用户名: 密码: 验证码:
施硅增强水稻对纹枯病抗性的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虽然硅作为高等植物必需营养元素具有争议,但是硅对水稻健康生长和发育却是有益的,硅在增强水稻抗病性,特别是抗纹枯病方面具有重要作用,但其抗病机制还不甚清楚。因此,本研究通过对江淮流域主要水稻品种的纹枯病抗性进行鉴定,筛选出了抗、感差异显著的品种,在此基础上,研明了施硅对水稻纹枯病的抗病效应和水稻生长的影响,并系统研究了施硅增强水稻对纹枯病抗性的物理机制和生理生化机制。主要结果如下:
     1、筛选出了对纹枯病抗感差异显著的水稻品种
     2006年收集了69个水稻品种(系),2007年收集了117个水稻品种(系),采用分蘖末期人工接种纹枯病菌,抽穗后30 d调查纹枯病病级的方法进行抗性鉴定。对调查所得病级进行聚类分析,把水稻品种对纹枯病的抗性分为高度感病、感病、抗病、较高水平抗病四类,大多数水稻品种为感病和高度感病,较高水平抗病品种较少,没有发现对纹枯病免疫的水稻品种。抗感差异显著的品种,病级相差2~3倍,甚至差异更大。2008年选取32个品种进一步验证了纹枯病抗感差异显著程度,鉴定结果显示常优1号、盐优1号、盐粳5号、武粳15、华粳6号、91SP、特青等品种对纹枯病抗性较好,而日本晴、农垦57、宁粳1号、Lemont等品种属于感病品种。此外,较高水平抗病和抗病品种的叶鞘、茎秆中硅含量要明显高于高度感病和感病品种。纹枯病危害后,水稻产量下降,稻米品质变劣。
     2、揭示了纹枯病菌侵染水稻的细胞学过程
     纹枯病菌侵染水稻时先使寄主细胞死亡,再大量繁殖和生长。菌丝在水稻表面生长,初期在水稻叶鞘内表面蔓延,不久随机纵横分枝。接种后24 h就可以形成侵染垫和附着胞,出现水渍状斑块。菌丝通过直接侵入细胞壁、侵入胞间隙、从气孔进入三种方式侵染进入水稻叶鞘细胞,以直接侵入细胞壁为多。纹枯病菌以初生菌丝的形式进入水稻细胞后,在胞内生长,形成次生菌丝,其再形成新的次生菌丝,或者穿壁进入邻近细胞。菌丝进入叶鞘后,在胞间隙和胞间进行扩展。菌丝在胞间穿壁时明显变细,进入邻近细胞后又恢复原来的大小。或者菌丝在靠近胞壁的部分膨大,穿壁后先变细再恢复到穿壁前的粗细程度。纹枯病菌也能侵染水稻根部。
     3、明确了施硅对纹枯病的抗病效应和水稻生长的影响
     全生育期和短期在营养液中添加硅水培水稻试验结果表明,施硅减轻了病级和病情指数,施硅对抗病品种91SP和特青的相对防治效果分别为10.02%和8.70%,而对感病品种Lemont和宁粳1号的相对防治效果达27.42%和24.29%,说明施硅增强了水稻对纹枯病的抗性,特别显著增强了感病品种Lemont和宁粳1号的抗性。短期硅水培试验结果说明,营养液中硅浓度为1.54 mmol/L时,其抗纹枯病能力最强。
     4、研明了施硅增强水稻抗纹枯病的物理机制
     抗病品种91SP叶表的硅化细胞、乳突数目要多于感病品种Lemont,其还具有Lemont没有的直径为12-24μm的大乳突;91SP叶片的硅化细胞、乳突、非硅化细胞和乳突的其它微区的硅元素峰值和含量均显著高于感病品种Lemont;91SP叶鞘内侧的Si元素峰值明显高于Lemont,Si元素含量也显著高于Lemont。接种纹枯病菌后,两个水稻品种91SP和Lemont均发病,但两个品种硅化细胞表面菌丝却很少,抗病品种91SP叶鞘内侧菌丝数目明显比感病品种Lemont少,Lemont施硅处理的叶片厚壁细胞的胞壁厚度是缺硅处理的2倍左右。说明硅在水稻叶鞘内侧、叶表和厚壁细胞积累,起到了物理屏障的作用,延缓了纹枯病菌的扩展。
     5、阐明了施硅增强水稻抗纹枯病的生理生化机制
     (1)接种纹枯病菌后,两个水稻品种91SP和Lemont的叶鞘和叶片超氧阴离子自由基(O2性紊乱,CAT活性明显下降;抗病品种91SP叶鞘和叶片施硅处理的O2产生速率小于缺硅处理,叶鞘和叶片MDA含量在接种第3 d后显著低于缺硅处理,叶鞘SOD、POD、CAT活性在接种1 d后一直显著高于缺硅处理,叶片SOD、POD、CAT活性在接种3 d后显著高于缺硅处理;感病品种Lemont叶鞘和叶片施硅处理的O2产生速率、MDA含量始终显著小于缺硅处理,SOD、POD、CAT活性始终显著大于缺硅处理。以上说明在受到纹枯病菌侵染后,缺硅处理水稻叶鞘和叶片细胞内活性氧代谢和清除酶系统发生严重紊乱,而施硅降低了活性氧积累程度,缓解了纹枯病菌引起的叶片细胞膜脂过氧化作用和CAT活性的下降,增强了SOD、POD活性。
     (2)水稻接种纹枯病菌后,感病品种宁粳1号施硅处理PPO、PAL活性显著高于缺硅处理,抗病品种特青施硅处理PPO、PAL活性高于缺硅处理,但差异不显著;接种纹枯病菌后,施硅处理感病品种宁粳1号叶鞘的总酚、类黄酮、阿魏酸、绿原酸和木质素等含量显著提高;而抗病品种特青叶鞘的总酚、类黄酮、阿魏酸、绿原酸和木质素等含量也有所提高,这表明硅对抗病品种特青的调控作用低于宁粳1号。
     (3)在未接种纹枯病菌条件下,施硅增加了抗病品种几丁质酶活性,增加或显著增加了感病品种的几丁质酶活性,但对β-1,3-葡聚糖酶活性影响不大。接种纹枯病菌后,水稻几丁质酶活性被迅速激活后又下降,施硅通过提高抗病品种91SP几丁质酶和β-1,3-葡聚糖酶活性来增强对纹枯病的抗性,以及通过提高感病品种Lemont几丁质酶活性来增强对纹枯病的抗性,但感病品种Lemont施硅处理的几丁质酶活性降低幅度小于抗病品种91SP。
     (4)施硅可减缓纹枯病菌侵染引起的91SP和Lemont叶绿素含量的降低,Pn、Gs的下降幅度和Ci的上升幅度,有利于维持叶片较高的光合效率。接种后两个品种PSⅡ最大光化学效率(Fv/Fm)、PSⅡ有效光化学效率(Fv′/Fm′)、PSⅡ实际光化学效率(ΦPSⅡ)、光化学猝灭系数(qP)和表观光合电子传递速率(ETR)均降低,非光化学猝灭系数(qNP)增大,而对于施硅处理的水稻叶片,上述荧光参数在纹枯病菌侵染条件下的变化均受到不同程度的抑制。这说明施硅可以不同程度地缓解纹枯病菌侵染条件下非气孔因素引起的水稻叶片光合速率的下降以及对光合机构的破坏作用,提高光化学效率,改善叶片的光合功能。
     (5)接种纹枯病菌后,特青和宁粳1号缺硅处理叶鞘的PHI活性下降,MDH活性显著下降,6PGDH活性显著上升;施硅的水稻接种后PHI和6PGDH活性比未接种有所增加,MDH活性比未接种有所下降,说明在水稻感染纹枯病条件下,硅通过促进EMP和PPP途径的运转来调控水稻的呼吸代谢生化途径,有助于形成更多的ATP和NADPH,为水稻抗纹枯病提供能量和产生更多的中间产物,而这些中间产物又可以合成为具有抗病作用的物质,从而增强水稻抗纹枯病的能力。
     综上所述,硅对水稻抗纹枯病的机制除了硅在叶表积累构建了一道物理屏障以外,硅还可能通过参与调节水稻体内与抗病有关的生理生化过程来增强对纹枯病的抗性。
The scientists have the dispute that if silicon is one of the higher plant essential nutritive elements, but silicon (Si) has been proven to be beneficial for healthy growth and development of rice and plays an important role in enhancing rice plant resistance against fungal pathogens, specially sheath blight, and the mechanisms involved was not clear. Therefore, we collected many rice varieties of the Yangtze and Huai He valley to carry on the sheath blight resistance appraisal, and screened the resistant varieties and susceptible varieties. On this basis, the effects of silicon on the resistance to sheath blight and rice growth were verified, and the physics, physiological and biochemistry mechanisms of silicon–enhanced resistance to rice sheath blight were systematic studied. The main results were as follows:
