用户名: 密码: 验证码:
钢铁联合企业典型废弃物的综合处理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,钢铁产业发展的主要方向是环境友好、绿色生态化及资源的高效综合利用,其中烧结烟气、焦化废水和钢渣为钢铁联合企业的主要废弃物,对其进行有效处理是实现绿色生态化冶金奋斗目标的重点内容。然而,过去的研究工作基本上是孤立的,没有综合考虑三者间的内在联系,因而处理工艺没有取得重大突破。本论文以烧结过程脱硫、烧结烟气脱硫、钢渣综合利用于焦化废水的降解处理为核心,进行了实验研究和机理分析。
     为了研究烧结过程中各种因素对S在烧结过程中分配规律的影响,研制开发了小型烧结实验设备。实验结果表明,该设备可以很好地模拟烧结生产过程,是进行烧结过程研究的一种新方法。由于用料量少,大幅度降低了劳动强度,因此可以一个人独立完成实验操作。
     烧结生产过程产生的SO2约占钢铁工业排放总量的60%~90%,石灰既是烧结过程中不可缺少的原料,又是常用的脱硫剂。采用真空煅烧法可以获得高活性石灰。石灰的活性度与煅烧温度、恒温时间有关,最佳工艺条件是在950℃时恒温60min。石灰的活性度与其比表面积、比孔容积之间有很好的正线性关系。用温升速率法可以准确测定高活性石灰的活性度,且操作更简单、操作环境更友好,具有很好的再现性。石灰活性对烧结过程有重要影响。提高石灰活性度,有利于针状、细针状铁酸钙的形成,可以提高烧结矿品位、烧结矿强度及成品率,改善烧结矿冶金性能。石灰活性对烧结过程中硫的分配有较大影响。提高石灰活性度,烧结矿中硫含量提高,但仍满足优质烧结矿的要求,可以减少烧结烟气中SO2排放量。矿相显微镜分析和扫描电子显微镜(SEM)分析结果表明,烧结矿中硫以CaS形态存在,且主要分布在烧结矿的气孔部位。
     烧结烟气中的SO2是酸性气体,而焦化废水中含有大量的氨等碱性物质,当他们接触时即发生中和反应。研究表明,利用焦化废水处理烧结烟气,可以有效脱除烧结烟气中的SO2,达到钢铁工业大气污染物排放标准。处理后焦化废水(即脱硫废水)的pH值降低,为后续铁炭内电解法处理废水工艺的进行提供了有利条件。
     铁炭内电解法是近年发展起来的一种有效的废水处理方法。本论文利用钢渣和铁精粉、煤粉及少量黏结剂成功制备了高活性铁炭原电池,即高含碳金属化球团,该制备过程集成了海绵铁的制备和活性炭的制备过程,海绵铁与活性炭均匀分布其中,接触良好,组成了无数个铁炭原电池。研究结果表明,高含碳金属化球团对焦化废水中的酚类和氰化物有很好的降解效果,对COD有一定的降解效果,但对氨氮的去除效果较差。高含碳金属化球团对焦化废水的降解性能远高于45#钢屑、铸铁屑和海绵铁。气相色谱-质谱联用仪(GC-MS)和傅立叶红外光谱(FT-IR)研究结果表明,高含碳金属化球团对废水中有机污染物的去除不是简单的吸附,而是通过原电池加氢还原反应,使复杂的环打开变为单环、链状结构,最终实现彻底降解的。
     通过对S在烧结过程中的分配规律和用钢渣制备高含碳金属化球团处理焦化废水的工艺及机理等方面的研究,探索出一条综合利用焦化废水脱除烧结烟气中的SO2、然后利用高含碳金属化球团处理焦化废水的新的处理途径,为钢铁联合企业提高铁素利用效率、水利用效率,发展循环经济和绿色制造技术提供新的思路。
At present China's iron & steel industry's development direction is to make the environment-friendly, green ecologicalization, high efficiency and comprehensive utilize the resources. Sintering flue gas, coking wastewater and steel slag are the main wastes of integrated steel companies. Effective handling these wastes is the main important task. However, the past researching work about handling wastes is essentially in isolation, without taking into account the inner link between the three parts, therefore there is no major breakthrough of the treatment process. In the paper the experiments were done, the mechanisms of desulfurization in sintering, flue gas and handling coking wastewater using steel slag were analyzed.
     In order to study the distribution of Sulphur in sintering, the equipment which named as small-sintering test has been invented. The results have shown that it can simulate the sintering process very well. It is a new method for researching on the sintering production process. Because of less material and low labor intensity, the experiment can be operated independently by one man.
     About 60-90% SO2 emissions came from the sintering production process in metallurgical enterprises. Lime is not only an indispensable raw material for sintering production process, but also commonly used as desulfurization agent. The high active lime can be got by calcining limestone in vacuum condition. The activity of lime is related to the calcination's temperature and time. The best process condition for prepare high active lime is calcining limestone in vacuum at 950℃for 60 minutes. The activity of lime is corresponding related to special surface area and special porosity. The activity of lime can be accurately determined by temperature rising rate method. This method is not only with simple operation, benefit to environment, but also with well reproducibility. The sintering production process is significantly impacted by the activity of lime. The high activity of the lime is favorable for the formation of fine acicular and acicular structure calcium ferrite. The sinter's grade, intensity and the yield are increased with the rase of lime's activity. The sulfur assignment during sintering production process is greatly affected by the activity of lime. Sulphur content in sinter will increase with the increase of the activity of lime, but it is still satisfactory for technology standard of high quality sinters, the SO2 emissions from the flue gas can be reduced. The testing results of mineragraphic microscope and scanning electron microscopy (SEM) indicate that the Sulphur existences as CaS, and mainly distributes in the spiracle region of sinter.
     The SO2 gas is a kind of acidic gas, while a large amounts of alkaline substances in coking wastewater, such as ammonia, the chemical reactions will take place when they meet together. The results show that the SO2 in sintering flue gas can be effectively removed by coking wastewater. The SO2 content in Sintering flue gas can meet the discharge standards. Sintering flue gas can decrease the pH value of coking wastewater, which provides favorable conditions for the following treatment of wastewater via iron-carbon internal electrolysis method.
     Iron-carbon internal electrolysis method is an effective effluent disposal method which has been developing a few years. Metallization pellets with high carbon content (MPHC) has been success made from steel slag, iron powder, coal powder and a little of bonding agents. This preparation process integrates sponge iron preparation and the activated carbon preparation process. A number of sponge iron and activated carbon are uniform distribution in the MPHC. The results show that phenols and cyanide in coking wastewater can be effective removed by the MPHC, and the COD has certain degeneration, but the degradation of nitrogen is bad. The MPHC exhibited remarkable performance for the degradation of coking wastewater than steel 45#, cast iron and sponge iron. The results of GC-MS and FT-IR indicate that the degradation of organic pollutants in coking wastewater by the MPHC is not simply adsorption, but is removed complete by galvanic cell reaction.
