用户名: 密码: 验证码:
微量Ce对高级别管线钢洁净度与组织性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球范围内能源总量及清洁能源需求的增加,石油、天然气已经成为影响世界各国经济发展不可缺少的重要资源;人们欲采用高效率(高压,大流量)、高级别(X100、X120)的管线钢降低油、气管线建设成本和提高输送效率。因此,开发、研制“高强度、高韧性的石油、天然气输送管线用钢、满足能源供应需求”成为本世纪管线钢的发展方向之一。
     众所周知,因石油、天然气从产地到消费终端要经地震带、不连续冻土带、深海等严峻的环境,要高速输送高压含H2S等腐蚀性流体,则要求管线钢具有高强韧性、高变形能、抗HIC、 SSCC能力和高能量焊接性能。为此、本研究作为开发高级别(X120)管线钢的基础研究环节,在简述高级别管线钢的发展背景、生产工艺、存在问题的基础上,整理、归纳、总结了稀土元素的性质及其在钢中的作用机理。为提高管线钢强韧性能、变形能力和抗HIC、 SSCC能力,解决钢材基体洁净化、细化和改变钢中夹杂物形态这两个关键科学问题,本研究完成以下4项任务。1.运用冶金热力学理论估算Ce含量对钢液过冷度的影响,计算钢中Ce、 O、 S夹杂物的热力学生成条件;2.用真空感应炉在8×102Pa的Ar氛中把3kg工业纯铁和辅料熔制成0.05%C-0.3%Si-2.0Mn%钢液,并向其中添加Ce元素,在1873K下(模拟RH真空精炼过程)精炼,用无氧化重力铸造、锻造方法制备了4组管线钢试样;3.用成分分析、金相观察、扫描电镜观察和能谱分析,拉伸及冲击实验等测试方法,研究、表征Ce对高级别管线钢的成分、夹杂物形态、微观组织结构和力学性能的影响;4.分析、研究、探讨Ce改善钢材显微组织、提高钢材拉伸及冲击性能的作用机理。通过理论计算、试验表征和分析探讨后,得出以下结论:
     实验结果表明:当钢中Ce含量为0.0374%mass时,氧含量从0.0036%mass下降到0.0008%mass,硫含量从0.0065%mass下降到0.0010%]mass。说明稀土Ce元素有深脱氧,脱硫能力,且具有较快的脱除速率,能够实现净化钢液的作用。
     同时Ce元素能够提高钢液过冷度,增加基体凝固时的形核数量,使得针状铁素体、粒状铁素体和马奥岛数量增多且细小均匀,从而使基体组织得到细化。
     研究发现:在钢液中加入Ce元素,经1873K的高温精炼后,钢中O主要以Ce203的形式存在;在S含量较高的条件下Ce与O、S生成Ce202S.随Ce含量增加,原大体积,不规则形貌的MnS.Si02夹杂物转变为1μm左右、甚至纳米级球形Ce氧硫夹杂物;带尖角的大型复合夹杂物变为Ce复合夹杂物,其尺度减小了10倍左右;钢中小于2μm的夹杂物占到80%,大于10μm的夹杂物几乎消失。
     最终钢材的综合力学性能得到提高,Ce含量在0~0.0374%范围内,管线钢的综合力学性能出现了先提高后略有下降的趋势;当Ce为0.0167%时,屈服强度Rp0.2、抗拉强度Rm、断面伸长率A分别达到了710MPa.764MPa.24%;比Ce含量为0时分别提高了33.1%、24.8%、54.9%;冲击功AK达到276J,也比Ce含量为0时提高了57.7%。
With the increase of the worldwide total energy and clean energy needs, oil, natural gas has become to affect the world economic development can not be missing important resources; people want to adopt a high efficiency (high pressure, high flow), high-level (X100X120) pipeline steel to reduce oil and gas pipeline construction costs and improve transmission efficiency. Therefore, the development, manufacture of high strength, high toughness of oil, natural gas transmission pipeline steel, meet the needs of energy supply"has become one of the development of this century Pipeline.