     1. Screening the resistant varieties and susceptible varieties.
     We collected 69 rice varieties in 2006 and 117 rice varieties in 2007 to carry on the sheath blight resistance evaluation. Carring on the cluster analysis according to the disease rating, the rice varieties were divided into four kinds, including higher susceptible, susceptible, resistant, higher resistant rice varieties to sheath blight. And immunity rice variety had not discovered. Most rice varieties were higher susceptible and susceptible, the higher resistant rice varieties were few. The disease rating differs 2~3 times, even bigger. 32 varieties were selected to further confirm the difference between the resistant and susceptible in 2008, the appraisal results showed that Changyou 1, Yanyou1, Yanjing 5, Wujing 15, Huajing 6, 91SP, Teqing and so on belonged to resistant varieties, and Nipponbare, Nongken 57, Ningjing 1, Lemont and so on belonged to susceptible varieties. In addition, silicon content of resistant and higher resistant rice varieties's leaf sheath and stem were higher than those of the higher susceptible and susceptible varieties. The sheath blight could cause the decline of production and rice quality .
     2. Revealing the cytology process of Rhizoctonia solani invading rice.
     Hypha of sheath blight caused the host cell death first, then massive reproductions and growth. The hypha spread at the rice leaf sheath internal surface firstly, and soon branched vertically and horizontally. After being inoculated with R. solani, infection cushion and appressorium formed in 24 h, and presented the water-damaged shape mottling. The hypha entered the leaf sheath cell by invading the cell wall directly, the intercellular space, and stomata. Above the three ways, invading the cell wall directly was frequent. The primary hyphae entered the rice cell, grew in the cell, formed the secondary hypha, and formed the new secondary hypha again, or penetrated the cell wall to entering the neighbor cell. After the hypha entering the leaf sheath, they expanded in the intercellular space and the intercellular. The hypha became thin obviously when penetrating the neighbor cell wall, and restored the original size after entering the cell. Or the hypha expanded near the cell wall, after penetrating the cell wall, the hypha became thin firstly, and restored the original size. In addition, the hypha could also invade the rice root.
     3、Making clear the effects of silicon on the resistance to sheath blight and rice growth.
     Sodium silicate was added into the nourishing in the entire growth period and short period of rice, after being inoculated with R.solani, the rice with application (the Si+ rice) of resistant cultivar 91SP and Teqing had lower (but not statistically significant) disease rating and disease index with relative control effect of 10.02% and 8.70% compared to the Si- rice plants in, but the Si+ rice plants of susceptible cultivar Lemont and Ningjing 1 had significantly lower rating and disease index with relative control effect of 27.42% and 24.29% compared to the Si- rice plants. The results indicated silicon could strengthened the resistance to rice sheath blight, specially strengthened the resistance of susceptible cultivar Lemont and Ningjing 1 remarkedly. The result of sodium silicate was added into the nourishing in the short period of rice showed that when the silicon density of the nourishing solution was 1.54 mmol/L, its ability of the resistance to rice sheath blight was best.
     4、Clarifying the physics mechanism of the resistance to rice sheath blight improved by silicon application.
     By an environmental scanning electron microscope, the number of siliceous cell and papilla in 91SP's leaf surface were more than those of Lemont, 91SP has big papilla 12~24μm in diameter, but Lemont hasn't. By an environmental scanning electron microscope coupled with X-ray microanalysis, as well as gravimetric quantification, the Si peak value and content of siliceous cell, papilla and other zones in 91SP's leaf surface were much more than those of Lemont significantly. And the Si peak value and content of 91SP's leaf sheath inside were more than those of Lemont obviously. After being inoculated with R.solani, the sheath blight occurrenced in 91SP and Lemont, but hypha on surface of siliceous cells were few, the hypha number of 91SP's leaf sheath inside were obviously less than Lemont, and sclerenchymatous cell's wall thickness of Lemont leaf in Si+ rice plants was about 2 times to Si- rice plants. The above facts indicated that silicon accumulation in the rice leaf sheath inside, the leaf surface and the sclerenchymatous cell, played the physical barrier role, delayed the hypha of sheath blight expansion.
     5、Analysing the physiological and biochemical mechanism of the resistance to rice sheath blight improved by silicon application in several respects.
     (1) After being inoculated with R.solani, O2 and POD activities disordered, CAT activities obviously declined. O2 producingvelocity in 91SP's leaves and leaf sheaths of Si+ rice plants were lower than those of Siriceplants, MDA content in leaves and leaf sheaths of Si+ rice plants were lower thanthose of Si- rice plants significantly in three days after inoculating, SOD、POD、CATactivities in leaf sheaths of Si+ rice plants were higher than those of Si- rice plantssignificantly in one day after inoculating, SOD、POD、CAT activities in leaves ofSi-treatment were higher than those of Si- rice plants significantly in three days afterinoculating. O2 producing velocity and MDA content in Lemont's leaves and leafsheaths of Si+ rice plants were lower than those of Si- rice plants significantly afterinoculating, and SOD、POD、CAT activities of Si+ rice plants were higher than those ofSi- rice plants significantly. The above facts indicated that the hypha invasion causedthe active oxygen and elimination enzymes system disordered, but silicon applicationreduced the active oxygen accumulation degree, alleviated the leaf cell membrane lipidperoxidation and CAT activities reduction, strengthened SOD and POD activities.