     The results of the distribution of Sulphur during sintering production process and the degradation mechanism of coking wastewater by the MPHC indicate that a new method was explored for removing the SO2 of sintering flue gas by comprehensive utilization of coking wastewater, then coking wastewater will be treated by the MPHC. Theoretical basis were provided for the integrated steelworks' to treat main wastes such as the sintering flue gas, coking wastewater and steel slag at highly effective and more economy.
引文
1.郝素菊,蒋武锋,赵丽树,等.高炉炼铁500问[M],北京:冶金工业出版社,2008,7-24
    2.薛俊虎.烧结生产技能知识问答[M],北京:冶金工业出版社,2005,105-112
    3.王悦祥.烧结矿与球团矿生产[M],北京:冶金工业出版社,2006,1-6
    4.陈凯华.铁矿石烧结过程中二氧化硫的生成机理及控制[J],烧结球团,2007,32(4):13-17
    5.韩庆虹,金永龙,苍大强,等.用固体废弃物制作低浓度烧结烟气吸附剂的研究[J],钢铁,2008,43(2):93-96
    6.周国凡,毕学工.降低铁矿石烧结烟气中二氧化硫的实验研究[J],中国冶金,2006,16(12):31-33
    7. Dawson P R. Recent developments in iron ore sintering [J], Iron making and Steelmaking,1993, 20(2):135-143
    8.黄其秀.工业废气污染状况与脱硫除尘技术[J],环境科学与技术,2004,27(增):150-152
    9.陶伟强,韩富春.国内外燃煤电厂脱硫技术的综述[J],电力学报,2001,16(3):176-177
    10.闫文德,田大伦,项文化,等.城市林地与非林地大气SO2季节动态变化[J],生态学报,2006,26(5):1367-1374
    11.Nigge K M. Generic spatial classes for human health impacts [J], part 1:Methodology. International Journal of Life Cycle Assessment.2001,6(5):257-264
    12.周贺玲,田晓飞,张绍恢,等.廊坊市SO2污染及相关气象条件[J],资源与产业,2009,11(1):111-113
    13. Wen J M, Yan J H, ZHang D P. SO2 emission characteristics and BP neural networks prediction in MSW/Coal Co-Fired fluidized beds [J], Journal of Thermal Science,2006, (3):281-288
    14. Liu H, Qiu J R, Wu H, et al. Study on pollutant emission characteristics of Co-firing of biomass and coal [J], Acta Sciential Circumstantice,2002,22(4):484-488
    15.刘玉香.SO2的危害及其流行病学与毒理学研究[J],生态毒理学报,2007,2(2):225-231
    16.张登峰.烟气同时脱硫脱氮技术[J],环境科学与管理,2007,32(7):110-114
    17.宋伟民.钢铁企业控制二氧化硫污染的探讨[J],钢铁,1999,34(7):66-69
    18.黄导.中国钢铁工业环境保护工作面临更大压力[J],冶金环境保护,2004,(3):1-2
    19.单尚华,李春风.加快实施烧结烟气脱硫促进区域环境改善[J],中国钢铁业,2006,6:16-20
    20.李江.钢铁企业烧结烟气脱硫技术的研究现状[J],钢铁技术,2006,6:41-44
    21.沈晓林.宝钢环境保护[J],中国冶金,2005,15(6):39-42
    22.张慧明.烟气脱硫技术讲座[J],安全,1999,(6):12-17
    23. Levy J I, Spengler J D. Using CALPUFF to evaluate the impacts of power plants emissions in illinois:model sensitivity and implications [J]. Atmospheric Environment,2002,36(6): 1063-1075
    24. Hartman M, Tmka A. Reaction between calcium oxide and flue gas containing sulfur oxide at low temperature [J]. AICHE J,1993,39(4):615-624
    25.朱东升,黄铨,胡海兰.烟气脱硫工艺的研究[J],安全科学技术,2009,(3):4-7
    26.曾令可,牛艳鸽,刘涛.湿法烟气脱硫除尘一体化技术[J],中国陶瓷工业,2009,16(1):39-41
    27.王谦,张勇,李大宁.湿法烟气同时脱硫脱氮技术综述[J],环境科学导刊,2009,28(2):55-57
    28.张杨帆,李定龙,王晋.我国烟气脱硫技术的发展现状与趋势,环境科学与管理,2006,31(4):124-128
    29.贾汉忠,高宝,宋存义,等.电石渣/生石灰复合脱硫剂脱硫性能研究,化学工程,2009,37(3):54-57
    30.谷林,张延玲,李纲,等.半干法烟气脱硫机理及影响因素[J],过程工程学报,2008,8(增1):306-314
    31.柳瑶斌,周月桂,彭军,等.半干法烟气脱硫中过氧化氢溶液强化吸收二氧化硫的研究[J],燃料化学学报,2008,36(4):474-477
    32.李奇勇.烧结烟气半干法选择性脱硫新技术应用[J],中国环保产业,2008,(7):16-18
    33.谭志东,唐涌,汪建川,等.攀钢烧结机头烟气脱硫技术方案的建议[J],工业安全与防尘,2008,(8):15-17
    34.廖美春,黄志明.烧结烟气脱硫技术工业化应用现状及趋势[J],冶金管理,2009,(6):56-59
    35.李奇勇.烧结烟气半干法选择性脱硫技术应用[J],冶金能源,2008,27(2):53-55
    36.黄东生,王荣恩,汤楚贵.烧结烟气脱硫技术探讨[J],烧结球团,2008,33(3):6-10
    37.余志杰.福建三钢180m2烧结机烟气循环流化床干法脱硫装置[J],能源与环境,2008,(4):66-68
    38.王如意,沈晓林,石磊,等.宝钢烧结烟气脱硫石膏特性分析[J],宝钢技术,2008,(3):29-32
    39.刘君,庞俊香,刘新虎,等.400m2烧结机烟气脱硫[J],金属世界,2008,(5):66-70
    40.胡记杰,肖俊霞,任源,等.焦化废水原水中有机污染物的活性炭吸附过程解析[J],环境 科学,2008,29(6):1567-1571
    41.徐杉,宁平.GC/MS法分析焦化废水中的有机污染物[J],云南化工,2002,29(5):32-34
    42.汤鸿霄.羟基聚和氯化铝的絮凝形态学[J],环境科学学报,1998,18(1):1-10
    43. Reali M A, Campos J R, Penetra R G. Sewage treatment by anaerobic biological process associated with dissolved air flotation [J], Water Science and Technology,2001,43(8):91-98
    44. Poon C S, Chu C W. The use of ferric chloride and anionic polymer in chemically assisted primary sedimentation process [J], Chemosphere,1999,39(10):1573-1582