     We all know, oil, natural gas from the producer to the consumer end to the seismic zone, discontinuous permafrost, deep sea and other severe environments, high-speed conveying high-pressure corrosive fluids containing H2S, requires pipeline steel with high strength and toughness, high-deformation energy, anti-the HIC and anti-the SSCC capacity and high heat input welding performance. To this end, the basic research aspects of the development of high-level (X120) pipeline steel in the development of the brief high-level pipeline steel background, production process, there is the problem on the basis of consolidation, summarized, summarizes the nature of the rare earth elements and the mechanism of steel. In order to improve the robust performance of pipeline steel, deformation capacity and anti-the HIC anti-the SSCC ability to solve the steel substrate clean, refine and change the steel inclusion morphology in these two key scientific issues.In this study, complete the following four tasks.1.The use of metallurgical thermodynamics theory to estimate the Ce content on the undercooling of liquid steel, the calculation of the thermodynamic formation conditions of Ce, O, S inclusions in the steel;2.In vacuum induction furnace, at8X102Pa Ar atmosphere, put the3kg Industrial pure iron and accessories into0.05%C-0.3%Si-2.0Mn%steel melting liquid, and then added Ce element, while the refining temperature was1873K (analog RH vacuum refining process for refining). And then4groups of pipeline steel were prepared by the no oxidation of gravity casting and forging method;3.Composition analysis, metallographic examination, SEM and EDS analysis, tensile and impact testing, testing methods, research, and characterization of Ce on the composition of the high-level pipeline steel, inclusion morphology, the influence of microstructure and mechanical properties;4.Analysis study on Ce to improve the microstructure of steel, steel tensile and impact properties of the mechanism. By theoretical calculation, experimental characterization and analysis, the following conclusions:
     The experimental results show that:When the steel content of Ce is0.0374%mass, the oxygen content decreased from0.0036%mass to0.0008%mass, sulfur content decreased from0.0065%mass to0.0010%mass.Description of the Ce element has deep deoxidation and desulphurization of molten steel, realizes the purification effect.
     At the same time, Ce elements can improve the liquid steel degree of supercooling, increase matrix organization of the nucleation coagulation of quantity, makes the acicular ferrite, granular ferrite and the M/A increasing number and small even uniform, so that the matrix organization get refined.
     Study found that:In liquid steel by adding element Ce,1873K high-temperature refining, the steel O mainly in the form of Ce2O3; in S content under the conditions of Ce and O, S generate Ce2O2S. With the increase of Ce content, the original volume, irregular morphology of MnS, SiO2inclusion into1μm, even nanoscale spherical Ce oxygen sulfur inclusions; with a corner of large complex inclusion into Ce inclusions, its scale is reduced by a factor of10or so; steel is smaller than2μm inclusion accounted for80%, more than10μm inclusions almost disappeared.Ce elements in the steel, the original large size, irregular morphology of MnS, SiO2inclusions into about1μm, and even nanoscale spherical Ce oxygen and sulfur inclusions. Large complex inclusions with sharp corners is reduced to the small size of Ce composite inclusions, its scale is reduced by about10times; with increasing Ce content, accounted for80%less than2μm inclusions, inclusions larger than10μm were almost disappeared;
     Finally the steel comprehensive mechanical performance improved, Ce content in0-0.0374%range, the comprehensive mechanical properties of pipeline steel appeared to improve after a slight downward trend; when the Ce is0.0167%, yield strengthRp0.2, tensile strength Rm, elongation at break of A section respectively,710MPa,764MPa,24%; Compared with the steel in which the content of Ce was0, Rp0.2, Rm and A were increased33.1%,24.8%,54.9%; Meanwhile, the impact energy AK reached276J,which also increased57.7%than the steel without Ce concent.
引文
[1]Kennedy,John L, Oil and Gas Pipeline Fundamentals[M]. Tulsa, Okla:Pennuwell Publishing Company,1984.
    [2]Dr-Inghans-Georg Hillenbrand and Dr-Ing Christoph Kalwa. Production and service behavior ofhigh-strength large-diameter pipe[C]. Pipe dreamer's conference. Pacifico Yokohama, Japan,7-8November,2002.
    [3]Asahi H, Hara T, Tsuru E,et al.Development of Ultra High-Strength Linepipe X120[J]. Nippon SteelTechnical Report,2004, (90):70-75.
    [4]冯耀荣,李鹤林,管线钢及管线钢的研究进展与发展方向[J].石油专用管,2005,(1):1-23.
    [5]高惠临.管线钢-组织性能焊接行为仁[M].西安:陕西科学技术出版社,1995.10~13,164-165.
    [6]焦百泉.管线钢性能的发展[J].焊管,1999,22(4):1-7.
