cancer progression. JPathol. Jun 2003;200(2):183-194.
    4. Malik AK, Baldwin ME, Peale F, et al. Redundant roles of VEGF-B and P1GF during selective VEGF-A blockade in mice. Blood. Jan 15 2006;107(2):550-557.
    5. Tian X, Wu J, Meng L. [Preparation of monoclonal antibodies to human vascular endothelial growth factor(VEGF121) and identification of its expression on gastric carcinoma cell line MGC803]. Zhonghua Zhong Liu Za Zhi. Mar 1999;21(2):93-95.
    6. Deissler HL, Lang GE. [Effect of VEGF165 and the VEGF aptamer pegaptanib (Macugen) on the protein composition of tight junctions in microvascular endothelial cells of the retina]. Klin Monbl Augenheilkd. Oct 2008;225(10):863-867.
    7. Grutzkau A, Kruger-Krasagakes S, Baumeister H, et al. Synthesis, storage, and release of vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) by human mast cells:implications for the biological significance of VEGF206. Mol Biol Cell. Apr 1998;9(4):875-884.
    8. Cheng SY, Nagane M, Huang HS, Cavenee WK. Intracerebral tumor-associated hemorrhage caused by overexpression of the vascular endothelial growth factor isoforms VEGF121 and VEGF165 but not VEGF189. Proc Natl Acad Sci USA. Oct 28 1997;94(22):12081-12087.
    9. Poltorak Z, Cohen T, Sivan R, et al. VEGF 145, a secreted vascular endothelial growth factor isoform that binds to extracellular matrix. J Biol Chem. Mar 14 1997;272(11):7151-7158.
    10. de Vries C, Escobedo JA, Ueno H, Houck K, Ferrara N, Williams LT. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science. Feb 21 1992;255(5047):989-991.
    11. Waltenberger J, Kranz A, Beyer M. Neovascularization in the human heart is associated with expression of VEGF-A and its receptors Flt-1 (VEGFR-1) and KDR (VEGFR-2). Results from cardiomyopexy in ischemic cardiomyopathy. Angiogenesis.1999;3(4):345-351.
    12. Kanellis J, Paizis K, Cox AJ, et al. Renal ischemia-reperfusion increases endothelial VEGFR-2 without increasing VEGF or VEGFR-1 expression. Kidney Int. May 2002;61(5):1696-1706.
    13. Robak E, Sysa-Jedrzejewska A, Robak T. Vascular endothelial growth factor and its'soluble receptors VEGFR-1 and VEGFR-2 in the serum of patients with systemic lupus erythematosus. Mediators Inflamm. Oct 2003;12(5):293-298.
    14. Roberts DM, Kearney JB, Johnson JH, Rosenberg MP, Kumar R, Bautch VL. The vascular endothelial growth factor (VEGF) receptor Flt-1 (VEGFR-1) modulates Flk-1 (VEGFR-2) signaling during blood vessel formation. Am J Pathol. May 2004; 164(5):1531-1535.
    15. Yuen D, Pytowski B, Chen L. Combined blockade of VEGFR-2 and VEGFR-3 inhibits inflammatory lymphangiogenesis in early and middle stages. Invest Ophthalmol Vis Sci. Apr 2011;52(5):2593-2597.
    16. Padera TP, Kuo AH, Hoshida T, et al. Differential response of primary tumor versus lymphatic metastasis to VEGFR-2 and VEGFR-3 kinase inhibitors cediranib and vandetanib. Mol Cancer Ther. Aug 2008;7(8):2272-2279.
    17. Hamada K, Oike Y, Takakura N, et al. VEGF-C signaling pathways through VEGFR-2 and VEGFR-3 in vasculoangiogenesis and hematopoiesis. Blood. Dec 1 2000;96(12):3793-3800.
    18. Joukov V, Pajusola K, Kaipainen A, et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J. Jan 15 1996;15(2):290-298.