     (2) After being inoculated with R.solani, PPO and PAL activities of Si+ leafsheaths in susceptible cultivar Ningjing 1 were higher than those of Si- leaf sheathssignificantly, and PPO and PAL activities of Si+ leaf sheaths in resistant cultivar Teqingwere higher than those of Si- leaf sheaths, but the difference was not remarkable.Phenolic compound content, flavonoid content, ferulic acid content, chlorogenic acidcontent and lignin content of Si+ leaf sheaths in Ningjing 1 were higher than those ofSi- leaf sheaths significantly, these of Si+ leaf sheaths in Teqing were higher than thoseof Si- leaf sheaths. These facts showed that the effect of silicon regulating Teqingresistance to sheath blight was not rather than Ningjing 1.
     (3) Uninoculated with R. solani, applying sodium silicate could increase chitinaseactivities of 91SP, and increase or significantly increase chitinase activities of Lemont,but it had little effect onβ-1,3-glucanase activities of 91SP and Lemont. After beinginoculated with R. solani, chitinase activities were induced to increase firstly, and thendecreased. In conclusion, silicon could enhance the resistance of 91SP to sheath blight by increasing chitinase andβ-1,3-glucanase activities, and enhance the resistance ofLemont to sheath blight by increasing chitinase activities, but the reduction scale ofchitinase activities in Lemont with sodium silicate application were lower than those of91SP.
     (4) After being inoculated with R.solani, chlorophyll content, net photosyntheticrate (Pn) and stomatal conductance (Gs) of rice leaves decreased significantly, whileintercellular CO2 concentration (Ci) increased. After treated with exogenous sodiumsilicate, chlorophyll content, Pn and Gs increased, while Ci decreased. After beinginoculated with R.solani, PSⅡmaximal quantum efficiency (Fv/Fm), PSⅡeffectivequantum efficiency (Fv′/Fm′), PSⅡactual photochemical efficiency (ΦPSⅡ),photochemical quenching (qP) and acyclic electron transfer late (ETR) all decreased,but non-photochemical quenching (qNP) increased. The Si+ rice plants showed lesschanges in these fluorescence parameters. The results suggested that, silicon couldalleviate the decreases of photosynthetic rate induced by non-stomata factors and thedamage of photosynthesis system, increased photochemical efficiency, improved thefoliar photosynthetic ability, and enhanced the rice plants resistance to sheath blight.
     (5) After being inoculated with R.solani, PHI activities of Si- leaf sheaths in Teqingand Ningjing 1 decreased, MDH activities decreased significantly, 6PGDH activitiesincreased significantly. And PHI and 6PGDH activities of Si+ leaf sheaths increased,MDH activities decreased. These showed that under the rice plants infection sheathblight condition, silicon regulated the biochemistry way of respiratory metabolismthrough promoting EMP and PPP way work, formed more ATP and NADPH, and couldprovide the more energy and metabolic intermediate products for the rice resistance tosheath blight. These intermediate products may synthesize disease-resistant functionmaterial.
     In conclusion, Si may have a role as a physical barrier to prevent the hypha of thesheath blight further infections and growth to some extent. And Si could enhance theresistance to sheath blight through participating in physiological and biochemical processes related to anti-disease.
引文
1、Jones H P, Handreck K A. Silica in soil , plants , and animals . Adv . Agron, 1967,19:107~149.
    2、Lewin J, Reimann B E F. Silicon and plant growth. Annu. Rev. Plant Physiol, 1969,20:289~304.
    3、管恩太,蔡德龙,邱士可,等.硅营养.磷肥与复肥,2000,15(5):64~66.
    4、Fox R L, Silva J A, Younge O R, Plucknett D. L. and Sherman G. D. Soil and Plant Silicon and Silicate Response by Sugar Cane. Soil Sci. Soc. Amer. Proc, 1967,31:775~779.
    5、周鸣铮.有关水稻土养料肥力的某些研究的论述(下).土壤学进展,1981,9(2):12~23.
    6、文春波,高红莉,蔡德龙,等.水稻施用硅肥研究综述.地域研究与开发,2003,22(3):143~146.
    7、刘永涛.硅肥的应用及开发前景.河南科技,1997,(11):6~7.
    8、黄彬,韩永圣,秦政.硅素的肥料效应及补硅途径.江苏农业科学,1997,(3):47~49.
    9、马同生.土壤学进展.1990,18(4):1~5.
    10、Marschner H. Mineral nutrition of higher plant. San Diego: Academic Press Inc, 1995, 289~306,417~427.
    11、鲍士旦.土壤农化分析(第三版).北京:中国农业出版社,2000,211~236.
    12、胡定金,王富华.水稻硅素营养.湖北农业科学,1995,(5):33~36.
    13、马同生.我国水稻土中硅素丰缺原因.土壤通报,1997,28(4):169~171.
    14、臧惠林,张效朴.我国南方水稻土供硅能力的研究.土壤学报,1982,19(2):131~139.
    15、刘鸣达,张玉龙.水稻土硅素肥力的研究现状与展望.土壤通报,2001,32(4):187~192.
    16、贺立源,王忠良.土壤机械组成和PH与有效硅的关系研究.土壤,1998,30(5):243~246.
    17、徐文富.作物的硅素营养和硅化物的应用.苏联科学与技术,1992,(5):45~49.
    18、李发林.硅肥的功效及施用技术.云南农业,1997,(9):16.
    19、陈平平.硅在水稻生活中的作用.生物学通报,1998,33(8):5~7.
    20、叶春.土壤可溶性硅与水稻生理及产量的关系.农业科技译丛(浙江),1992,(1):24~27.
    21、邵建华.硅肥的应用研究进展.四川化工与腐蚀控制,2000,3(6):44~47.
    22、马国瑞,石伟勇.农作物营养失调症原色图谱(第三版).北京:中国农业出版社,2002,103~107.
    23、秦遂初,马国瑞.植物营养与合理施肥.见:孙羲主编.土壤养分.北京:中国农业出版社,1983,152~160.
    24、中国土壤学会农业化学专业委员会编.土壤农业化学常规分析法.北京:科学出版社,1983,274~288.
    25、范业成,等.江西省主要水稻土硅素有效性的研究.土壤通报,1981,10(3):7~8.
    26、马同生,冯亚军,梁永超,等.江苏沿江地区水稻土硅素供应力与硅素施用.土壤,1994,26(3):154~156.
    27、李军,张玉龙,等.施用Si肥对辽宁省部分地区水稻产量及品质的影响.中国土壤学会第
    九次全国会员代表大会论文集(辽宁省卷).沈阳:辽宁科学技术出版社,1999,170~172.
    28、周青,潘国庆,施作家,等.不同时期施用硅肥对水稻群体质量及产量的影响.耕作与栽培.2001,(3):25~27.
    29、刘鸣达.水稻土供硅能力评价方法与及水稻硅素肥料效应的研究[R].沈阳:沈阳农业大学土地与环境学院.2002.
    30、王荔军,李敏,李铁津,等.植物体内的纳米结构SiO2.科学通报,2001,46(8):625~632.
