用户名: 密码: 验证码:
高炉炉墙的传热学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以高炉炉墙为研究对象,采用热态试验和数值模拟相结合的方法,对其温度场进行了系统的研究。讨论了冷却器形式、冷却器的结构参数、耐火材料种类以及高炉操作等因素对炉墙温度场的影响。在此基础上,采用BP神经网络,建立了高炉炉墙温度预测模型。
     作者首先对唐山钢铁公司1260m~3高炉停炉时的破损状况进行了现场调查。结果表明:对于冷却壁高炉而言,存在的突出问题是炉身下部冷却壁凸台在炉役早期就大量损坏;凸台损坏后,耐火砖衬因失去支撑而脱落,炉身下部冷却壁大部分时间在没有耐火砖衬保护的状态下工作,导致炉身下部寿命无法满足高炉长寿的要求。这是目前我国众多冷却壁形式高炉寿命普遍较短的重要原因之一。
     本文首次对国内高炉实际使用的铸铁凸台冷却壁进行了热态试验。研究了炉温、冷却水流速、冷却水温度等工艺参数对冷却壁温度的影响。结果表明:在试验条件下,降低冷却水的温度和提高水速对降低冷却壁热面温度的作用是十分有限的。因此,在工业生产中,靠降低水温和提高水速来降低冷却壁的热面温度是不经济的。
     为了系统研究高炉炉墙的温度场,以实际高炉的炉身下部炉墙为原型,根据高炉实际情况,在对原型进行合理简化的基础上,分别建立了凸台冷却壁高炉和板壁结合高炉炉墙的物理模型和进行三维稳态温度场计算的数学模型;讨论确定了其相应的边界条件;并用此模型结合热态试验的情况进行了计算,将计算结果与热态试验的结果进行了比较,二者十分吻合。
     本文利用大型通用有限元分析程序—ANSYS,系统计算并分析了高炉炉墙(包括凸台冷却壁高炉炉墙和板壁结合高炉炉墙)的三维稳态温度场。在凸台冷却壁高炉炉墙温度场计算方面,主要计算了耐火材料的导热系数、冷却壁的结构参数、高炉内煤气流温度以及砖衬侵蚀程度等因素对高炉炉墙温度场的影响。结合导致高炉炉衬/冷却系统破损的主要机理,探讨了凸台冷却壁高炉炉墙破损的基本原因。计算结果和高炉破损调查及冷却壁热态试验的结果吻合较好。在板壁结合高炉炉墙温度场计算方面,讨论了冷却板及冷却壁的冷却/结构参数、炉内煤气流温度以及砖衬侵蚀程度对炉墙温度场的影响。在此基础上讨论了影响铜冷却板使用寿命的最主要因素。在上述分析结果的基础上,讨论了高炉炉墙不同热负荷区域的冷却器形式的选择对延长高炉寿命的重要性。
     在冷却壁高炉炉墙温度场数值计算的基础上,以BP神经网络作为工具,建立了高炉炉墙温度预测模型。在对高炉炉墙温度场的系统分析基础上,确定以冷却壁本体厚度、冷却壁凸台长度等13个反映高炉炉墙结构特征的参数作为模型
In this paper, the temperature field in the wall of blast furnace has been studied by thermal test and numerical simulation. The influence of type and structure parameters of cooler, kind of lining refractory, operation factors on the temperature field in the wall of blast furnace was investigated. On the basis of numerical simulating results, the predicting model for blast furnace wall's temperature was established with the BP (back propagation) neural networks.
    The damage investigation on the blast furnace (with 1260m~3 inner volume) in Tangshan Iron and Steel Company was carried out. The results show that most of the flanged parts of the casting iron staves were damaged in the early stage of the campaign. Without supporting, the lining will collapse quickly. In this case, the staves will be working under the condition of no lining protection and they will be damaged very easily. This is the most important reason for the blast furnace equipped with flanged casting iron stave in lower shaft area only have shorter campaign life.
    In this paper, the heat test of the flanged stave, which is same as the actually used one, was successfully carried out. The influence of factors, such as furnace temperature, velocity and temperature of the cooling water, on the stave's temperature was investigated. The experimental results show that the effect of reducing the cooling water temperature and increasing the water velocity on decreasing the stave temperature is limited. It is unreasonable to do so in the practical blast furnace operation.
    According to the wall's structure of lower shaft of actually used blast furnace, with reasonable simplifying, the physical and mathematical model for the calculation of three-dimensions steady state temperature field of the blast furnace, which were cooled with stave-plate compound cooling system and stave cooling system, was established. The boundary conditions were discussed and determined. With the model and boundary conditions, the temperature field of the stave used in thermal test was calculated. The results is good agreed with that obtained by thermal test.