    [7]马良.海洋管道技术综述[J].油气储运,1989,8(5)7-15
    [8]刘雯,邹晓波.国外天然气管道输送技术发展现状[J],石油工程建设,2005,31(3):20-23
    [9]常景龙,牛琳玉.管道的富气输送工艺[J],油气储运,2001,20(2):16-19
    [10]Hillenbrand H G, Kalwa C. Production and Service Behavior of High Strength Large Diameter Pipes[A].Toyoda M, Denys R eds. Proeeedins of International Conference on the Application and Evaluation of High-Grade Linepipes in Hostile Environments[C]. Yokohama, Japan:Scientific Surveys Ltd.2002.203-215.
    [11]Petersen C W, Corbett K T, Fairchild D P, et al. Improving Long-Distance Gas Transmission Economics; X120 Development Overview [A]. Denys R eds. Proceedings of the 4th International Pipeline Technology Conference[C]. Ostend, Belgium:Scientific Surveys Ltd.2004.3-30.
    [12]Fairchild D P, Macia M L, Papka S D, et al. High Strength Steels-Beyond x80[A]. Proceedings of International Conference on the Application and Evaluation of High-Grade Line-pipes in Hostile Environments[C]. Yokohama, Japan:2002.307-321.
    [13]郑磊,傅俊岩.高级别管线钢的发展现状[J].钢铁,2006,41(10):1-10.
    [14]西气东输管道分公司刘文成:“在市场风云变幻中实现高效、廉洁、优质的目标”,2003年11月.
    [15]王晓香.从2006年微合金钢应用国际研讨会看国际高钢级管线钢的发展动向[J].焊管,2006,29(4):8-17
    [17]T HUPER, S ENDO, N ISHIKAWA, K OSAW. Effect of Volume Fraction of Constituent Phases on the Stress-Strain Relationship of Dual Phase Steels. ISIJ International,39 (3),288(1999)
    [18]Takahashi A, Ogawa H. Influence of micro hardness and inclusion on stress oriented hydrogen induced cracking of line pipe steels. ISIJ Int,1996,36(3):334-340
    [19]周民,衣海龙,杜林秀,刘相华.X100管线钢中的异常偏析带分析[J].东北大学学报(自然科学版),2010,31(3):386
    [20]沈卓,李玉海,单以银,杨柯等.硫含量及显微组织对管线钢力学性能和抗H2S行为的影响[J].金属学报,2008,44(2):215-221
    [21]邓伟,高秀华,秦小梅,王国栋等.X80管线钢冲击断裂韧性行为[J].金属学报,2010,46(5):536
    [22]李鹤林.油气管道基于应变的设计及抗大变形管线钢的开发与应用[J].石油科技论坛,2008(2):19-25
    [23]张小立,冯耀荣,赵文珍.高钢级管线钢显微组织的演变[J].特殊钢,2008,29(2):41
    [24]American Society for Testing and Materials. ASTM E45-2005 Standard test method for determining the inclusion content of steel [S]. American: ASTM,2005:1
    [25]中国石油天然气股份有限公司管道建设项目经理部.Q/SYGJX 0104-2007西气东输二线管道工程用直缝埋弧焊管技术条件[s].北京:中国石油天然气股份有限公司管道建设项目经理部,2007:1
    [26]张建,朱兆顺.稀土在钢中的应用,金属材料与冶金工程[J].2008,36(5):56-61
    [27]王龙妹,兰德年,岳丽杰.稀士元素在高强韧钢中的作用及应用前景[J],稀土2003,10,24(5)9-11
    [28]任海鹏.稀土对Cu P耐大气腐蚀钢韧性的影响[J].东北工学院学报,1989,12(1):169.
    [29]杜挺.稀土元素在金属材料中的一些物理化学作用[J].金属学报,1997,33(1):69-77
    [30]王龙妹,杜挺,卢先利,乐可襄.微量稀土元素在钢中的作用机理及应用研究[J].稀土,2001.8,2(4):37
    [31]Seji NABESHIMA et.al.Effect of Al and RE Metal Concentration on the Composition of Inclusions in Si-Mn Killed Steel[C], Sino-Janp Symoposium on Science & Tech.of Iron & Steel.2001:59-63
    [32]王龙妹,杜挺,卢先利,李正邦,盖玉春,稀土元素在钢中的热力学参数及应用,中国稀土学报,2003(6)
    [33]Wahed A,Kay D A R.Thermodynamics of rare earths in steelmaking[J].Metallurgical Transactions B,1976,7(3):375-383.
    [34]黄希祜.钢铁冶金原理.第3版.北京:冶金工业出版社,2002:46-47,438.
    [35]李文超.钢中稀土夹杂物生成的热力学规律[J].钢铁,1986;21(3):8.