    31、Perry C C. Silicification in biological systems. D Phil Thesis. Oxford:University of Oxford,1985.
    32、Inanaga S, Okasaka A. Calcium and silicon binding compounds in cell walls of rice shoots. Soil Sci Plant Nutr,1995,41:103~110.
    33、Inanaga S, Okasaka A, Tanaka S. Does silicon exit in association with organic compounds in rice plants. Soil Sci Plant Nutr,1995,41:111~117.
    34、刑雪荣,张蕾.植物的硅素营养研究综述.植物学通报,1998,15(2):33~40.
    35、梁永超,张永春,马同生.植物的硅素营养.土壤学进展,1993,21(3):7~14.
    36、杨建堂,高尔明,霍晓婷,等.沿黄稻区水稻硅素吸收、分配特点研究.河南农业大学学报,2000,34(1):37~42.
    37、江立庚,甘秀芹,韦善清,等.水稻物质生产与氮、磷、钾、硅素积累特点及其相互关系.应用生态学报,2004,15(2):226~230.
    38、毛振强,杨建堂,魏长义,等.沿黄稻区水稻硅素营养特点的研究.河南农业科学,1999,(6):22~24.
    39、李军,张玉龙,刘鸣达,等.辽宁省水稻土供硅能力及硅肥肥效的研究.土壤通报,2002,33(2):142~144.
    40、韩光,冯海艳,张喜林,等.硅对水稻茎叶解剖结构的影响.黑龙江农业科学,1998,(4):47.
    41、Epstein E. The anomaly of silicon in plant biology. Proc Natl Acad Sci. USA, 1994, 91:11~17.
    42、朱小平,王义炳,李家全.水稻硅素营养特性的研究.土壤通报,1995,265:232~233.
    43、Ma J F, Goto S, Tamai K, Ichii M. Role of root hairs and lateral roots in silicon uptake by rice. Plant Physiol., 2001, 127:1773~1780.
    44、何电源.土壤和植物中的硅.土壤学进展,1980,(5—6):1~10.
    45、Ocuda A, Takahashi E. The role of silicon[A]. In: The Mineral Nutrition of the Rice Plant. Baltimore, Md: The Johns Hopkins Press,1964,123~146.
    46、Ma J F. Plant root responses to three abundant soil minerals: Silicon,Aluminum and Iron .Critical Reviews in Plant Sciences,2005,24(4):267~281
    47、MA J F. Role of Silicon in enhancing the resistance of plant to biotic and abiotic stresses.Soil Sci Plant Nutr,2004,50:11~19.
    48、Tamai K,Jian F M.Characterization of Silicon uptake by rice roots.New Phytologist,2003,158(3):431~436.
    49、Ma J F, Namiki M, Sakikon, et al. Characterization of the silicon uptake system and molecular mapping of the silicon transporter gene in rice. Plant Physiol, 2004, 136(2):3284~3289.
    50、Hildebrand M, Volcani B E, Gassmann W, et al. A gene family of silicon transporters. Nature,1997,385(20):688~689.
    51、Ma J F, Tamai K, Ichii M, Wu G F. A rice mutant defective in Silicon uptake. Plant Physiol, 2002, 130(4):2111~2117.
    52、Takahashi E, Syo S, Myake Y. Effect of germanium on the growth of plants with special reference to the silicon nutrition: Comparative studies on the Silica nutrition in plants(Part 1).J Sci Soil Manure Jpn,1976,47:183~190.
    53、Ma J F, Yamaji N, Mitani, N. et al. An efflux transporter of silicon in rice.Nature, 2007, 448(7150):209~212.
    54、Ma J F, Tamai K, Yamaji N, et al. A Silicon transporter in rice. Nature, 2006, 440(7084):688~691.
    55、Yamaji N, Ma J F. Spatial distribution and temporal variation of the rice silicon transporter lsi1. New Phytologist, 2007, 143:1306~1313.
    56、Gong H J, Randall D P, Flowers T J. Silicon deposition in the root reduces sodium uptake in rice(Oryza Sativa L.)seedlings by reducing bypass flow. Plant, Cell and Environment, 2006, 29(10):1970~1979.
    57、Ma J F, Naoki Y, Kazunori T, et al. Genotypic difference in Silicon uptake and expression of silicon transporter genes in rice. Plant Physiology, 2007, 145(3):919~924.
    58、Hossain M T, Mori R, Soga K, Wakabayashi K, Kamisaka S, Hoson T. Growth promotion and an increase in cell wall extensibility by silicon in rice and some other Poaceae seedlings. J. Plant Res., 2002, 115(1117):23~27.
    59、高尔明,赵全志.水稻施用硅肥增产的生理效应研究.耕作与栽培,1998,(5):20~28.
    60、柯玉诗,黄小红,张壮塔,等.硅肥对水稻氮磷钾营养的影响及增产原因分析.广东农业科学,1997,(5):25~27.
    61、饶立华,覃莲祥,朱玉贤,等.硅对杂交稻形态结构和生理的效应.植物生理学通讯,1986(3):20~24.
    62、刘平、何继英、贺宁等.硅浓度对水稻生长、含水量、根冠比和过氧化物酶活性的影响.贵州农业科学,1987,(3):6~9.
    63、冯元琦.硅肥应成为我国农业发展中的新肥种.化肥工业,2000,27(4):9~11.
    64、Ho Ando, Ken-ichi Kakuda, Hiroshi Fujii, et al. Growth and canopy structure of rice plants grown under field conditions as affected by Si application. Soil Sci. Plant Nutri.,2002, 48(3):429~432.
    65、李卫国.氮、磷、钾、硅配施对水稻主要生理指标的影响.21世纪作物科技与生产发展学术讨论会论文集.北京:中国农业科技出版社,2002,161~166.
    66、胡瑞芝、方水娇、陈桂秋.硅对杂交水稻生理指标及产量的影响.湖南农业大学学报(自然科学版).2001,27(5):335~338.
    67、张跃芳、张超英.硅在水稻花药培养中的作用研究.绵阳高等专科学校学报,1999,16(2):11~13.
    68、汪传炳、茅国芳、姜忠涛.上海地区水稻硅素营养状况及硅肥效应.上海农业学报,1999,15(3):65~69.
    69、魏朝富,谢德体,杨剑虹,等.氮钾硅肥配施对水稻产量和养分吸收的影响.土壤通报,1997,28(3):121~123.
    70、刘鸣达.施用钢渣对水稻土肥力的影响及其肥料效应的研究[D].沈阳:沈阳农业大学,1999.
    71、Yeo AR, Flowers SA, Rao G, Welfare K, Senanayake N, Flowers T J. Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant cell Environ, 1999,22(5):559~565.
    72、李家书,谢振翅,胡定金,等.湖北省硅肥在水稻、黄瓜、花生上的应用效果.热带亚热带土壤科学,1998,7(1):16~20.
    73、Sistani K R, Savant N K, Reddy K C. Effect of rice hull ash silicon on rice seedling growth. J Plant Nutr, 1997, 20(1):195~201.
    74、Ma J F, Takahashi E. Effects of silicon on the growth and phosphorus uptake of rice. Plant and Soil,1990,126(1):115~119.