    19. Breier G. Lymphangiogenesis in regenerating tissue:is VEGF-C sufficient? Circ Res. Jun 10 2005;96(11):1132-1134.
    20. Yoon YS, Murayama T, Gravereaux E, et al. VEGF-C gene therapy augments postnatal lymphangiogenesis and ameliorates secondary lymphedema. J Clin Invest. Mar 2003;111(5):717-725.
    21. Clarijs R, Schalkwijk L, Ruiter DJ, de Waal RM. Lack of lymphangiogenesis despite coexpression of VEGF-C and its receptor Flt-4 in uveal melanoma. Invest Ophthalmol Vis Sci. Jun 2001;42(7):1422-1428.
    22. Skobe M, Hawighorst T, Jackson DG, et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med. Feb 2001;7(2):192-198.
    23. Oh SJ, Jeltsch MM, Birkenhager R, et al. VEGF and VEGF-C:specific induction of angiogenesis and lymphangiogenesis in the differentiated avian chorioallantoic membrane. Dev Biol. Aug 1 1997;188(1):96-109.
    24. Bhansali SG, Balu-Iyer SV, Morris ME. Influence of route of administration and liposomal encapsulation on blood and lymph node exposure to the protein VEGF-C156S. J Pharm Sci. Feb 2012;101(2):852-859.
    25. Zinovieva RD, Duncan MK, Johnson TR, Torres R, Polymeropoulos MH, Tomarev SI. Structure and chromosomal localization of the human homeobox gene Prox 1. Genomics. Aug 1 1996;35(3):517-522.
    26. Zhao YC, Ni XJ, Wang MH, Zha XM, Zhao Y, Wang S. Tumor-derived VEGF-C, but not VEGF-D, promotes sentinel lymph node lymphangiogenesis prior to metastasis in breast cancer patients. Med Oncol. Dec 2012;29(4):2594-2600.
    27. Stacker SA, Caesar C, Baldwin ME, et al. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med. Feb 2001;7(2):186-191.
    28. Banerji S, Ni J, Wang SX, et al. LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biol. Feb 22 1999;144(4):789-801.
    29. Gopalakrishnan V, Vignesh RC, Arunakaran J, Aruldhas MM, Srinivasan N. Effects of glucose and its modulation by insulin and estradiol on BMSC differentiation into osteoblastic lineages. Biochem Cell Biol. Feb 2006;84(1):93-101.
    30. Jiang D, Hu Y, Ling S. Expression of VEGF-C in rat cornea after alkali injury. J Huazhong Univ Sci Technolog Med Sci.2004;24(5):483-485.
    31. Witzenbichler B, Asahara T, Murohara T, et al. Vascular endothelial growth factor-C (VEGF-C/VEGF-2) promotes angiogenesis in the setting of tissue ischemia. Am J Pathol. Aug 1998;153(2):381-394.
    32. Jeltsch M, Kaipainen A, Joukov V, et al. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science. May 30 1997;276(5317):1423-1425.
    33. Nagy JA, Vasile E, Feng D, et al. VEGF-A induces angiogenesis, arteriogenesis, lymphangiogenesis, and vascular malformations. Cold Spring Harb Symp Quant Biol. 2002;67:227-237.
    34. Nagy JA, Vasile E, Feng D, et al. Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis. J Exp Med. Dec 2 2002;196(11):1497-1506.
    35. Nishida N, Yano H, Komai K, Nishida T, Kamura T, Kojiro M. Vascular endothelial growth factor C and vascular endothelial growth factor receptor 2 are related closely to the prognosis of patients with ovarian carcinoma. Cancer. Sep 15 2004; 101(6):1364-1374.
    36. Cursiefen C, Cao J, Chen L, et al. Inhibition of hemangiogenesis and lymphangiogenesis after normal-risk corneal transplantation by neutralizing VEGF promotes graft survival. Invest Ophthalmol Vis Sci. Aug 2004;45(8):2666-2673.
    37. Cursiefen C, Chen L, Borges LP, et al. VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Invest. Apr 2004; 113(7):1040-1050.