    [36]杨成威,吕迺冰,王新华,王万军.1873K下钢液中Ti-Al复合脱氧热力学分析及夹杂物生成[J].北京科技大学学报,2009,31(11):1392.
    [37]Shiro B, Mitsutaka H. Chemical Properties of Molten Slags. Tokyo: The Iron and Steel Institute of Japan,1991:17-26
    [38]周青春,潘应君,吴新杰,陈大凯.混合稀土金属对9Cr2Mo钢组织和性能的影响.稀土,2007,28(6),66
    [39]杜挺.稀土元素在铁基溶液中的热力学[J].钢铁研究学报.1994.6(3):7-8
    [40]周育.中性炉炉衬长炉龄的探讨[C].2003年铸造活动周论文集,沈阳:中国机械工程学会铸造分会,76.
    [41]肖黎明.B级钢中频感应炉熔炼用镁砂坩埚的失效与防止[J].铸造技术,2006(3):201-204.
    [42]张静,于会香,王新华,王万军等.精炼渣成分对高强度低合金钢中非金属夹杂物影响[J].北京科技大学学报.2011,33(7):828-833
    [43]赵春.X 100管线弯管的组织一性能研究[M].西安石油大学学位论文,2008
    [44]刘瑞堂,刘文博,刘锦云.工程材料力学性能[M].哈尔滨:哈尔滨工业大学出版社,2001:88-89
    [45]冯锐,李胜利,冯勇,孙卫华.Q460C钢板微观组织对拉伸断口特征的影响[J].金属热处理,2012,37(1),21-24
    [46]孔凡涛,陈玉勇,吴俊.双相区热处理对A508-3钢的冲击性能及断口形貌的影响[J].金属热处理,2011,36(11),54-59
    [47]胡晓军,松浦宏行,月桥文孝,周国治.界面非平衡氧传递过程动力学的解析[J].金属学报,2007,43(8):829-833
    [48]高运明,宋建新,张业勤,郭兴敏.利用电化学方法测定银液中氧的扩散系数[J].金属学报,2010,46(3):227-281
    [49]田琳,陈树江,张玲.镁钙质耐火材料脱硫反应动力学研究[J].耐火材料,2006,40(5):358-361
    [50]张颖瑞,董超芳,李晓刚,芮晓龙等.电化学充氢条件下X70管线钢及其焊缝的氢致开裂行为[J].金属学报,2006,42(5):523
    [51]周成双,郑树启,陈长风,陈松.合金元素偏聚夹杂对针状铁素体管线钢焊接热影响区氢鼓泡的影响[J].焊接学报,,2006,31(6):7
    [52]石井匠,藤沢清二,大森章夫.超高层ビル向け建築构造用铜材の概要と迪用例[J].JFE 技报.2008,18(8):1-6
    [53]龙鹄,成国光,吴彬,吴洋.含Ce2O3精炼渣熔化及流动特性的研究[J].中国稀土学报,2010,28(12):721-727
    [54]回春华,李廷举,金文中40CrMnSi多元低合金钢的稀土净化研究[J].铸造,2008,57(1):12-14
    [55]张辉,王建军,刘春明.Ce对00Cr17不锈钢及475℃脆性的影响[J].热处理学报,2010,31(11):68-72
    [56]刘晓,杨吉春,高学忠.稀土对2Cr13不锈钢夹杂物的变质及对冲击韧性的影响[J].北京科技大学学报,2010,32(5):605-609
    [57]郭峰,李杰,李志,王瑞等.单轴拉伸下AerMet100钢中稀土夹杂物开裂过程的原位观察[J].材料工程,2008,(12):21-29
    [58]王社斌,张金玲,祁小叶,许并社.La对AZ91镁合金铸态组织的影响及其细化机制[J].材料工程,2009
    [59]齐丕骧.对压力下结晶形核率的理论计算[J].金属学报,1984,20(6)359-365
    [60]刘志远,杨志刚,李昭东,刘振清.界面反应—扩散混合控制模型下先共析铁素体生长动力学的模拟[J].金属学报,2010,46(4)390-395
    [61]周民,马秋花,杜林秀,刘相华.X100管线钢的组织性能.东北大学学报[J].2007,30(7)985~988
    [62]H wang B, Kim Y G, Lee S,et al. Effective grain size and charpy impact properties of high toughness X70 pipeline steels[J].Metallurgical and Materials Transaction A,2005,36:2107-2114.
    [63]Zhao M C, Yang K, Xiao F R,et al. Continuous cooling transformation of undeformed and deformed low Carbon pipeline steels[J].Materials Science and Engineering: A,2003,355:123-136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700