    By using the large-scale general finite element analytical program—ANSYS, the three-dimensional steady state temperature distribution in the blast furnace shaft wall (cooled with flanged casting iron stave and stave-plate compound cooling system respectively) was numerically simulated. In respect of temperature distribution in the blast furnace shaft wall cooled with flanged casting iron stave, the influence of various factors on temperature distribution in blast furnace shaft wall was numerically stimulated. Those factors include kind of lining refractory, structure parameters of the flanged stave, temperature of gas flow in blast furnace and the erosion extent of the lining. On the basis of considering the main erosion mechanism of blast furnace lining/cooling system, the principal damage reason of the flanged part of a flanged
引文
[1] 项钟庸.高炉长寿技术的进步.国外钢铁,1996,(2):20~23
    [2] 张寿荣.当代高炉炼铁发展趋向及我们的对策.钢铁,1996,31(5):16.
    [3] 吴俐俊.马钢高炉长寿技术.钢铁,1994,29(10):1
    [4] 全强,马魁铎.长寿高炉设计的探讨.高炉长寿技术会议论文集.1994,10:1~8
    [5] S. Kallo, E. Pisila, K. Ojala. Rebuilding of Rautaruukki Blast Furnaces. Ironmaking Conference Proceedings, 1997, 56: 247-252
    [6] Youngbok, Lee. The 2nd Campaign of Pohang №2 B. F. & its Reling Plan for the 3rd Campaign. Ironmaking Proceedings, 1997, 56: 253~255
    [7] 钢铁工业新技术应用及发展战略研究.综合报告
    [8] Jean-Marc Steiler, M J Venturini, X Le Coq, G Leprince, A Dufour, Bbillon, D Lao and G Provost. Blast Furnace Hearth Erosion. Steel Technology International, 1994/95: 27~30
    [9] 顾飞,刘述临,苍大强.长寿高效高炉设计.高炉长寿技术会议论文集,1994,10:12~16
    [10] 吴捐献.武钢4号高炉炉衬破损调查研究.炼铁,1990,9(2):14-19
    [11] 刘均会,段维民.包钢3号高炉中修炉体破损调查分析.炼铁,1998,17(2):1~5
    [12] 李马可.日本高炉冷却壁的技术进步.钢铁,1988,23(3):59-62
    [13] JE Parratt. The Limitation of Hearth Sidewall Wear at Redcar Blast Furnace. Ironmaking Conference Proceedings, 1996, 55: 183-186
    [14] G. Kincel. Hearth Ling—the Crucial Factor for the Campaign of Blast Furnace. Ironmaking Conference Proceedings, 1991, 50: 287-292
    [15] 周有德.高炉炉缸形成“蒜头状”侵蚀的分析和对策.钢铁,1998,33(2):4~6
    [16] 宋阳升.延长高炉寿命的探讨.钢铁,1991,26(1):6-10
    [17] 杨尚宝.神经网络高炉专家系统研究(博士学位论文).北京:北京科技大学,1995
    [18] 张殿有.高炉炉缸长寿技术的开发与应用.钢铁,1995,30(4):6~9
    [19] 宋阳升.强化高炉的炉缸炉底寿命问题.炼铁,1989,8(4):11-14
    [20] 李安宁.高炉炉缸炉底烧穿及处理.炼铁,1996,15(6):52-54
    [21] 范春和.本钢高炉的长寿技术.炼铁,1993,12(1):1-4
    [22] 李马可.日本高炉长寿技术的进展.炼铁,1989,8(6):42-46[23] Okada. Protection of Blast Furnace Hearth Refractories By TiO2 Injection Through Tuyeres. Ironmaking Conference Proceedings, 1991, 50: 307-312
    [24] Ariel Garcia Boone, Gerardo Jimenez, Javier Castillo. Titanium Addition Practice and Maintenance for the Hearths in Ahmsa's Blast Furnaces. Ironmaking Conference Proceedings, 1997, 56: 475-483