    45.张魁禄.聚丙烯酸胺的合成和絮凝作用的应用[J],辽宁化工,1996,1:10-11
    46.杨通在,刘以农,杨君.阳离子型改型高分子絮凝剂对轻工业废水的处理[J],工业水处理,1998,18(3):27-29
    47.游映玖.微生物絮凝剂的研究现状和成果[J],环境科学与技术,2002,25(1):43-45
    48.张本兰.新型高效无毒水处理剂——微生物絮凝剂的开发与应用[J],工业水处理,1996,16(1):7-8
    49.崔晓君,谢俊.高COD焦化废水的吸附研究[J],工业安全与环保,2007,33(9):27-28
    50.史晓燕,肖波,杨家宽.粉末活性炭处理焦化废水酚的研究[J],环境技术,2004,(1):15-17
    51.刘红,张林霞,吴克明.吸附——氧化法处理焦化废水的研究[J],工业水处理,2003,23(5):35-37
    52.吴高明,曲晓萍,黄卫红,等.载铜活性炭-微波降解焦化废水COD的研究[J],环境科学与技术,2007,30(2):77-78
    53.朱静,祥钦,李蕾.载银活性炭催化氧化焦化废水的应用研究[J],煤炭转化,2007,27(2):69-71
    54.周静,李素芹,苍大强.粉煤灰深度处理焦化废水中氨氮的研究[J],能源环境保护,2007,21(6):30-32
    55.刘心中,姚德,董凤芝,等.粉煤灰在废水处理中的应用[J],化工矿物与加工,2002,(8):4-7
    56.张昌呜,余长舜,杨福寿,等.焦化废水净化及回用技术研究[J],环境工程,1999,17(1):16-19
    57.夏海萍,柯家骏.膨润土粘土矿吸附焦化废水中氨氮的研究[J],重庆环境科学,1995,17(6):21-22
    58.张文成.沸石吸附焦化废水中氨氮的研究[J],能源环境保护,2005,19(5):9-11
    59.张劲勇,王环宇,林述刚.用熄焦粉处理焦化废水的试验研究[J],化工环保,2003,23(4):200-203
    60.武晓毅.焦化废水预处理技术的应用与展望[J],科技情报开发与经济,2005,15(13):139-141
    61.刘承东,宋晓玲.A2/O生物脱氮工艺在焦化废水处理中的应用[J],煤化工,2006,(2):51-53
    62.乔庆霞,温桂照,仇惠琼.焦化废水处理研究进展[J],能源环境保护,2003,17(1):17-20.
    63.样元林,周云巍.高浓度焦化废水处理工艺探讨[J],机械管理开发,2001,64(4):41-43
    64. Zhang M. Comparison between Anaerobic-Anoxic-Oxic and Anoxic-Oxic systems for coke plant wastewater treatment [J]. Envlmn Eng,1997(9):876-883
    65.沈晓林.焦化废水处理全面达标的试验与探讨[J],上海金属,2002,24(1):42-45
    66.单明军,吕艳丽,丛蕾.焦化废水处理技术[M],北京:化学工业出版社,2007,30-36
    67.王业耀,袁彦肖,田仁生.焦化废水处理技术研究进展[J],工业水处理,2002,22(7):3-6
    68.邢素青,王增长.焦化废水处理技术的研究进展[J],科技情报开发与经济,2005,15(23):141-143
    69.李培红,常臣贵.焦化废水的强化技术[J],济南大学学报.2005,19(2):151-153
    70.宋蔚,王艳.焦化废水处理技术研究进展[J],天津理工学院学报,2001,17(4):97-99
    71.张自杰.活性污泥生物学[M],北京:中国建筑工业出版社,1978,35-44
    72.王春敏,步启军.焦化废水处理技术及其发展趋势[J],内蒙古石油化工,2006,5:87-88
    73.郑笑彬.焦化含酚废水的厌氧—好氧生物处理[J],化工环保,1993,13(4):203-205
    74. Kang S F, Wang T H, Lin Y H. Decolorization and degradation of 2,4-dinitrophenol by Fenton's reagent [J], Environment Science Health A,1999,34:935-950
    75. Wu Z C, Zhou M H, Wang D H. Synergtic effects of anodic-cathodic electro catalysis for phenol degradation in the presence of iron (Ⅱ) [J], Chemosphere,2002,48:1089-1096
    76. Fockedey E, Van Lierde A. Coupling of anodic and cathodic reaction for phenol electro-oxidation using three-dimensional electrodes [J]. Water Research,2002,36:4169-4175
    77.何春,安太成,熊亚,等.三维电极电化学反应器对有机废水的降解研究[J],电化学,2002,8(3):327-332
    78. Esplugas S, Gimenez J, Contreras S, etal. Comparison of different advanced oxidation processes for phenol degradation [J], Water Research.2002,36:1034-1042
    79. Kang S F, Liao C H, Chen M C. Pre-oxidation and coagulation of textile wastewater by the Fenton process [J], Chemosphere,2002,46:923-928
    80. Fenton H J H. Oxidation of tartaric acid in the presence of iron [J], Chem. Soc.,1894,65: 899-910
    81.张娴娴,尹光志Fenton试剂催化氧化法处理焦化废水的实验研究[J],矿业安全与环保,2005,32(2):12-17
    82.王春敏,李亚峰,周红星,等Fenton-混凝法处理焦化废水的试验研究[J],环境污染治理技术与设备,2006,7(3):88-91
    83.吴克明,陈新丽,陆艳Fenton混凝沉淀法处理高浓度焦化废水的研究[J],电力环境保护,2005,21(3):41-43
    84.江义,于春英.工业废水催化湿式氧化处理的研究[J],环境科学,1990,11(5):34-37
    85.杜鸿章.难降解高浓度有机废水催化湿式氧化净化技术高活性、高稳定性的湿式氧化催化剂的研制[J],水处理技术,1997,23(2):83-87
    86. Rivas F J, Kolaczkowski S T. Development of a mode for the wet air oxidation of phenol based on a free radical mechanism [J], Chemical Engineering Science,1998,53(14):2575-2586
    87.孙晓君,冯玉杰,蔡伟民,等.废水中难降解有机物的高级氧化技术[J],化工环保,2001,21(5):264-269
    88.王永仪,杨志华.废水湿式催化氧化处理研究进展[J],环境科学进展,1995,3(2):35-41
    89.张文兵,肖贤明.过氧化氢高级氧化技术去除水中有机污染物[J],中国给排水,2002,18(3):89-92
    90.杜鸿章,房廉清.焦化污水催化湿式氧化净化技术[J],工业水处理,1996,16(6):11-13
    91.郭绍义,王红新.焦化废水湿式氧化催化剂性能及工艺条件研究[J],煤化工,2008,(2):19-22
    92. Hoigne J, Bader H. Rate constants of reaction of ozone with organic and inorganic compounds in water. Part Ⅰ. Non-dissociating organic compounds [J], Water Research,1983,17:173-183
    93. Hoigne J, Bader H. Rate constants of reaction of ozone with organic and inorganic compounds in water. Part Ⅱ. Dissociating organic compounds [J], Water Research,1983,17:185-194