    38. Amioka T, Kitadai Y, Tanaka S, et al. Vascular endothelial growth factor-C expression predicts lymph node metastasis of human gastric carcinomas invading the submucosa. Eur J Cancer. Jul 2002;38(10):1413-1419.
    39. Hong YK, Lange-Asschenfeldt B, Velasco P, et al. VEGF-A promotes tissue repair-associated lymphatic vessel formation via VEGFR-2 and the alpha 1 beta 1 and alpha2betal integrins. FASEB J. Jul 2004;18(10):1111-1113.
    40. Mandriota SJ, Jussila L, Jeltsch M, et al. Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J. Feb 15 2001;20(4):672-682.
    41. Hirakawa S, Kodama S, Kunstfeld R, Kajiya K, Brown LF, Detmar M. VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med. Apr4 2005;201(7):1089-1099.
    42. Feng D, Nagy JA, Brekken RA, et al. Ultrastructural localization of the vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) receptor-2 (FLK.-1, KDR) in normal mouse kidney and in the hyperpermeable vessels induced by VPF/VEGF-expressing tumors and adenoviral vectors. J Histochem Cytochem. Apr 2000;48(4):545-556.
    43. Veikkola T, Lohela M, Ikenberg K, et al. Intrinsic versus microenvironmental regulation of lymphatic endothelial cell phenotype and function. FASEB J. Nov 2003;17(14):2006-2013.
    44. Karkkainen MJ, Makinen T, Alitalo K. Lymphatic endothelium:a new frontier of metastasis research. Nat Cell Biol. Jan 2002;4(1):E2-5.
    45. Kriehuber E, Breiteneder-Geleff S, Groeger M, et al. Isolation and characterization of dermal lymphatic and blood endothelial cells reveal stable and functionally specialized cell lineages. J Exp Med. Sep 17 2001;194(6):797-808.
    46. Alitalo K, Tammela T, Petrova TV. Lymphangiogenesis in development and human disease. Nature. Dec 15 2005;438(7070):946-953.
    47. Ho QT, Kuo CJ. Vascular endothelial growth factor:biology and therapeutic applications. Int J Biochem Cell Biol.2007;39(7-8):1349-1357.
    48. Sabin FR. The Method of Growth of the Lymphatic System. Science. Aug 4 1916;44(1127):145-158.
    49. Wigle JT, Oliver G. Proxl function is required for the development of the murine lymphatic system. Cell. Sep 17 1999;98(6):769-778.
    50. Wigle JT, Harvey N, Detmar M, et al. An essential role for Proxl in the induction of the lymphatic endothelial cell phenotype. EMBO J. Apr 2 2002;21 (7):1505-1513.
    51. Reis RM, Reis-Filho JS, Longatto Filho A, Tomarev S, Silva P, Lopes JM. Differential Prox-1 and CD 31 expression in mucousae, cutaneous and soft tissue vascular lesions and tumors. Pathol Res Pract.2005;201(12):771-776.
    52. Petrova TV, Makinen T, Makela TP, et al. Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor. EMBO J. Sep 2 2002;21(17):4593-4599.
    53. Hong YK, Harvey N, Noh YH, et al. Proxl is a master control gene in the program specifying lymphatic endothelial cell fate. Dev Dyn. Nov 2002;225(3):351-357.
    54. Hong YK, Shin JW, Detmar M. Development of the lymphatic vascular system:a mystery unravels. Dev Dyn. Nov 2004;231(3):462-473.
    55. Saharinen P, Tammela T, Karkkainen MJ, Alitalo K. Lymphatic vasculature:development, molecular regulation and role in tumor metastasis and inflammation. Trends Immunol. Jul 2004;25(7):387-395.