    [25] 蔡祥麟.宝钢炼铁厂及宝钢3号高炉.钢铁,1994,29(12):1-6
    [26] 新日铁钢铁公司.新日铁为争取高炉长寿化而对操作和炉体冷却、内衬技术的改造.国外钢铁,1988,(4):8~20
    [27] 杨为国.高炉冷却壁三维温度场有限元分析(硕士学位论文).北京:北京科技大学,1997
    [28] 小林 敬司,松本 敏行,柳尺 克彦,高炉长寿命化技术,川崎制铁技报,1993,25(4):22~29
    [29] 李楠.耐火材料与高炉的长寿高效.炼铁,1991,(1):1-5
    [30] Ronald W. Frost, Michael Kulak, Thermal Load Effects on Blast Furnace Stack Walls. Iron and Steel Engineer, 1985(1): 48-53
    [31] 范春和.带托砖支撑的复合冷却器在高炉上的应用.钢铁,1993,28(3):6
    [32] 李安宁.高炉炉身维护理论探讨.炼铁,1990,9(3):50-52
    [33] R. Hebel, R. Steiger, ectal. Temperature in the Blast Furnace Refractory Linging-Theoretical Calculation, Measurements, and Determination of the Wear Profile, Ironmaking Conference Proceedings, 1995, 54: 101-111
    [34] 杨士云.高炉冷却器破损原因和长寿技术.钢铁,1994,29(6):59
    [35] 宋木森.武钢4号高炉炉身冷却壁解剖分析.炼铁,1990,9(3):24-28
    [36] 张景智,庄树兴,汪敉,于启顺.高炉软水密闭循环冷却系统破损调查.钢铁,1995,30(6):10-13
    [37] 宋阳升,杨天钧,吴懋林,刘述临.高炉冷却壁冷却能力的计算和分析.钢铁,1996,31(10):9~13
    [38] Hiroshi Oda, Shigeru Amano, Aiichiro Sakamoto, Osamu Anzai, Michiru Nakagome, Toshisuke Kuze, Akira Imuta. Operational Results of Shaft Repair by Installing Stave Type Cooler at Kimisu Nos. 3 and 4 Blast Furnaces. Ironmaking Conference Proceedings, 1997. 56: 293-29
    [39] 欧阳雄.梅山高炉的护炉实践及长寿探讨.钢铁,1992,27(6):8
    [40] 李国宁.高炉操作与长寿.炼铁,1990,9(5):1-5
    [41] 欧阳雄.梅山1号高炉长寿达标实践.炼铁,1994,13(3):1-5[42] 张士敏.开发炉衬修补技术延长高炉寿命.钢铁,1994,29(8):73
    [43] 宋阳升.英法高炉喷煤和长寿技术概况.炼铁,1994,13(2):53-58
    [44] 张士敏.高炉炉型\操作对焦比和寿命的影响.钢铁,1992,29(12):6
    [45] 过淼如.马钢—铁厂10年来的技术进步.炼铁,1992,11(3):37-41
    [46] Mark Dutler, Wendell Carter, Dale Rosenow, Joe Perez, John Ricketts. Extension of Blast Furnace Campaigns at Inland Steel. Ironmaking Conference Proceedings, 1997, 56: 283-291
    [47] 刘琦,宋阳升.我国炼铁生产技术进步的回顾及对今后发展的思考.钢铁,1995,30(7):75-79
    [48] Hilmar Weidenmueller, Hartmut Hille, Kurt Bellaire. Blast Furnace Cooling Systems. Iron and Steel Engineer, 1986, (4): 48-57
    [49] 项钟庸.宝钢3号高炉长寿技术的特点.炼铁,1994,13(1):36-38
    [50] Hideaki Inoue. Technologies for Prolongation of Blast Furnace Campaign Life. Ironmaking Conference Proceedings, 1991, 50: 293-299
    [51] 项钟庸.长寿大型高炉设计.钢铁,1992,27(1):7
    [52] G. Federico, alvatore, ect..1va Experience in Extending Blast Furnace Campaign. Iroamaking conference Proceedings, 1991, 50: 357-364
    [53] 韩志仁等.高炉路身下部及炉腰采用软水闭路冷却系统生产实践.钢铁,1993,28(11):14
    [54] Ian F. Carmichael. New Concepts and Designs for Blast Furnace Linings and Cooling Systems. Iron and Steel Engineer, August 1996: 35-42
    [55] 兰滋畅.延长中型高炉炉腹冷却壁寿命初探.钢铁,1991,26(8):8-12
    [56] 杨天钧,刘述临,刘庭成.高炉冷却器结垢及高压水射流清洗技术.高炉长寿技术会议论文集.梅山,1994,10:187~189
    [57] 刘述临.对长寿高炉设计的几点意见.炼铁,89,8(5):42-45
    [58] 长寿高炉冷却壁.国外钢铁,1996(3):6~7
    [59] 姜达.高炉铸钢冷却壁.炼铁,1989,8(3):30~33