    94.席彩文,刘彬彬.臭氧氧化法处理难降解有机废水[J],工业安全与环保,2005,31(11):15-17
    95.桂玉明,徐君,雷君兰,等.化学沉淀-臭氧氧化法处理焦化废水[J],化工环保,2008,28(5):424-426
    96.刘亮,王少波,原培胜,等.高级氧化法处理焦化废水的研究进展[J],舰船科学技术,2008,30(3):47-50
    97. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J], Nature,1972,238(53-58):37-38
    98. Carey J H, Lawrence J, Tosine H W. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspension [J], Bull Environ. Contam. Toxic.,1976,16(6):697-701
    99.高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M],北京:化学工业出版社,2002
    100.宋卫坤,林雨,刘亮,等.三相流化床光催化反应器降解水中酸性大红[J],环境工程学报, 2007,1(9):58-62
    101.崔鹏,范益群,徐南平.三相流化床中光催化降解反应特性的研究[J],高校化学工程学报,2002,16(1):53-57
    102.马永明,张敏卿,余国琮.水中溶解有机物TiO2-UV-O2光催化氧化动力学研究[J],化工进展,2002,21(2):112-114
    103.孙英杰,徐迪民,刘辉.超临界水氧化技术研究与应用进展[J],中国给水排水,2002,18(2):35-37
    104.漆新华,庄源益,袁有才.超临界水氧化法处理苯胺废水[J],环境污染与防治,2001,23(2):56-58
    105.Gloyna E F, Li L. Supercritical water oxidation research and development update[J], Enviton. Prog.,1995,14(3):182-192
    106. Lee D S. Heterogeneous oxidation kinetics of acetic acid in supercritical water [J], Environment Science Technology,1996,30(12):3478-3492
    107. Jerry C M, Philip A M, Jefferson W T. Acetic acid oxidation and hydrolysis in supercritical water [J], J. AICHE,1995,41(9):2108-2121
    108.Suwannee Junyapoon. Use of zero-valent iron for wastewater treatment [J], KMITL Sci. Tech. J, 2005,5(3):587-595
    109. Seok-Young Oh, Pei C Chiu, Byung J. Zero-valent iron pretreatment for enhancing the biodegradability of RDX [J], Water Research,2005,39(20):5027-5032
    110. Wellington S, Pereira, Renato S. Freire. Azo dye degradation by recycled waste zero-valent iron powder [J], J. Braz. Chem. Soc.,2006,17(5):832-838
    111. Irama Sanchez, Frank Stiiber, Josep Font. Elimination of phenol and aromatic compounds by zero valent iron and EDTA at low temperature and atmospheric pressure [J], Chemosphere,2007, 68(2):338-344
    112. Zhang W, Chen L, Chen H. The effect of FeO/Fe2+/Fe3+ on nitrobenzene degradation in the anaerobic sludge [J], Journal of Hazardous Materials,2007,143(1-2):57-64
    113.马艳然,刘钰,闫利刚,等.铁屑-活性炭微电解法处理模拟含铬(Ⅵ)废水的探讨[J],河北大学学报(自然科学版),2005,25(4):395-398
    114.Suwannee Junyapoon, Suttawadee Weerapong. Removal of hexavalent chromium from aqueous solutions by scrap iron filings [J], KMITL Sci. Tech. J,2006,6(1):1-12
    115.Hao Z W, XU X H. Simultaneous removal of nitrate and heavy metals by iron metal [J], J. Zhejiang Univ. SCI.,2005,6 B(5):307-310
    116.范炳均,庞术龙.微电解—生物滤塔法预处理含腈废水[J],给水排水,2002,28(8):31-33
    117. Chen S S, Cheng C Y, Li C W. Reduction of chromate from electroplating waste water from pH 1 to 2 using fluidized zero valent iron process [J], Journal of Hazardous Materials,2007,142(1-2): 362-367
    118.谢娟,胡筱敏,章一丹.铁屑流化床预处理—催化氧化—混凝沉淀组合工艺处理有机硅废水[J],化工环保,2006,26(1):41-44
    119.孙春宝,周北海,段旭琴.铁泥海绵铁的制备及其在DSD酸氧化废水处理中的应用[J],北京科技大学学报,2007,29(3):256-260
    120.沈丽娜,完颜华,庹惠斌,等.海绵铁预处理含酚废水的静态研究[J],兰州交通大学学报(自然科学版),2004,23(1):61-64
    121.张勇.海绵铁腐蚀电池法预处理印染废水的研究[J],工业用水与废水,2002,33(4):36-38
    122.赖鹏,赵华章,王超,等.铁炭微电解深度处理焦化废水的研究[J],环境工程学报,2007,1(3):15-20
    123.K. Mackenzie, H. Hildebrand, F.-D. Kopinke. Nano-catalysts and colloidal suspensions of carbo-iron for environmental application [J], NSTI-Nanotech,2007,2:639-642
    124. Zhang W X. Nanoscale iron particles for environmental remediation:An overview [J], Journal of Nanoparticle Research,2003,5:323-332
    125. Jing F, Teik-Thye Lim. Pathways and kinetics of carbon tetrachloride and chloroform reductions by nano-scale Fe and Fe/Ni particles:comparison with commercial micro-scale Fe and Zn [J], Chemosphere,2005,59(9):1267-1277
    126.叶张荣,马鲁铭.曝气催化铁内电解法预处理混合化工废水[J],化工环保,2004,24(6):433-435
    127.马鲁铭.催化铁内电解处理难降解废水的方法,国家发明专利,申请号:02111901.5
    128. Ma L M, Ding Z G, Gao T Y. Discoloration of methylene blue and wastewater from a plant by a Fe/Cu bimetallic system [J], Chemosphere,2004,55(9):1207-1212