    75、王永锐、陈平.水稻对硒吸收、分布及硒与硅共施效应.植物生理学报,1996,22(4):344~348.
    76、胡克伟、关连珠、颜色,等.施硅对水稻土磷素吸附与解吸特性的影响研究.植物营养与肥料学报,2002,8(2):214~218.
    77、Ma J F, Takahashi E. Interaction between calcium and silicon in water-cultured rice plants. Plant and Soil, 1993,148(1):107~113.
    78、Yamauchi M, Winslow M D. Effect of silicon and magnesium on yield of upland rice in the humid tropics. Plant Soil, 1998,113:265~269.
    79、Ma J F, Takahashi E. Effect of silicate on phosphate availability for rice in a P-deficient soil.Plant and Soil,1991 ,133(1):151~155
    80、Rahman MT, Kawamura K, Koyama H et al. Varietal differences in the growth of rice plants in response to aluminum and silicon. Soil Sci and Plant Nutr,1998,44(3):423~433.
    81、顾明华、黎晓峰.硅对减轻水稻的铝胁迫效应及其机理研究.植物营养与肥料学报,2002,8(3):360~366.
    82、秦淑琴、黄庆辉.硅对水稻吸收镉的影响.新疆环境保护,1997,19(3):51~53.
    83、Wang L J, Wang Y H, Chen Q, et al. Silicon induced cadmium tolerance of rice(Oryza sativa)seedlings. J Plant Nutr,2000 ,23:1397~1406
    84、Epstein E. Silicon. Annu. Rev. Plant Physiolo. Plant Mol. Bol., 1999, 50:641~664.
    85、高桥英一.世界のケイ酸研究の現状と今後の课题-「第2回国际ケイ酸農業会議」から[R].日本土壤肥料学雜誌,2003,74(2):243~246.
    86、王永锐、成艺、胡智群,等.硅营养抑制钠盐及铜盐毒害水稻秧苗的研究.中山大学学报(自然科学版),1997,36(3):72~75.
    87、周建华、王永锐.硅营养缓解水稻Cd、Cr毒害的生理研究.应用与环境生物学报,1999,5(1):11~15.
    88、Ma J F, Takahashi E. Silicon as a benefical element for crop plants[A]. In:Datonoff L, Korndorfer G, Snyder G(eds)Silicon in Agriculture[M]. New York:Elsevier Science Publishing,2001, 17~39
    89、张翠珍、邵长泉、孟凯,等.水稻施用硅肥效果及适宜用量的研究.山东农业科学,1997,(3):44~45.
    90、Lux A, LuxováM, Morita S, Abe J, Inanaga S. Endodermal silicification in developing seminal roots of lowland and upland cultivars of rice(Oryza sativa L.). Can. J. Bot.,1999,77:955~960.
    91、陈阳.新疆盐生植物生理生态适应性及硅提高植物抗盐作用机制的研究[D].沈阳:甘肃农业大学,2002.
    92、蔡德龙.硅肥及施用技术[M].北京:台海出版社,2001,48~65.
    93、Agarie S, Hanaoka N, Ucho O, Miyazaki A, Kubota F, Agata W, Kaufman P B. Effects of silicon on tolerance to water deficit and heat stress in rice plants(Oryza sativa L.), monitored by electrolyte leakage. Plant Production Sci,1998,1(2):96~103.
    94、李文彬,王贺,张福锁.高温胁迫下硅对水稻花药开裂及授粉量的影响.作物学报,2005, 31 (1):134~136.
    95、Masakazu Goto, Hiroshi Ehara, Shyuichi Karita, Keiji Takabe, Natsumi Ogawa, Yutaka Yamada, Satoru Ogawa, Mohammed Sani Yahaya,Osamu Morita. Protective effect of silicon on phenolic biosynthesis and ltraviolet spectral stress in rice crop. Plant Sci,2003,164:349~356.
    96、Li Wen-Bin, Shi Xin-Hui,Wang He, Zhang Fu-Suo. Effects of silicon on rice leaves resistance to Ultraviolet-B. Acta Botanica Sinica,2004,46(6):691~697.
    97、Seedbold K, Datnoff L, Correa F et al. Effects of silicon and host resistance on leaf and neck blast in upland rice. (Annual Meeting of the American Phytopathological Society, Las veges, Nevada, USA, November 8~12,1998). Phytopathol,1998,88(9 Suppl):80.
    98、Datnoff L E, Deren C W, Snyder G H. Sicilon fertilization for disease management of rice in Florida. Crop Protect,1997,16(6):525~531.
    99、Belanger R R, Bowen P A, Ehret D L, Menzies J G. Soluble silicon:its role in crop and disease management of greenhouse crops. Plant Disease,1995,79(4):329~336.
    100、Winslow M D, Okada K, Correa-Victoria F. Silicon deficiency and the adaptation of tropical rice ecotypes. Plant and Soil,1997,188(2):239~248.
    101、曾玉悟.水稻硅素营养与硅肥施用.江西农业科技,1987,(5):19~20.
    102、Kim S G, Kim K W, Park E W et al. Silicon-induced cell wall fortification of rice leaves:a possible cellular mechanism of enhanced host resistance to blast. Phytopathology,2002,92(10):1095~1103.
    103、魏成熙、欧阳昌亭、朱正国等.水稻施用硅钙肥的效果研究.耕作与栽培,1993,(3):49~51.
    104、王荔军,郭中满,李铁津,李敏.生物矿化纳米结构材料与植物硅营养.化学进展,1999,11(2):119~128.
    105、Savant N K, Snyder G H, Dantnoff L E. Adv. Agron.,1997,58:151.
    106、周青,施作家,潘国庆,等.水稻拔节期施用硅肥对群体质量及产量的影响.淮阴工学院学报,2001,10(3):20~23.
    107、Yoshida. S.“Fundamentals of rice crop science”. International Rice Research Institute. 1981, Los Ba?os, Laguna, Philippines.
    108、Deren C W, Datnoff L E, Snyder G H et al. Silicon concentration, disease response, and yield components of rice genotypes grown on flooded organic histosols. Crop Sci,1994,34(3):733~737.
    109、李卫国、任永玲.氮、磷、钾、硅肥配施对水稻产量及其构成因素的影响.山西农业科学,2001,29(1):53~58.
    110、陈进红、毛国娟、张国平、郭恒德.硅对杂交水稻干物质与养分积累及产量的影响.浙江大学学报(农业与生命科学版),2002,28(1):22~26.
    111、Inanaga S, Higuchi Y, Chishalci N. Effect of silicon application on reproductive growth of rice plant. Soil Sci Plant Nutr,2002,48(3):341~345.
    112、吴英、魏丹、高洪生.硅对水稻的营养功能和有效条件的研究.土壤肥料,1992,(3):25~27.
    113、卢维盛、李华兴、刘远金.施硅对水稻产量及稻米品质的影响.华南农业大学学报,2002,23(1):92.
    114、张学军、冯卫东、宋德印,等.施用硅钙磷肥对水稻生长、产量及品质研究初报.宁夏农业科技,2000,(1):37~38.