    [60] Peter Heinrich, Hartmut Hille, Hans-Jurgen Bachhofen, Worfgang Kowalski. Copper Blast Furnace Staves Developed for Multiple Campaigns. Iron and Steel Engineer, 1992(2): 49-55
    [61] R. G. Helenbrook, W. Kowalski, K-H. Grosspietsch. 高炉铜冷却壁.国外钢铁, 1997(4): 8~12
    [62] Robert G. Helenbrook, Copper Blast Staves in the Blast Furnace. Iron and Steel Engineer, August 1996: 30-34
    [63] G. M. Smithyman, Refractory Cooling Plays Critical Role in Extending??Blast Furnace for a Longer Campaign. I&SM, 1998(3): 87-88
    [64] R. Hebel. Advanced Materials for the Blast Furnace Lining in Regard to Long Service Life Reasonable Cost and their Theoretical Qualification. Ironmaking Conference Proceedings, 1994, 53: 397-406
    [65] Yoshiyuki Murai, Takao Yamamoto, kazuteru Aoyama, Kunio Fukamachi. Design and Evaluantion of Blast Furnace Refractories and Cooling System Based on Thermal Distribution. Ironmaking Proceedings, 1985, 44: 475-483
    [66] 董致和,张忠新.国内外高炉内衬的现状与发展.炼铁,1993,增刊,18~23
    [67] 王泽鳘.宝钢1号高炉改进性大修的设计.钢铁,1998,33(4):1~4
    [68] 李德明.延长高炉寿命的经验.钢铁,1991,26(5):6-10
    [69] 胡太茂.延长高炉炉身寿命的实践.钢铁,1991,26(6):5
    [70] Teruaki Morimoto, Masaaki Yoshimoto, Toshiyuki Matsumoto, Hirobumi Ando, Upgrading Relioning of Mizushima №4 Blast Furnace for a Longer Campaign. Ironmaking Conference Proceedings, 1982, 41: 132-145
    [71] 伊藤 史生,花房 章次,竹井 良夫,光安 拓治,水野 葆禄,高炉长期安全化炉壁炼瓦一体型开发,铁钢,1992(7):225~232
    [72] G. X. WANG, A. B. YU, P. ZULLI. Three--dimensional Modeling of the Wall Heat Transfer in the Lower Stack Region of a Blast Furnace, ISIJ International, 1997, (5): 441-448
    [73] 吴懋林,王立民,刘述临.高炉冷却壁和炉衬的三维传热模型.钢铁,1995,30(3):6~11
    [74] Robert W. Steiger, Robert E. Braun, David P. Grundtisch. Utilization of Computer Analysis in Blast Furnace Refractory Lining and Shell Design. Ironmaking Conference Proceedings, 1985, 44: 485-503
    [75] J. ven Laar, G. J. Tijhuis, M. Spreij, R. J. M. Stokman. Blast Furnace Lining Life-A Quantitative Analysis of Lining/Cooling Systems. I&SM, 1994, December: 25-29
    [76] 马宏远.现代化高炉数学模型.冶金自动化,1997,(1):36~41
    [77] 毕学工.KTH高炉模拟和预报数模的开发.钢铁,1992,27(7):6
    [78] 汪政富,杨天钧,倪学梓.高炉煤气运动的二维数学模型.钢铁,1993,28(8):1[79] 汪政富,徐业鹏,李君慧.炼铁生产多目标优化模型的研究.钢铁.1993,28(1):68
    [80] 魏华强,杨天钧,周渝生,徐金吾,倪学梓.人工智能高炉热状态判专家系统的研究.钢铁,1993,28(10):1
    [81] C. Forsberg ect.. Real-Time Expert System for Blast Furnace Control. Ironmaking Conference Proceedings, 1991, 50: 739-745
    [82] T. Aoki. The Blast Furnace Expert System with the Information of the Continuous Hot Metal Thermometer. Ironmaking Conference Proceedings, 1991, 50: 753-757
    [83] Rutger Gyllenram, ect. Aprototype Knowledge-Based System for Blast Furnace Operational Guidance. Ironmaking Conference Proceedings, 1991, 50: 747-752