    129.秦萍.钢渣治理与利用技术的进展[J],沿海环境,2001,(1):40-41
    130.陈盛建,高宏亮.钢渣综合利用技术及展望[J],南方金属,2004,(5):1-4
    131.苏兴文.鞍钢转炉钢渣开发利用技术现状及展望[J],矿业工程,2008,6(4):58-60
    132.张运徽.钢渣处理含铬废水的研究[J],三明高等专科学校学报,2001,18(4):6-9
    133.邓雁希,黄晓燕.钢渣对废水中磷的去除[J],金属矿山,2003,(5):49-51
    134.郑礼胜,王士龙,张虹.用钢渣处理含砷废水[J],化工环保,1996,(16):342-343
    135.李英,刘玉龙.利用钢渣烧制水泥熟料[J],水泥技术,2001,(1):55-56
    136.邹伟斌,张颂蛟.利用钢渣、还原渣配料煅烧高强水泥熟料[J],山西建材,2000,(3):22-25
    137.杨华明,张广业.钢渣资源化的现状与前景[J],矿产综合利用,1999,(3):35-36
    138.李彬,许玉真.采用钢渣替代铁矿石配料生产硅酸盐水泥熟料[J],水泥,2008,(4):24-25
    139.毕琳,林海.钢渣的综合利用[J],矿产保护与利用,1999,(3):51-52
    140.金恒阁,于立波,俎晓彤,等.钢铁废渣与磷肥[J],中国物资再生,1999,(3):31-31
    141.李乾军,章名耀,施爱阳.钙基脱硫剂增压喷动流化床煤气化炉的炉内脱硫[J],化工学报,2008,59(1):189-194
    142. Wang C B, CHEN H W, JI Y. Investigation on sulfation of modified Ca-based sorbent, Proceedings of the CSEE,2004,24 (12),238-242
    143.Fuertes A B, Velasco G, Fuente E. Study of the direct sulfation of limestone particles at high CO2 partial pressures[J], Fuel Processing Technology,1994,38(3):181-192
    144.杨剑锋,刘豪,谢峻林,等.煤洁净燃烧高效钙基复合固硫剂的研究进展[J],煤炭转化,2003,26(4):10-15
    145.金晓光.石灰质量对炼钢石灰消耗影响分析[J],金属世界,2008,(3):30-31
    146.于华财,魏运波,黄健.活性石灰在钢水精炼中的应用[J],炼钢,2004,20(1):30-32
    147.孙全应,张巧灵.活性石灰生产及在炼钢中的作用[J],特钢技术,2004,19(2):19-21
    148.Sotirchos Stratis V. Inaccessible pore volume formation during sulfation of calcined limestone [J], AIChE Journal,1992,38(10):1536-1539
    149. Wang W Y, Bjerle Ingemar. Modeling of high-temperature desulfurization by Ca-based sorbents [J], Chemical Engineering Science,1998,53(11):1973-1989
    150.饶发明,伍朝蓬,乐可襄.用小颗粒石灰石煅烧活性石灰[J],金属矿山,2007,(2):88-90
    151.陈先勇,周贵云.小颗粒石灰石煅烧制备高活性度石灰的研究[J],化工矿物与加工,2004,33(2):15-26
    152.曹彦卓,吴红应,董放战.石灰石粒度对石灰煅烧质量的影响[J],有色冶金节能,2006,23(5):11-33
    153.Murthy M S, Harish B R, Rajanandam K S. Investigation on the kinetics of thermal decomposition of calcium carbonate [J], Chemical Engineering Science,1994,49(13): 2198-2204
    154. Milne C R. High-temperature,short-time sulfation of calcium-based sorbents.1.Theoretical sulfation model [J], Industrial&Engineering Chemistry Research,1990,29(11):2192-2201
    155.Efthimiadis Evangelos A, Sotirchos Stratis V. Sulfidation of limestone-derived calcines [J], Industrial & Engineering Chemistry Research,1992,31(10):2311-2321
    156.孙剑峰,王洁,俞聪,等.碳酸钙煅烧后的石灰活性的比较研究[J],能源工程,2008,(3):44-46
    157.邓新云,颜鑫,卢云峰.活性石灰生产过程工艺条件的优化[J],化工设计,.2008,18(2):22-26
    158.郭汉杰,尹志明,王宏伟.冶金活性石灰烧制过程最佳工艺制度[J],北京科技大学学报,2008,30(2):148-151
    159.冯小平,张正文,谢峻林,等.煤烧活性石灰工业性试验研究[J],矿产综合利用,2004,(6):15-18
    160.唐亚新.影响石灰活性的因素分析[J],炼钢,2001,17(3):50-52
    161.Fuertes A B, Marban G, Rubiera F. Kinetics of thermal decomposition of limestone particles in a fluidized bed reactor [J], Transactions of the Institution of Chemical Engineers,1993,71(A): 421-428
    162.Khinast J, Krammer G F, Brunner C. Decomposition of limestone:the influence of CO2 and particle size on the reaction rate [J], Chemical Engineering Science,1996,51:623-634
    163.Fuertes A B, Alvarez D, Rubiera F. simultaneous calcination and sintering model for limestone particles decomposition [J], Transactions of the Institution of Chemical Engineers,1993,71 (A): 69-76
    164. Wang Y, Thomson W J. The effects of steam and carbon dioxide on calcite decomposition using dynamic X-ray diffraction [J], Chemical Engineering Science,1995,50:1373-1382
    165.黄希祜.钢铁冶金原理[M],北京:冶金工业出版社,2002
    166.孙士琦.真空电阻炉设计[M],北京:冶金工业出版社,1978,198-199
    167.Maciel Camacho. Hydration kinetics of lime [J], The Iron and Steel Institute of Japan,1997,5: 468-476
    168.Yagi S, Kunii D. Fluidized-Solids reactors with continuous solids feed-II:Conversion for overflow and carryover particles [J], Chemical Engineering Science,1961,16:372-379
    169.中华人民共和国黑色冶金行业标准,YB/T 5279-2005
    170.YB/T 105-2005,冶金石灰物理检验方法
    171.李超,钱菁,杨瑞霞.酸碱滴定法测定石灰中活性度影响因素的探讨[J],冶金分析,2006,6(26):86-87