    115、Lee F N, Rush M C Rice sheath blight:a major rice disease. Plant Disease,1983,67:829~832.
    116、Rush M C, Lindberg G D. Rice disease research. Rice J,1996,77:49~52.
    117、Miyake I. Studies on the fungus diseases of rice in Japan. Journal of the College of Agriculture,Imprial Uvzersdy of Tokyo,1910,2:237~276.
    118、全国农业技术推广服务中心.2002重大农作物病虫害发生趋势.世界农业,2002,6:24~25.
    119、Marshall D S, Rush M C. Infection cushion formation on rice sheaths by Rhizoctonia solani. Phytopathology, 1980, 70:947~950.
    120、Massaquoi R C, Rush M C. Relationship of quantity of epiciticular wax to resistance of rice to sheath blight. Phytopathology,1987,77(12):17~23.
    121、张红生、朱立宏、沙学延,等.水稻纹枯病抗性机理的初步研究[A].朱立宏.主要农作物抗病性遗传研究进展[C] .南京:江苏科学技术出版社,1990,154~164.
    122、童蕴慧,徐敬友,潘学彪,等.水稻植株对纹枯病菌侵染反应及其机理的初步研究.江苏农业研究,2000,21(4):45~47.
    123、陈志谊,王玉环,殷尚智.水稻纹枯病抗性机制的研究.中国农业科学,1992,25(4):41~46.
    124、Hashiba T, Sample size and sampling method needed for investigating the disease incidence of rice sheath blight disease,1997
    125、胡健、陈云、陈宗祥.壳寡糖对水稻纹枯病不同抗性品种几丁质酶诱导的研究.江苏农业研究,2001,21(4):37~40.
    126、冯道荣,等.获得抗稻瘟病和纹枯病的转多基因水稻.作物学报,2001,27(3):293~300.
    127、潘学彪,Rush M C.美国的水稻抗纹枯病遗传育种研究.江苏农学院学报,1997, 18 (1):57~63.
    128、陈志谊,许志刚,T.W.Mew.水稻纹枯病桔抗细茵的种群分布及其生物多样性研究.植物病理学报,1999,29(2): 97~103.
    129、郑爱萍,李平,王世金,等.水稻纹枯病菌强拮抗菌B34的分离与鉴定.植物病理学报,2003, 33(1):81~85.
    1、全国农业技术推广服务中心.2002重大农作物病虫害发生趋势.世界农业,2002,6:24~25.
    2、潘学彪,Rush M C.美国的水稻抗纹枯病遗传育种研究.江苏农学院学报,1997, 18 (1):57~63.
    3、陈宗祥,邹军煌,徐敬友,童蕴慧,汤述翥,王子斌,蒋日民,凌兵,唐进,潘学彪.对水稻纹枯病抗源的初步研究.中国水稻科学, 2000, 14(1):15~18.
    4、李桦,宋成艳,丛万彪,王桂玲.粳稻品种抗纹枯病性鉴定与筛选.植物保护, 2000, 26(1):19~21.
    5、刘永峰,陈志谊,吉健安,刘邮洲.江苏省水稻主栽及区试品种对水稻纹枯病的抗性分析.江苏农业科学,2006,1:27~28.
    6、潘学彪,陈宗祥,张亚芳,朱建,纪雪梅.水稻抗纹枯病育种成效的初步评价.中国水稻科学,2001,15(3):218~220.
    7、张楷正,李平,李娜,向珣朝.水稻抗纹枯病种质资源、抗性遗传和育种研究进展.分子植物育种,2006,4(5):713~720.
    8、张楷正,明红梅,李平.我国南方稻区水稻骨干亲本纹枯病抗性鉴定与分析.植物保护,2008, 34(1):45~48.
    1、陶家凤.纹枯病菌对水稻侵染过程的研究.四川农业大学学报,1992,10(3):471~477.
    2、Marshall D S, Rush M C. Infection cushion formation on rice sheaths by Rhizoctonia solani. Phytipathology, 1980, 70: 947~950.
    3、张红生,朱立宏,沙学延,等.水稻纹枯病抗性机理的初步研究[A].朱立宏.主要农作物抗病性遗传研究进展[C].南京:江苏科学技术出版社,1990:153~164.
    4、Kankanala P, Czymmek K, Valent B. Roles for rice membrane dynamics and plasmodesmata during biotrophic invasion by the blast fungus. The Plant Cell, 2007, 19(2):706~724.
    5、Sesma A, Osbourn A E. The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi. Nature, 2004, 431(30):582~586.
    1、刘永涛.硅肥的应用及开发前景.河南科技,1997,11:6~7.
    2、Epstein E. The anomaly of silicon in plant biology. Proceedings of the National Academy of Science USA.,1994,91:11~17.
    3、Ma J F, Yamaji N. Functions and transport of silicon in plants. Cellular and Molecular Life Sciences, 2008, 10: 1~9.
    4、Datnoff L E, Deren C W and Snyder G H. Silicon fertilization for disease management of rice in Florida. Crop Protection, 1997, 16: 525~531.
    5、Seebold K W, Datnoff L E, Correa-Victoria F J, et al. Effects of silicon and fungicides on thecontrol of leaf and neck blast in upland rice. Plant Disease, 2004, 88: 253~258.
    6、Rodrigues F A, McNally D J, Datnoff L E, et al. Silicon enhances the accumulation of diterpenoid phytoalexins in rice: a potential mechanism for blast resistance. Phytopathology, 2004, 94: 177~183.
    7、陈宗祥,邹军煌,徐敬友,童蕴慧,汤述翥,王子斌,蒋日民,凌兵,唐进,潘学彪.对水稻纹枯病抗源的初步研究.中国水稻科学,2000,14(1): 15~18.
    8、李桦,宋成艳,丛万彪,王桂玲.粳稻品种抗纹枯病性鉴定与筛选.植物保护,2000,26(1):19~21.
    9、刘永峰,陈志谊,吉健安,刘邮洲.江苏省水稻主栽及区试品种对水稻纹枯病的抗性分析.江苏农业科学,2006,1:27~28.
    10、潘学彪,陈宗祥,张亚芳,朱建,纪雪梅.水稻抗纹枯病育种成效的初步评价.中国水稻科学,2001,15(3):218~220.
    11、张国良.硅肥对水稻产量和品质的影响及硅对水稻纹枯病抗性的初步研究[D].扬州:扬州大学,2005.
    12、瞿廷广,丁江妹.硅肥对直播水稻的抗逆性和产量的影响.耕作与栽培,2003,(2):57~58.
    13、Rodrigues Fá, Vale F X R, Datnoff L E, Prabhu A S, Kornd?rfer G H. Effect of rice growth stages and silicon on sheath blight development. Phytopathology, 2003,93(3):256~261.
    1、Seedbold K, Datnoff L, Correa F et al. Effects of silicon and host resistance on leaf and neck blast in upland rice. (Annual Meeting of the American Phytopathological Society, Las veges, Nevada, USA, November 8~12,1998). Phytopathol, 1998, 88(9 Suppl):80.
    2、Datnoff L E, Deren C W, Snyder G H. Sicilon fertilization for disease management of rice in Florida. Crop Protect, 1997, 16(6):525~531.