    [84] R. Chaigneau, C. W. F. Verstraten, W. C. Verloop, J. Van den Berg. La Revue de Metallurgie, ATS, JS 97: 8-17
    [85] 杨尚宝.人工智能在高炉控制中的应用.炼铁,1994,13(5):43-47
    [86] Paul Quisenberry, Mike Grant, Wendell Carter. Monitoring Lining And Hearth Conditions at Inland's №7 Blast Furnace. Ironmaking Conference Proceedings, 1997, 56: 305-309
    [87] 高征铠,黄履安,王玉珠,寇宗义,张兴和.电阻法高炉炉衬测厚技术及在宝钢1号高炉上的应用.钢铁,1992,27(3):6
    [88] D. WStothart, R. D. Chaykowski, R. J. Donaldson, D. H. Pomeroy. Hearth Monitoring Experience at DOFASCO's NO. 4 Blast Furnace. Ironmaking Conference Proceedings, 1997, 56: 311-319
    [89] Takaiku Yamamoto, Kohei Sunahara, Takanobu Inada, Kouji Takatani, Mitsuo Miyahara, Yasusi Sato, Yasuhiko Hatano, Kouzo Takata. Long Life Hearth in Blast Furnace-Kokura №2 B. F. of Sumitomo Metals. Ironmaking Proceedings, 1997, 56: 297-303
    [90] 毕学工.高炉过程数学模型及计算机控制.北京:冶金工业出版社,1996
    [91] 金松发.宝钢1号高炉炉底侵蚀的初步调查.炼铁,88,7(3):21-24
    [92] J.w.Han,J.H.Lee,Y.K.Suh.用附着式传感器测量通过高炉炉壳的热流量.国外钢铁,1997(6):13~16
    [93] 沈宗斌,周渝生 等.高炉冷却器的发展现状.炼铁,1994,13(3):50~53
    [94] 何汝生.提高冷却壁使用寿命的途径.炼铁,1990,9(6):41-46
    [95] 项中庸.高炉炉体冷却技术的进步.国外钢铁,1994(9):11~15
    [96] 徐桂英,杜鹤桂.高炉炉身下部内衬用耐火材料的研究及较为合理的评价??方法及应用.钢铁,1996,31(7):71-74
    [97] 张德辰,张树义,陆福兴,董国良.鞍钢11号高炉炉壳的有限元分析.钢铁,1992,27(5):6
    [98] 范春和,冯开盛.高炉中部采用双层冷却结构的操作实践.炼铁,1992,11(3):27-30
    [99] 张寿荣.武钢新3号高炉的建设及所采用的新技术.钢铁,1993,28(5):1-6
    [100] 李仲秀.梅山高炉炉体大修设计长寿技术的分析.炼铁,1994,13(1):1-5
    [101] 洪玉林.冷却壁漏水与高炉操作.炼铁,1994,13(1):33-35
    [102] 森田喜保.高炉铁皮余寿命预测.铁钢,1986,(2):210-217
    [103] B. Schiller, E. J. Spirko, F. E. Svekric, B. J. Mitchell, Control of the Heat Load on a Blust Furnace Bosh. Ironmaking Conference Proceedings, 1983, 42: 459-466
    [104] 顾飞,吴懋林.关于长寿高炉设计的若干问题.炼铁,1996,15(6):26~29
    [105] 杨天钧,徐金梧.高炉冶炼过程控制模型.北京:科学技术出版社,1995
    [106] G.J.Tijhuis,N.G.J.Bleijendaal.高炉冷却和耐火材料工艺.国外钢铁,1996,(3):7~10
    [107] 胡源申,袁晓敏,王彪等.马钢球墨铸铁冷却壁与灰铸铁冷却壁破损比较分析.炼铁,1998,17(4):45-46.
    [108] R. Vogel, J. Van Laar, R. Henstra, Still Going Strong, A Status Report of Hoogovens No. 6 Blast Furnace, Ironmaking Conference proceedings, 1993, 52: 483.
    [109] Gerard J. Tijhuis, Evaluation of Lining/Cooling Systems for Blast Furnace Bosh and Stack, Iron and Steel Engineer, 1996, (8): 43.
    [110] G. X. W ang, Benyan Pei, J. D. Litster, High Temperature, Behavior of Si_3N_4-bonded SiC Bricks in Blast Furnace Environment, ISIJ, 1998, 38: 12.
    [111] 张先棹.冶金传输户原理.北京:冶金工业出版社,1988,275-305.
    [112] 周继成,周青山,韩飘扬,人工神经网络-第六代电子计算机的实现,科学普及出版社,1993,16.
    [113] 胡守仁,余少波,戴葵,神经网络导论,国防科技大学出版社,1997,44.
    [114] 程相君,王春宁,陈生潭,神经网络原理及其应用,国防工业出版社,1995.
    [115] 胡上序,程翼宇,人工神经元导论,科学出版社,1994.
    [116] 徐丽娜,神经网络控制,哈尔滨工业大学出版社,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700