    172.邱细敏.分析化学[M],北京:中国医药科技出版社,2006,42-44
    173.王明德.分析化学[M],北京:高等教育出版社,1986,172-177
    174.刘世洲.冶金石灰[M],沈阳:东北工学院出版社,1991,20-45
    175.郑少华,姜奉华.试验设计与数据处理[M],北京:中国建材工业出版社,2003,10-16
    176.郑瑛,史学锋,容伟,等.石灰石快速煅烧及表面积形成的实验研究[J],华中理工大学学报,1999,27(3):43-45
    177.Silcox Geoffrey D, Kramlich John C, Pershing David W. A mathematical model for the flash calcinations of dispersed CaCO3 and Ca(OH)2 particles [J], Industrial&Engineering Chemistry Research,1989,28(1):155-160
    178.Sasaoka Eiji, Uddin Md Azhar, Nojima Shigeru. Novel preparation method of macroporous lime from limestone for high-temperature desulfurizaiton [J], Industrial&Engineering Chemistry Research,1997,36(9):3639-3646
    179.Alvfors Per, Svedberg Gunnar. Modeling of the simultaneous calcinations, sintering and sulphation of limestone and dolomite [J], Chemical Engineering Science,1992,47(8):1903-1912
    180. Wei S H, Mahuli S K, Agnihotri R. High surface area calcium carbonate:pore structural properties and sulfation characteristics [J], Industrial&Engineering Chemistry Research,1997, 36(6):2141-2148
    181.Agnew J, Hampartsoumian E, Jones J M. The simultaneous calcination and sintering of calcium based sorbents under a combustion atmosphere [J], Fuel,2000,79(12):1515-1523
    182. Hanson C, Tullin C. Sintering of calcium carbonate and lime mud in a carbon dioxide atmosphere [J], Journal of Pulp and Paper Science,1996,22(9):327-331
    183.Beruto D, Searcy A W. CO2 catalyzed surface area and porosity changes in high-surface area CaO aggregates [J], J.Am.Ceramic Soc,1984,67:512-515
    184.Fuertes A B, Alvarez D, Rubiera F. Surface area and pore size changes during sintering of calcium-oxide particles [J], Chemical Engineering Communications,1991,109:73-88
    185.Borgwardt R H. Sintering of nascent calcium oxide [J], Chemical Engineering Science,1989, 44(1):53-60
    186.樊波,潘宝臣.烧结杯试验系统的设计进展[J],烧结球团,2008,33(4):6-8
    187.段东平,王树同,孔令坛.微型烧结法分析[J],北京科技大学学报,2000,22(5):422-426
    188.周明顺.安钢炼铁原料准备技术应用基础研究[D],东北大学博士学位论文,2004,27
    189.陈桂英.采用微型烧结试验快速测定铁矿石的烧结基础特性[J],烧结球团,2004,29(1):24-26
    190.刘振林,温洪霞,冯根生.济钢常用铁矿石烧结基础特性的研究[J],钢铁,2004,39(7):7-11
    191.黄柱成,韩志国,江源,等.MgO对以细磁铁精矿为主的低硅烧结的影响[J],中南大学学 报,2005,36(5):800-806
    192.刘振林.铁矿石烧结的铁酸钙生成特性研究[J],钢铁,2003,25(6):45-49
    193.邵剑华,方觉,常久柱,等.烧结矿高温抗压强度研究[J],钢铁,2008,43(9):12-15
    194.方觉,王兴艳,郭丽,等.焦炭高温抗压强度研究[J],钢铁,2006,41(5):20-23
    195.方觉,邵剑华,王兴艳.高炉用焦炭的高温抗压强度[J],钢铁研究学报,2007,19(4):12-16
    196.方觉,王杏娟,龚瑞娟,等.高炉块状带焦炭强度模拟研究[J],钢铁研究学报,2007,19(1):12-15
    197.张威,王梅,刘明,等.燃煤高温固硫的机理及固硫影响因素探讨[J],环境保护科学,2008,34(3):4-7
    198.孙仲侦,徐东耀,孙启萌,等.煤粉炉燃中固硫技术研究与实践[J],能源环境保护,2005,19(1):60-62
    199.徐东耀,钱路新,赵爱华,等.煤粉固硫燃烧的动力学研究[J],环境科学学报,2005,25(8):1004-1010
    200.朱光俊,梁中渝,邓能运.煤粉燃烧固硫的研究[J],矿业安全与环保,2004,31(6):21-22
    201.刘彦,周俊虎,方磊,等.O2/CO2气氛煤粉燃烧及固硫特性研究[J],中国电机工程学报,2004,24(8):224-228
    202. Xu X C, Chen C H, Qi H Y, et al. Development of coal combustion pollution control for SO2 and NOx in China,2000, Fuel Processing Technology,62:153-160
    203.朱光俊,梁中渝,邓能运.燃煤固硫剂及添加剂的研究现状[J],工业加热,2004,33(4):21-24
    204.范红宇,曹欣玉,周俊虎,等.不同气氛下煤燃烧固硫化学反应机理研究进展[J],煤炭学报,2003,28(1):26-31
    205.程军,周俊虎,刘建忠,等.大型电站煤粉炉自身固硫灰渣的微观晶相分析[J],燃料化学学报,2005,33(1):38-42
    206.杨天华,李润东,李延吉,等.高温环境下灰中矿物质对长广煤燃烧固硫行为的影响[J],燃料化学学报,2007,35(1):23-26
    207. Cheng J, Zhou J H, Liu J Z. Sulfur removal at high temperature during coal combustion in furnaces: a review[J], Progress in Energy and Combustion Science,2003,29:381-405
    208.戚华山.燃煤电厂脱硫技术简介[J],环境与开发,2000,15(4):13-15
    209.任有中,董佳芳.洁净型煤中提高脱硫性能的新技术[J],工程热物理学报,1999,(1):31-35
    210.孙荣庆.我国二氧化硫污染现状与控制对策[J],能源与环境,2003,25(7):25-28
    211.肖海平,周俊虎,刘建忠,等.钙基固硫过程中硫存在形态的转变[J],燃烧科学与技术, 2008,14(1):33-38
    212.黄兵,牛刚,邵忠宝,等.添加剂对氧化钙固硫性能的影响[J],有色矿冶,2006,22(6):38-40
    213.耿曼,石林,龚爱华.天然矿物制备固硫剂的实验研究[J],化工矿物与加工,2007,(2):22-25
    214.邵忠宝,张丽,沈峰满.稀土化合物对氧化钙固硫性能的影响[J],东北大学学报,2002,23(6):610-612
    215.韩翔宇,陈皓侃,李保庆.石灰石在煤燃烧过程中固硫反应机理研究进展[J],煤炭转化,2000,23(1):23-27