    3、管恩太,蔡德龙,邱士可,等.硅营养.磷肥与复肥,2000,15(5):64~66.
    4、Agarie S, Hanaoka N, Ucho O, Miyazaki A, Kubota F, Agata W, Kaufman P B. Effects of silicon on tolerance to water deficit and heat stress in rice plants(Oryza sativa L.), monitored by electrolyte leakage. Plant Production Sci, 1998, 1(2):96~103.
    5、Belanger R R, Bowen P A, Ehret D L, Menzies J G. Soluble silicon:its role in crop and disease management of greenhouse crops. Plant Disease, 1995, 79(4):329~336.
    6、冯东昕,李宝栋.可溶性硅在植物抵御病害中的作用[J].植物病理学报,1998,28(4):293-297.
    7、Lux A, LuxováM, Morita S, Abe J, Inanaga S. Endodermal silicification in developing seminal roots of lowland and upland cultivars of rice(Oryza sativa L.). Can. J. Bot.,1999,77:955~960.
    8、Marschner H. Mineral nutrition of higher plant. San Diego: Academic Press Inc, 1995, 289~306,and 417~427.
    9、曾玉悟.水稻硅素营养与硅肥施用.江西农业科技,1987,(5):19~20.
    10、Ma J F, Yamaji N. Functions and transport of silicon in plants. Cellular and Molecular Life Sciences, 2008, 10: 1~9.
    11、Datnoff L E, Deren C W and Snyder G H. Silicon fertilization for disease management of rice in Florida. Crop Protection,1997,16: 525~531.
    12、魏成熙、欧阳昌亭、朱正国等.水稻施用硅钙肥的效果研究.耕作与栽培,1993,(3):49~51.
    13、Rodrigues Fá, Vale F X R, Datnoff L E, Prabhu A S, Kornd?rfer G H. Effect of rice growth stages and silicon on sheath blight development. Phytopathology, 2003, 93(3):256~261.
    14、Kim S G, Kim K W, Park E W et al. Silicon-induced cell wall fortification of rice leaves:a possible cellular mechanism of enhanced host resistance to blast. Phytopathology, 2002, 92(10):1095~1103.
    1、孟庆忠,刘志恒,王鹤影,等.水稻纹枯病研究进展.沈阳农业大学学报,2001,32(5):376~381.
    2、Datnoff L E, Deren C W, Snyder G H. Sicilon fertilization for disease management of rice in Florida. Crop Protect,1997,16(6):525~531.
    3、瞿廷广,丁江妹.硅肥对直播水稻的抗逆性和产量的影响.耕作与栽培,2003,(2):57~58.
    4、Rodrigues Fá, Vale F X R, Datnoff L E, Prabhu A S, Kornd?rfer G H. Effect of rice growthstages and silicon on sheath blight development. Phytopathology, 2003,93(3):256~261.
    5、王爱国,罗广华.植物的超氧自由基与羟胺反应的定量关系.植物生理学通讯,1990,26(6):55~57.
    6、Ambasht N K, Agrawal M. Interactive effects of ozone and ultraviolet-B singly and in combination on physiological and biochemical characteristics of soybean plants. Plant Biol, 2003, 30: 37~45.
    7、Cherif M, Benhamou N, Menzies J G, et al. Silicon induced resistance in cucumber plants against Pythium ultimum. Plant Mol Plant Pathol., 1992, 41: 411~425.
    8、左示敏,张亚芳,殷跃军,陈宗祥,潘学彪.田间水稻纹枯病抗性鉴定体系的确立与完善.扬州大学学报(农业与生命科学版),2006,27(4):57~61.
    1、武维华.植物生理学.北京:科学出版社,2003,198~212.
    2、宋凤鸣,郑重.绿原酸和阿魏酸与棉花对枯萎病抗性的关系.浙江农业大学学报,1996,22(3):236~240.
    3、李云锋,王振中,贾显禄.稻瘟菌激发子CSBⅠ诱导水稻防御性相关酶的活性变化.作物学报,2004,30(6):613~617.
    4、Tiburzy R, Reisener H J. Resistance of wheat to Puccinia graminis f. sp. tritici: association of the hypersensitive reaction with the cellular accumulation of lignin-like material and callose. Physiological and Molecular Plant Pathology, 1990, 36: 109~120.
    5、Andrea P, Tilman O, Friederike S A. Poplastic peroxidases and linginfication in needles of Norway spruce. Plant Physiology, 1994, 106: 53~60.
    6、Ma J F, Yamaji N. Silicon uptake and accumulation in higher plants. Trends in Plant Science, 2006, 11(8): 392~397.
    7、Rodrigues Fá, Vale F X R, Datnoff L E, Prabhu A S, Kornd?rfer G H. Effect of rice growth stages and silicon on sheath blight development. Phytopathology, 2003,93(3):256~261.
    8、杨艳芳,梁永超,娄运生,孙万春.硅对小麦过氧化物酶、超氧化物歧化酶和木质素的影响及与抗白粉病的关系.中国农业科学,2003,36(7):813~817.
    9、Liang Y C, Sun W C, Si J, R?mheld V. Effect of foliar-and root-applied silicon on the enhancement of induced resistance in Cucumis sativus to powdery mildew. Plant Pathology, 2005, 54: 678~685.
    10、Cherif M, Asselin A, Belanger R R. Defense responses induced by soluble silicon in cucumber roots infected by Pythium spp. Phytopathology, 1994, 84: 236~242.
    11、Cherif M, Belanger R R. Use of potassium silicate amendments in recirculating nutrient solutions to suppress Pythium ultimum on longer English cucumber. Plant Disease, 1992, 76: 1008~1011.
    12、Fawe A, Abou-Zaid M, Menzies J G, Belanger R R. Silicon-mediated accumulation of flavonoidphytoalexins in cucumber. Phytopathology, 1998, 88: 396~401.
    13、Rodrigues F A, McNally D J, Datnoff L E, et al. Silicon enhances the accumulation of diterpenoid phytoalexins in rice: a potential mechanism for blast resistance. Phytopathology, 2004, 94: 177~183.
    14、辛建华,傅振清.苯丙氨酸解氨酶、多酚氧化酶与甜瓜抗枯萎病的关系.石河子大学学报(自然科学版),1997,1(1):47~50.
    15、于虹漫,唐咏,李月莹.烯效唑防治水稻立枯病的生化特性研究.江苏农业科学,2003,30:32~34.
    16、薛应龙,欧阳光察.植物生理学实验手册.上海:上海科技出版社,1986,114.
    17、林植芳,李双顺,林桂珠.衰老叶片和叶绿体中的H2O2积累与膜脂过氧化的关系.植物生理学报,1988,14(1):16~22.
    18、杨家书,吴畏,吴友三,薛应龙.植物苯丙酸类代谢与小麦对白粉病抗性的关系.植物病理学报,1986,16(3):169~173.
    19、申卫星,陈玉,吕士恩,等.西瓜枯萎病菌对西瓜及其嫁接砧木的接种试验和绿原酸、阿魏酸变化动态同抗病性的关系.山东农业大学学报,1998,29(4):469~477.