    1. Warren AG, Brorson H, Borud LJ, Slavin SA. Lymphedema:a comprehensive review. Ann Plast Surg. Oct 2007;59(4):464-472.
    2. Brunner U. Natural history of primary lymphedema of the legs. Pathol Microbiol (Basel). 1975;43(2-O):230-234.
    3. Shimony A, Tidhar D. Lymphedema:a comprehensive review. Ann Plast Surg. Feb 2008;60(2):228.
    4. Herrmann JB, Gruhn JG. Lymphangiosarcoma secondary to chronic lymphedema. Surg Gynecol Obstet. Dec 1957;105(6):665-674.
    5. Vignes S. [Secondary limb lymphedema]. Presse Med. Dec 2010;39(12):1287-1291.
    6. Casley-Smith JR. The effect of "Unguentum lymphaticum" on acute experimental lymphedema and other high-protein edemas. Lymphology. Sep 1983; 16(3):150-156.
    7. Siegel R, Naishadham D, Jemal A. Cancer statistics,2012. CA Cancer J Clin. Jan-Feb 2012;62(1):10-29.
    8. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008:GLOBOCAN 2008. Int J Cancer. Dec 15 2010;127(12):2893-2917.
    9. Szuba A, Razavi M, Rockson SG. Diagnosis and treatment of concomitant venous obstruction in patients with secondary lymphedema. J Vasc Interv Radiol. Aug 2002;13(8):799-803.
    10. Sprengers RW, Lips DJ, Moll FL, Verhaar MC. Progenitor cell therapy in patients with critical limb ischemia without surgical options. Ann Surg. Mar 2008;247(3):411-420.
    11. Iliescu RM. The surgical treatment of elephantiasis. Trans R Soc Trop Med Hyg. Jul 1949;43(1):9.
    12. Kamaev MF. [Surgical treatment of elephantiasis]. Vestn Khir 1m I I Grek. Oct 1969;103(10):77-83.
    13. Ollapallil JJ, Watters DA. Surgical management of elephantiasis of male genitalia. Br J Urol. Aug 1995;76(2):213-215.
    14. Zacharakis E, Dudderidge T, Ioannidis E. Surgical repair of idiopathic scrotal elephantiasis. South Med J. Feb 2008;101(2):208-210.
    15. Khanna NN. Surgical treatment of elephantiasis of male genitalia. Plast Reconstr Surg. Nov 1970;46(5):481-487.
    16. Krakovskii NI, Savchenko TV. [Surgical approach in light forms of elephantiasis of the lower extremities]. Khirurgiia (Mosk). Aug 1976(8):69-71.
    17. Cao W, Zhang D, Gan J. [Microwave heating modulation of skin fibrosis in chronic extremity lymphedema]. Zhonghua ZhengXing Wai Ke Za Zhi. Nov 2000;16(6):354-356.
    18. Zhang DS, Han LY, Gan JL. [Microwave-oven heating in the treatment of chronic lymphedema of the extremities. Report of 98 cases]. Zhonghua Wai Ke Za Zhi. Aug 1987;25(8):481-482,502-483.
    19. Bernas M, Witte M, Kriederman B, Summers P, Witte C. Massage therapy in the treatment of lymphedema. Rationale, results, and applications. IEEE Eng Med Biol Mag. Mar-Apr 2005;24(2):58-68.
    20. Kriederman B, Myloyde T, Bernas M, et al. Limb volume reduction after physical treatment by compression and/or massage in a rodent model of peripheral lymphedema. Lymphology. Mar 2002;35(1):23-27.
    21.张涤生主编.《实用淋巴医学》.人民军医出版社.2007.
    22. Maldonado GE, Perez CA, Covarrubias EE, et al. Autologous stem cells for the treatment of post-mastectomy lymphedema:a pilot study. Cytotherapy. Nov 2011; 13(10):1249-1255.
    23. Zhou H, Wang M, Hou C, Jin X, Wu X. Exogenous VEGF-C augments the efficacy of therapeutic lymphangiogenesis induced by allogenic bone marrow stromal cells in a rabbit model of limb secondary lymphedema. Jpn J Clin Oncol. Jul 2011;41(7):841-846.