    216.冉景煌,张力,崔严鹏.水处理固体废物用作燃煤添加剂的实用性[J],热能动力工程,2001,16(3):473-475
    217. Liu Y H, Che D F, XuTM. Catalytic reduction of SO2 during Combustion of typical Chinese coals[J], Fuel Processing Technology,2002,79(2):157-169
    218.任允芙.冶金工艺矿物学[M],北京冶金工业出版社,1966,99-100
    219.潘宝臣.钢铁冶金岩相学[M],北京冶金工业出版社,1972,186-222
    220. Anthony E J, Granatstein D L. Sulfation phenomena in fiuidized bed combustion systems[J], Progress in Energy and Combustion Scienee,2001,27:215-236
    221. Torres-Ordonez R J. Sulfur retention as CaS during coal combustion:a modeling study to define mechanism and possible technologies[J], Fuel,1993,72(5):633-638
    222.Freund H, Lyon R K. The sulfur retention of calcium-containing coal during fuel-rich combustion[J], Combustion & Flame,1982,45(2):191-197
    223.杨天华.煤燃烧脱硫过程中高温物相固硫基础研究[D],浙江大学,2004
    224. Guan R G, Li W, Li B Q. Effects of ca-based additives on desulfurization during coal pyrolysis[J], Fuel,2003,82(15-17):1961-1966
    225. Qiu K, Anthony E J, Jia L. Oxidation of sulfided limestone under the conditions of pressurized fluidized bed combustion[J], Fuel,2001,80(4):549-558
    226.Mattisson T. Sulfur capture during combustion of coal in circulating fluidized bed boilers [D], Sweden:Goteborg University,1998
    227. Torres-Ordonez R j, Longwell J P, Sarofim A F. Intrinsic Kinetics of CaS oxidation[J], Enegy&Fuels,1989a,3:506-515
    228. Torres-Ordonez R j, Longwell J P, Sarofim A F. Intrinsic Kinetics of CaS oxidation[J], Enegy&Fuels,1989b,3:595-603
    229.张寿荣.炼铁系统节能-我国钢铁工业21世纪技术进步的重点[J],钢铁,2005,40(5):1-4
    230.蔡九菊,杜涛,陆钟武,等.钢铁生产流程环境负荷评价体系的研究方法[J],钢铁,2002,37(8):66-70
    231.张夏,郭占成.我国钢铁工业能耗与大气污染物排放量[J],钢铁,2000,35(1):63-68
    232.吴复忠,蔡九菊,李军旗.炼铁系统的硫素流分析[J],工业加热,2008,37(2):6-9
    233.蔡九菊,吴复忠,李军旗,等.高炉—转炉流程生产过程的硫素流分析[J],钢铁,2008,43(7):91-95
    234.赵扬.钢铁企业清洁生产审核中的硫素代谢分析[J],能源与环境,2007,(5):102-104
    235.范红宇.不同气氛下高温脱硫产物硫酸钙和硫化钙相互转化机理研究[D],浙江大学,2004,41-50
    236. Wjeczorek-Ciurowa K. The thermal behavior of compounds in the Ca-S-0 system[J], Journal of Thermal Analysis,1992,38:523-530
    237.王悦祥.烧结矿与球团矿生产[M],北京:冶金工业出版社,2006,116-140
    238.郝素菊,蒋武锋,赵丽树,等.高炉炼铁500问[M],北京:化学工业出版社,2008,38-39
    239.杨双平,冯燕波,石自新.酒钢高炉炉料结构优化实验研究[J],钢铁研究,2007,35(2):40-43
    240.王海涛,李光辉,范晓慧,等.几种高炉炉料冶金性能的对比研究[J],钢铁,2006,41(1):23-27
    241.陶卫忠,汪国俊.高炉炉料结构的优化和探索[J],炼铁,2005,24:46-49
    242.徐矩良.我国高炉合理炉料结构探讨[J],钢铁,2004,23(4):25-26
    243.高志红,郭建斌.石钢高炉炉料结构的改善[J],炼铁,2004,23(3):48-49
    244.吴胜利,韩宏亮,徐少兵,等.高炉优化配料数学模型的研究[J],钢铁,2007,42(9):19-23
    245.杨佳龙,谭穗勤,王朝平,等.增加球团矿用量以优化高炉炉料结构[J],钢铁,2005,40(10):13-17
    246.Hideki KAWAI, Hiroshi TAKAHASHI, Morimasa ICHIDA. Segregation behavior for fine particles of sintered ores and coke supplied at the top of a two dimensional cold model of blast furnace [J], ISIJ International,2005,45(8):1112-1121
    247.彭园园,宋健斐,魏耀东,等.钢铁厂烧结烟气脱硫技术的研究进展[J],冶金能源,2008,27(3):55-58
    248.郜学.我国烧结球团行业脱硫现状及减排对策[J],烧结球团,2008,33(3):1-5
    249.国家统计局.国家统计年鉴,北京:中国统计出版社,2005:404-405
    250.沙永志.我国炼铁节能与环保[J],钢铁,2000,35(7):62-65
    251.郝继锋,汪莉,宋存义.钢铁厂烧结烟气脱硫技术探讨[J],大连理工大学学报,2005,36(4):491-494
    252.宁玲,文耀爱.关于烧结工艺502排放量的计算[J],环境工程,2001,19(1):55-56
    253.YB/T006-91,优质铁烧结矿技术指标
    254.YB/T421-92,铁烧结矿技术指标
    255.郭兴敏.烧结过程铁酸钙生成及其矿物学[M],北京:冶金工业出版社,1999,164-165
    256.郝素菊,蒋武锋,白彦东,等.石灰活性对烧结矿中铁酸钙结晶形态的影响[J],烧结球团,2007,32(5):15-18
    257.郝素菊,蒋武锋,韩秀丽,等.石灰活性对烧结矿质量的影响[J],中国冶金,2008,18(1):13-16
    258.王素平,毕学工,翁得明.煤粉粒度组成对武钢烧结矿铁酸钙生成的影响[J],烧结球团,2008,33(2):15-18
    259.甘勤,何群.影响钒钛烧结矿铁酸钙生成因素的研究[J],烧结球团,2008,33(2):9-14
    260.Dawson P R. The inflation of alumina on the development of complex calcium ferrite in iron ore sinter [J], MiningMetal.section,2000,(6):71-78
    261.Makashima K, Saito N, Shinoizaki S. Wetting and penetration behavior of calcium ferrite melts to sintered hematite [J], ISIJ international,2004,44(12):2052-2054
    262.张世娟,王树同.针状铁酸钙形成机理的实验研究[J],钢铁,1992,27(7):7-12
    263.张玉柱,郎建峰,李振国.B203对磁铁矿烧结过程铁酸钙形成的影响[J],河北理工学院学报,1999,21(4):13-17