    20、Sakuma T, Millar R L. Relative abilities of pathogens and nonpathogens of alfalfa to induce production of and degrade medicarpin. Phytopathology, 1972, 62:499.
    21、Rodrigues F A, Jurick W M, Datnoff L E, et al. Silicon influences cytological and molecular events in compatible rice-Magnaporthe grisea interactions. Physiological and Molecular Plant Pathology, 2005, 66:144~159.
    22、赵中秋,郑海雷,张春光.植物抗病的分子生物学基础.生命科学,2001,13(3):135~138.
    1、Epstein E. Silicon. Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 50: 641~664.
    2、Ma J F, Yamaji N. Silicon uptake and accumulation in higher plants. Trends in Plant Science, 2006, 11(8): 392~397.
    3、Fauteux F, Remus-Borel W, Menzies J G, Belanger R R. Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiology Letter, 2005, 249(1): 1~6.
    4、Remus-Borel W, Menzies J G, Belanger R R. Silicon induces antifungal compounds in powdery mildew-infected wheat. Physiological and Molecular Plant Pathology, 2005, 66(3): 108~115.
    5、Ghanmi D, McNally D J, Benhamou N. Powdery mildew of Arabidopsis thaliana: a pathosystem for exploring the role of silicon in plant–microbe interactions. Physiological and Molecular Plant Pathology, 2004, 64(4): 189~199.
    6、Rodrigues F A, Jurick II W M, Datnoff L E, Jones J B, Rollins J A. Silicon influences cytological and molecular events in compatible and incompatible rice-Magnaporthe grisea interactions. Physiological and Molecular Plant Pathology, 2005, 66(4): 144~159.
    7、全国农业技术推广服务中心.2002重大农作物病虫害发生趋势.世界农业,2002,6:24~25.
    8、Rodrigues F A, Vale F X, Datnoff L E, Prabhu A S, Kornd?rfer G H. Effect of rice growth stages and silicon on sheath blight development. Phytopathology, 2003, 93(3):256~261.
    9、瞿廷广,丁江妹.硅肥对直播水稻的抗逆性和产量的影响.耕作与栽培,2003,(2):57~58.
    10、高宇,元岽东,谢响明.植物几丁质酶的基因工程与分子生物学研究进展.生物技术通讯,2004,15(6):642~645.
    11、蒋选利,李振岐,康振生.β-1,3-葡聚糖酶与植物的抗病性.西北农业学报,2005,14(4):135~139.
    12上海市植物生理学会.现代植物生理学实验指南.上海:上海科技出版社,1999,pp129~130.
    13、Currie H A, Perry C C. Silica in plants: biological, biochemical and chemical studies. Annals of Botany, 2007, 100 (7):1383~1389.
    14、Bera S, Purkayastha R P. Multicomponent coordinated defense response of rice to Rhizoctonia solani causing sheath blight. Current Science, 1999, 76(10):1376~1384.
    15、毛碧增,李德葆,李群,何祖华.转化双价防卫基因获得抗纹枯病水稻.植物生理与分子生物学学报,2003,29(4):322~326.
    16、左示敏,张亚芳,殷跃军,陈宗祥,潘学彪.田间水稻纹枯病抗性鉴定体系的确立与完善.扬州大学学报(农业与生命科学版),2006,27(4):57~61.
    1、张守仁.叶绿素荧光动力学参数的意义及讨论.植物学通报,1999,16(4):444~448.
    2、林世青,许春辉,张其德,等.叶绿素荧光动力学在植物抗性生理学、生态学和农业现代化中的作用.植物学通报,1992,9(1):1~16.
    3、Papageogiou G. Chlorophyll fluorescence: an intrintic probe of photosynthesis. In: Gorindjeeed. Bioenergetics of Photosynthesis. New York: Academic Press, 1975, 319~371.
    4、Zhao M, Ding Z S, Zhang X. The Changes and Components of Non-photochemical Quenching under Drought and Shade Conditions in Maize. Acta Agronomica Sinica, 2003, 29: 59~ 62.
    5、Colom M R, Vazzana C. Photosynthesis and PSⅡfunctionality of drought-resistant and drought-sensitive weeping love grass plants. Environmental and Experimental Botany, 2003, 49: 135~144.
    6、汪月霞,孙国荣,王建波. NaCl胁迫下星星草幼苗MDA含量与膜透性及叶绿素荧光参数之间的关系.生态学报,2006,26(1):122~129.
    7、王春梅,施定基,朱水芳.黄瓜花叶病毒对烟草叶片和叶绿体光合活性的影响.植物学报,2000,42(1):388~392.
    8、柯玉琴,潘廷国,方树民.青枯菌侵染对烟草叶片H2O2代谢、叶绿素荧光参数的影响及其与抗病性的关系.中国生态农业学报,2002,10(2):36~39.
    9、付东亚,洪健,陈集双,等.芜菁花叶病毒外壳蛋白在寄主植物叶绿体中的积累及其对光系统II活性的影响.植物生理与分子生物学学报,2004,30(1):34~40.
    10、李国景,刘永华,朱祝军,等.硅和白粉病对长豇豆叶片叶绿素荧光参数和抗病相关酶活性的影响.植物保护学报,2006,33(1):109~110.
    11、冯玉龙,冯志立,曹坤芳.砂仁叶片光破坏的防御.植物生理学报,2001,27(6):483~488.
    12、汪良驹,刘卫琴,孙国荣,等. ALA对萝卜不同叶位叶片光合作用与叶绿体荧光特性的影响.西北植物学报,2005, 25(6):488~496.
    13、Farquar G D, Sharkey T D. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 1982, 33:31~345.
    14、李燕宏,洪健,谢礼,等.蚕豆萎蔫病毒2号分离物侵染对蚕豆叶片光合活性和叶绿体超微结构的影响.植物生理与分子生物学学报,2006,32(4):490~496.
    15、Guidi L, Mori S, Degl'Innocenti E, et al. Effects of ozone exposure or fungal pathogen on while lupin leaves as determined by imaging of chlorophyll a fluorescence. Plant Physiology and Biochemistry, 2007, 45 (10-11): 851~857.
    16、Müller P, Li X P, Niyogi K K. Non-photochemical auenching. a response to excess light energy. Plant Physiology, 2001, 125 (4): 1558~1566.
    1、王忠.植物生理学.北京:中国农业出版社,2000,188~195.
    2、Brown A P, Wary J L. Acorelated change of some enzyme activities and cofactor and substrate contents of pea cotyledon tissue during germination. Biochem.Journ.,1968,108: 437~444.
    3、朱广廉.植物生理学实验.北京:北京大学出版社,1990,32~34.
    4、薛应龙.植物生理学实验手册.上海:上海科学技术出版社, 1985. 184~185.
    5、Danson J, Wasano K, Nose A. Infection of rice plants with the sheath blight fungus causes an activation of pentose phosphate and glycolytic pathways. European Journal of Plant Pathology, 2000, 106: 555~561.
    6、孙万春.硅提高水稻对稻瘟病抗性的生理和分子机理.北京:中国农科院研究生院,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700