    24. Jin da P, An A, Liu J, Nakamura K, Rockson SG. Therapeutic responses to exogenous VEGF-C administration in experimental lymphedema:immunohistochemical and molecular characterization. Lymphat Res Biol.2009;7(l):47-57.
    25. Hu XQ, Jiang ZH, Liu NF. [Experimental studies of VEGF-C gene for the treatment of chronic obstructive lymphedema in mouse tail model]. Zhonghua Zheng Xing Wai Ke Za Zhi. May 2008;24(3):207-211.
    26. Liu Y, Fang Y, Dong P, et al. Effect of vascular endothelial growth factor C (VEGF-C) gene transfer in rat model of secondary lymphedema. Vascul Pharmacol. Apr-Jun 2008;48(4-6):150-156.
    27. Rutkowski JM, Moya M, Johannes J, Goldman J, Swartz MA. Secondary lymphedema in the mouse tail:Lymphatic hyperplasia, VEGF-C upregulation, and the protective role of MMP-9. Microvasc Res. Nov 2006;72(3):161-171.
    28. Yoon YS, Murayama T, Gravereaux E, et al. VEGF-C gene therapy augments postnatal lymphangiogenesis and ameliorates secondary lymphedema. J Clin Invest. Mar 2003;111(5):717-725.
    29. Ahmad S, Stewart R, Yung S, et al. Differentiation of human embryonic stem cells into corneal epithelial-like cells by in vitro replication of the corneal epithelial stem cell niche. Stem Cells. May 2007;25(5):1145-1155.
    30. Holden C. Stem cells. Stem cell candidates proliferate. Science. Feb 9 2007;315(5813):761.
    31. Kaiser J. Stem cells. Court rules in favor of California stem cell institute. Science. Apr 28 2006;312(5773):509.
    32. Vogel G. Stem cell policy. Can adult stem cells suffice? Science. Jun 8 2001;292(5523):1820-1822.
    33. Wakayama T, Tabar V, Rodriguez I, Perry AC, Studer L, Mombaerts P. Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science. Apr 27 2001;292(5517):740-743.
    34. Danese CA, Georgalas-Bertakis M, Morales LE. A model of chronic postsurgical lymphedema in dogs' limbs. Surgery. Oct 1968;64(4):814-820.
    35. Huang GK, Hsin YP. An experimental model for lymphedema in rabbit ear. Microsurgery. 1983;4(4):236-242.
    36. Wang GY, Zhong SZ. A model of experimental lymphedema in rats' limbs. Microsurgery. 1985;6(4):204-210.
    37. Kanter MA, Slavin SA, Kaplan W. An experimental model for chronic lymphedema. Plast Reconstr Surg. Apr 1990;85(4):573-580.
    38. Lee-Donaldson L, Witte MH, Bernas M, Witte CL, Way D, Stea B. Refinement of a rodent model of peripheral lymphedema. Lymphology. Sep 1999;32(3):111-117.
    39. Cheung L, Han J, Beilhack A, et al. An experimental model for the study of lymphedema and its response to therapeutic lymphangiogenesis. BioDrugs.2006;20(6):363-370.
    40. Schneider M, Ny A, Ruiz de Almodovar C, Carmeliet P. A new mouse model to study acquired lymphedema. PLoS Med. Jul 2006;3(7):e264.
    41. Oashi K, Furukawa H, Oyama A, et al. A new model of acquired lymphedema in the mouse hind limb:a preliminary report. Ann Plast Surg. Nov 2012;69(5):565-568.
    1. Meyrier A, Hill GS, Simon P. Ischemic renal diseases:new insights into old entities. Kidney Int.1998;54:2-13.
    2. Scoble JE. Atherosclerotic nephropathy. Kidney Int Suppl.1999;71:S 106-109.
    3. Harding MB, Smith LR, Himmelstein SI, Harrison K, Phillips HR, Schwab SJ, Hermiller JB, Davidson CJ, Bashore TM. Renal artery stenosis:prevalence and associated risk factors in patients undergoing routine cardiac catheterization. J Am Soc Nephrol.1992;2:1608-1616.