    264.侯兴.烧结矿产质量与炼铁指标的关系[J],烧结球团,1996,(4):48-49
    265. Loo C E, Bristow N J铁矿石烧结矿低温还原粉化机理研究[J],烧结球团,1995,20(6):3-4
    266.徐瑞图,吴胜利.中国铁矿石烧结研究-周取定教授论文集[M],北京:冶金工业出版社,1997,41-42
    267.王明军,张丙怀,阳海彬.南钢新2号高炉炉料冶金性能的研究[J],钢铁,2008,43(4):14-17
    268.尹桂先,翁德明,胡立新.MAC粉矿烧结试验研究[J],钢铁研究,2005,33(4):7-11
    269.王颖生,苍大强,赵志星,等.澳大利亚FMG矿粉烧结性能研究[J],烧结球团,2008,33(2):5-8
    270.王文山,吕庆,李福民,等.澳矿粉配比对含钒烧结过程和烧结矿冶金性能的影响[J],钢铁研究,2008,36(4):1-4
    271.应自伟,许力贤,姜茂发,等.铁酸钙的形态对烧结矿抗断裂性能的影响[J],钢铁研究学报,2006,18(2):55-58
    272.张爱萍.燃煤锅炉烟气氨法脱硫技术的应用[J],环境科学导刊,2009,28(2):58-61
    273.闫晓光,熊理想,马宏金,等.FCL氨法烟气脱硫技术特点及应用[J],电力环境保护,2008,24(2):11-12
    274.王晓宇,王彦明.氨法烟气脱硫技术及适用性分析[J],化工生产与技术,2008,15(2):47-50
    275.王伟能.氨法烟气联合脱硫脱氮技术工艺[J],能源环境保护,2008,22(1):15-17
    276.王文宝,顾晓霞,张存军.苏中热电厂环保氨法脱硫实例分析[J],污染防治技术,2007,20(2):97-99
    277.程建高.氨法脱硫技术在高压锅炉上的应用[J],资源节约与环保,2007,23(96):59-61
    278.葛能强,邵永春.湿式氨法脱硫工艺及应用[J],硫酸工业,2006,(6):10-15
    279.陈梅倩,何伯述,陈广华,等.氨法脱硫反应特性的化学动力学分析[J],环境科学学报,2005,25(7):886-890
    280.周建宏,甘艳,普煜,等.燃煤锅炉氨法烟气脱硫[J],环境工程,2005,23(3):49-50
    281.梁高.氨法脱硫在热电厂中应用[J],能源环境保护,2004,18(4):34-37
    282.黄亚继,金保升,朱凤松,等.TS-35型氨法脱硫工业化试验及其经济性分析[J],环境工程,2004,22(2):30-33
    283.程琰.湿式吸收法同时烟气脱硫脱氮技术进展[J].化工环保,2006,26(3):209-212
    284.任源,韦朝海,吴超飞,等.焦化废水水质组成及其环境学与生物学特性分析[J],环境科学学报,2007,27(7):1094-1100
    285.江荣才,徐海军,林春源,等.三钢2号烧结机机头烟气脱硫方案的选择及论证[J],烧结球团,2007,32(4):18-21
    286.戴干策,陈敏恒.化工流体力学[M],北京:化学工业出版社,2005,215-228
    287.谭天恩,李伟.化工原理[M],北京:化学工业出版社,2004,180-186
    288.杨飏.二氧化硫减排技术与烟气脱硫工程[M],北京:冶金工业出版社,2004,32-40
    289.陈芳艳,钟宇,何军,等.铁屑/焦炭/H2O2法预处理焦化废水的试验研究[J],环境科学与技术,2007,30(8):90-92
    290.叶张荣,马鲁铭.铁屑内电解法对活性艳红X-3B脱色过程的机理研究[J],水处理技术,2005,31(8):65-67
    291.曹加胜,王连生,韩朔夔,等.零价铁还原降解活性染料[J],环境化学,1999,18(2):152-156
    292.蓝连贺.内电解法处理印染废水的效果研究与分析[J],工业水处理,2004,24(7):24-27
    293. Ma L, Ding Z, Gao T, et al. Discoloration of methylene blue and wastewater from a plant by a Fe /Cu bimetallic system [J], Chemosphere,2004,55(9):1207-1212
    294.Perey J R, Chiu P C, Huang C P, et al. Zero-valent iron pretreatment for enhancing the biodegradability of azo dyes [J], Water Environment Research,2002,74(3):221-225
    295.Klausen J, Ranke J, Rene P. Influence of solution composition and column aging on the reduction of nitroaromatic compounds by zero-valent iron [J], Chemosphere,2001,44(4): 511-517
    296.齐旭东,赵良庆,王琨,等.腐蚀电池-Fenton工艺用于垃圾渗滤液的预处理研究[J],环境科学学报,2006,26(1):61-69
    297.方觉,郝素菊,李振国,等.非高炉炼铁[M],北京:冶金工业出版社,2002,107-143
    298.杨若仪.用煤气化生产海绵铁的流程探讨[J],钢铁技术,2007,5:1-6
    299.Dakhel N, Pasteris G, Werner D, et al. Small-volume releases of gasoline in the vadose zone: impact of the additives MTBE and ethanol on groundwater quality [J], Environmental Science and Technology,2003,37:2127-2133
    300.梁存珍,陈家庆,朱玲,等.固相微萃取与气相色谱-质谱联用测定饮用水中甲基叔丁基醚[J],中国环境监测,2009,25(1):26-28
    301.李卫建,聂志强,蔡谚明,等.气相色谱法同时测定土壤中13种三嗪类除草剂残留量的方法研究[J],农业环境科学学报,2009,28(1):211-215
    302.彭敏.吹扫捕集/气相色谱-质谱联用测定水中26种挥发性有机物[J],环境研究与监测,2008,21(2):18-21
    303.钱益群.固相微萃取-GC/MS法测定水中DDVP[J],质谱学报,2006,27(3):160-162
    304.万益群,李艳霞.气相色谱-质谱法同时测定中药中有机磷和有机氮农药残留量[J],分析测试学报,2005,24(3):90-94
    305.吴金义.铁炭还原法处理乡镇企业电镀综合废水[J],环境污染与防治,1989,11(1):35-38
    306.吕剑,何益亮,张强,等.铁炭微电解联合O/A/O生物工艺处理化工废水[J],工业水处理,2009,29(2):89-92
    307.苏莹,单明军,吕艳丽,等.微电解法对焦化废水脱氮的研究[J],燃料与化工,2008,39(5):38-45
    308.黄志雄,游卫强,杨燮明.高浓度酸醇树脂废水处理中试研究[J],环境卫生工程,2008,16(4):38-40
    309. Wang M X, Zhu S Q, He X W. Study on micro electrolysis treatment for decolorizing dyed water [J], Jour CUNT,2001,11(2):212-216
    310. Jin Y Z, Zhang Y F, Li W. Micro-electrolysis technology for industrial wastewater treatment [J], Journal of Environmental Sciences,1994,15(3):334-338
    311. Agrawal A, Tratnyek P G. Reduction of nitro aromatic compounds by zero-valent iron metal [J], Environmental Science & Technology,1996,30(1):153-160
    312.楼紫阳,吴革军,张晓均,等.FeC内电解处理渗滤液尾水研究[J],有色冶金设计与研究,2007,28(2):237-240

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700