    4. Coen G, Calabria S, Lai S, Moscaritolo E, Nofroni I, Ronga G, Rossi M, Ventroni G, Sardella D, Ferrannini M, Zaccaria A, Cianci R. Atherosclerotic ischemic renal disease. Diagnosis and prevalence in an hypertensive and/or uremic elderly population. BMC Nephrol.2003;4:2.
    5. Vagaonescu TD, Dangas G. How to diagnose, how to treat:renal artery stenosis-diagnosis and management. J Clin Hypertens (Greenwich).4(5). United States,2002.363-370.
    6. Lederman RJ, Mendelsohn FO, Santos R, Phillips HR, Stack RS, Crowley JJ. Primary renal artery stenting:characteristics and outcomes after 363 procedures. Am Heart J.2001;142:314-323.
    7. Textor SC, Lerman L, McKusick M. The uncertain value of renal artery interventions:where are we now. JACC Cardiovasc Interv.2009;2:175-182.
    8. Perloff D, Grim C, Flack J, Frohlich ED, Hill M, McDonald M, Morgenstern BZ. Human blood pressure determination by sphygmomanometry. Circulation. 1993;88:2460-2470.
    9. Parildar Z, Gulter C, Parildar M, Oran I, Erdener D, Memis A. Effect of endovascular treatment on nitric oxide and renal function in Takayasu's arteritis with renovascular hypertension. Kidney Blood Press Res. 2002;25:91-96.
    10. Rundback JH, Sacks D, Kent KC, Cooper C, Jones D, Murphy T, Rosenfield K, White C, Bettmann M, Cortell S, Puschett J, Clair D, Cole P. Guidelines for the reporting of renal artery revascularization in clinical trials. American Heart Association. Circulation.2002;106:1572-1585.
    11. Lekston A, Chudek J, Gasior M, Wilczek K, Wiecek A, Kokot F, Gierlotka M, Niklewski T, Fijalkowski M, Szygula-Jurkiewicz B, Wojnicz R, Bialas B, Osuch M, Maciejewski B, Polonski L. Angiographic and intravascular ultrasound assessment of immediate and 9-month efficacy of percutaneous transluminal renal artery balloon angioplasty with subsequent brachytherapy in patients with renovascular hypertension. Kidney Blood Press Res. 2008;31:291-298.
    12. Yamashita T, Ito F, Iwakiri N, Mitsuyama H, Fujii S, Kitabatake A. Prevalence and predictors of renal artery stenosis in patients undergoing cardiac catheterization. Hypertens Res.2002;25:553-557.
    13. Rasch R, Skriver E, Woods LL. The role of the RAS in programming of adult hypertension. Acta Physiol Scand. Aug 2004;181(4):537-542.
    14. Muthalif MM, Benter IF, Khandekar Z, et al. Contribution of Ras GTPase/MAP kinase and cytochrome P450 metabolites to deoxycorticosterone-salt-induced hypertension. Hypertension. Jan 2000;35(1 Pt 2):457-463.
    15. Sheng XY, Wang Q, Yang K. Effect of central RAS on one-kidney Grollman hypertension in rats and its mechanism. J Tongji Med Univ.1991;11(1):31-34.
    16. Ferrario CM. Importance of the renin-angiotensin-aldosterone system (RAS) in the physiology and pathology of hypertension. An overview. Drugs. 1990;39 Suppl 2:1-8.
    17. Arfa I, Nouira S, Abid A, et al. Lack of association between renin-angiotensin system (RAS) polymorphisms and hypertension in Tunisian type 2 diabetics. Tunis Med. Jan 2010;88(1):38-41.
    18. Kario K. Proposal of RAS-diuretic vs. RAS-calcium antagonist strategies in high-risk hypertension:insight from the 24-hour ambulatory blood pressure profile and central pressure. J Am Soc Hypertens. Sep-Oct 2010;4(5):215-218.
    19. Lo CS, Liu F, Shi Y, et al. Dual RAS blockade normalizes angiotensin-converting enzyme-2 expression and prevents hypertension and tubular apoptosis in Akita angiotensinogen-transgenic mice. Am J Physiol Renal Physiol. Apr 1 2012;302(7):F840-852.
    20. Muthalif MM, Karzoun NA, Gaber L, et al. Angiotensin Ⅱ-induced hypertension:contribution of Ras GTPase/Mitogen-activated protein kinase and cytochrome P450 metabolites. Hypertension. Oct 2000;36(4):604-609.
    21. Choosing Medicines for High Blood Pressure:A Review of the Research on ACEIs, ARBs, and DRIs.2005.
    22. ACEIs, ARBs, or DRI for Adults With Hypertension.2007.
    23. Ruilope LM, Segura J. ARBs and ACEis together in the treatment of hypertension and its complications? current practical recommendations. Expert Opin Pharmacother. Nov 2010; 11(16):2619-2623.
    24. Ishigami T, Uchino K, Umemura S. ARBs or ACEIs, that is the question. Hypertens Res. Nov 2006;29(11):837-838.
    25. Swamy KM, Lin MJ, Sun CM. Advances in angiotensin converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs). Mini Rev Med Chem. Sep 2003;3(6):621-631.
    26. Shannon ME, Malecha SE, Cha AJ. Angiotensin converting enzyme inhibitors (ACEIs) and angiotensin Ⅱ receptor blockers (ARBs) and lactation:an update. J Hum Lact. May 2000;16(2):152-155.
    27. Gui-yan W, Yan-hua W, Qun X, et al. Associations between RAS Gene polymorphisms, environmental factors and hypertension in Mongolian people. Eur J Epidemiol.2006;21(4):287-292.
    28. Ibrahim MM. RAS inhibition in hypertension. J Hum Hypertens. Feb 2006;20(2):101-108.
    29. Elliott HL, Meredith PA. Preferential benefits of nifedipine GITS in systolic hypertension and in combination with RAS blockade:further analysis of the 'ACTION' database in patients with angina. J Hum Hypertens. Jan 2011;25(1):63-70.
    30. Bonventre JV. Limb ischemia protects against contrast-induced nephropathy. Circulation. Jul 24 2012;126(4):384-387.
    31. Xin YP, Yuan GY, Lu YP, et al. [Explorative study on mechanism and drug intervention for chronic allograft nephropathy induced by renal ischemia-reperfusion injury]. Sichuan Da Xue Xue Bao Yi Xue Ban. Nov 2007;38(6):918-923.
    32. Melin J, Hellberg O, Akyurek LM, Kallskog O, Larsson E, Fellstrom BC. Ischemia causes rapidly progressive nephropathy in the diabetic rat. Kidney Int. Oct1997;52(4):985-991.
    33. Wong WT, Tian XY, Huang Y. Endothelial Dysfunction in Diabetes and Hypertension:Cross Talk in RAS, BMP4, and ROS-dependent COX-2-derived Prostanoids. J Cardiovasc Pharmacol. Mar 2013;61(3):204-214.
    34. Fernandez-Campo L, Grande MT, Diego J, et al. Effect of different antihypertensive treatments on Ras, MAPK and Akt activation in hypertension and diabetes. Clin Sci (Lond). Jan 2009; 116(2):165-173.
    35. Li L, Fan D, Wang C, et al. Angiotensin Ⅱ increases periostin expression via Ras/p38 MAPK/CREB and ERK1/2/TGF-betal pathways in cardiac fibroblasts. Cardiovasc Res. Jul 1 2011;91(1):80-89.
    36. Kashyap VS, Sepulveda RN, Bena JF, Nally JV, Poggio ED, Greenberg RK, Yadav JS, Ouriel K. The management of renal artery atherosclerosis for renal salvage:does stenting help. J Vasc Surg.2007;45:101-108; discussion 108-109.
    37. Uzu T, Takeji M, Yamada N, Fujii T, Yamauchi A, Takishita S, Kimura G. Prevalence and outcome of renal artery stenosis in atherosclerotic patients with renal dysfunction. Hypertens Res.2002;25:537-542.
    38. Arthurs Z, Starnes B, Cuadrado D, Sohn V, Cushner H, Andersen C. Renal artery stenting slows the rate of renal function decline. J Vase Surg. 2007;45:726-731; discussion 731-732.
    39. Corriere MA, Pearce JD, Edwards MS, Stafford JM, Hansen KJ. Endovascular management of atherosclerotic renovascular disease:early results following primary intervention. J Vasc Surg.2008;48:580-587; discussion 587-588.
    40. The ASTRAL Trial Investigators:Revascularization versus medical therapy for renal-artery stenosis. N Engl J Med.2009;361:1953-1962
    41. Textor SC, Lerman L. Reno vascular hypertension and ischemic nephropathy. Am J Hypertens.2010;23:1159-1169.
    42. Sarac TP. Influence and critique of the ASTRAL and CORAL Trials. Semin Vasc Surg.2011;24:162-166.
    43. Balk E, Raman G, Chung M, Ip S, Tatsioni A, Alonso A, Chew P, Gilbert SJ, Lau J. Effectiveness of management strategies for renal artery stenosis:a systematic review. Ann Intern Med.2006; 145:901-912.
    44. Radermacher J, Chavan A, Bleck J, Vitzthum A, Stoess B, Gebel MJ, Galanski M, Koch KM, Haller H. Use of Doppler ultrasonography to predict the outcome of therapy for renal-artery stenosis. N Engl J Med. 2001;344:410-417.
    45. Tanemoto M, Takeuchi Y, Mishima E, Suzuki T, Abe T, Ito S. Stage of chronic kidney disease is an outcome-predicting factor of angioplasty for atheromatous renal artery stenosis. Hypertens Res.2010;33:1206-1210.
    46. Leertouwer TC, Derkx FH, Pattynama PM, Deinum J, van DLC, Schalekamp MA. Functional effects of renal artery stent placement on treated and contralateral kidneys. Kidney Int.2002;62:574-579.
    47. La Batide-Alanore A, Azizi M, Froissart M, Raynaud A, Plouin PF. Split renal function outcome after renal angioplasty in patients with unilateral renal artery stenosis. J Am Soc Nephrol.2001;12:1235-1241.
    48. Bush RL, Najibi S, MacDonald MJ, Lin PH, Chaikof EL, Martin LG, Lumsden AB. Endovascular revascularization of renal artery stenosis: technical and clinical results. J Vasc Surg.2001;33:1041-1049.
    49. Mueller C, Buerkle G, Buettner HJ, Petersen J, Perruchoud AP, Eriksson U, Marsch S, Roskamm H. Prevention of contrast media-associated nephropathy: randomized comparison of 2 hydration regimens in 1620 patients undergoing coronary angioplasty. Arch Intern Med.2002; 162:329-336.
    50. White CJ, Olin JW. Diagnosis and management of atherosclerotic renal artery stenosis:improving patient selection and outcomes. Nat Clin Pract Cardiovasc Med.2009;6:176-190.
    51. Gates GF. Split renal function testing using Tc-99m DTPA. A rapid technique for determining differential glomerular filtration. Clin Nucl Med. 1983;8:400-407.
    52. Zeller T, Frank U, Muller C, Burgelin K, Sinn L, Horn B, Flugel PC, Schwarzwalder U, Roskamm H, Neumann FJ. Stent-supported angioplasty of severe atherosclerotic renal artery stenosis preserves renal function and improves blood pressure control:long-term results from a prospective registry of 456 lesions. J Endovasc Ther. 2004; 11:95-106.
    53. Tagle R, Acevedo M, Xu M, Pohl M, Vidt D. Use of endovascular stents in atherosclerotic renovascular stenosis:blood pressure and renal function changes in hypertensive patients. J Clin Hypertens (Greenwich). 2007;9:608-614.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700