用户名: 密码: 验证码:
磁控溅射SiC薄膜制备及其场发射相关性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源、材料、信息科学是新技术革命的先导和支柱。作为特殊形态材料的固体功能薄膜材料,在纳米电子学、微电子学、光电子学、磁电子学、高灵敏度传感器以及低价、高效、大面积太阳能电池等高新技术领域有着极为广泛的应用。SiC薄膜集力学、电学、热学和光学等优异特性于一身,在高温、高频、大功率、抗辐射等领域极具应用潜力,成为能够在极端条件下应用并具有极端特性的新一代宽带隙半导体薄膜材料与器件的优选。
     本文首先对宽禁带SiC半导体材料独特的结构特性、理化及电子学性质进行了简要介绍,对目前国内外有关SiC单晶体及薄膜生长、SiC场发射性能及相关器件的研究现状、取得的成绩及存在的问题进行了概述,确定了课题的主要研究方向、内容和目标。
     其次,在充分了解掌握薄膜制备方法手段的基础上,采用磁控溅射法,通过探索磁控溅射SiC薄膜的较好生长工艺条件,使结构致密、纯度较高、附着性良好的SiC薄膜,按照非自发形核、原子团的迁移、连续薄膜生长的机理,在异质Si衬底上实现了层状外延式生长。
     然后,在充分了解掌握薄膜材料物性分析表征方法的基础上,采用SEM、AFM、XRD和EDS等先进测试分析手段,对磁控溅射SiC薄膜的物性进行了较为全面的测试和分析,进一步验证了在靶基距55 mm、溅射气压2.0 Pa的情况下,溅射功率在100~150 W、沉积温度在400~600℃应该是磁控溅射法SiC/Si薄膜沉积的较好工艺条件;同时,根据非晶和多晶半导体物理有关理论,对磁控溅射SiC薄膜有关定域态间近程跳跃导电的机理进行了推断和实验分析验证,定域态间声子辅助跳跃的平均电子激活能为? W≈0.015 eV。
     最后,基于半导体场致电子发射理论机理,并通过超高真空场发射性能测试设备,对磁控溅射SiC薄膜的场发射性能及相关因素对其的影响进行了较为全面的测试和分析。场发射性能指标最高的磁控溅射SiC薄膜,其场发射电流密度从背景噪声中可靠分辨时的开启电场约为3.5 V/μm,场发射电流密度为0.05 mA/cm2时阈值电场为5.6 V/μm,电场为10 V/μm时的场发射电流密度达到0.71 mA/cm2,磁控溅射SiC薄膜的功函数(势垒高度)约为1.613 eV,具有良好的场发射性能。
Energy Sources, materials and information related science are forerunners and supporters of the new technology revolution. As a kind of special style material, solid functional films are widely applied in high and new technology situation, such as nano-electronics, micro-electronics, photo- electronics, magnetronics, high-sensibility sensors, and economical, high- efficiency, large-area solar cells etc. With the excellent performances of mechanics, electronics, thermodynamics, photonics etc., SiC films have great application potencial in the field of high-temperature, high-frequency, high- power, anti-radiation, etc., which become the prior choice of new generation of wide band gap semiconductor materials and devices with extreme properties and capable applied in extreme situations.
     Firstly, the peculiar structural, physi-chemical and electronical characteristics of wide band SiC semiconductor were summary introduced. The international research situation, achievements and existing problems related to SiC bulk and film growth, field emission properties and related devices were summarized. The research direction, contents and goals of the thesis were determined.
     Secondly, based on fully comprehending and mastering the film fabrication methods, SiC films with compact structure, high purity, and good adhension were fabricated by magnetron sputtering deposition (MS). The SiC films were layer by layer hetero-epitaxial grown on Si substrates under the optimal MS technique condition, and according to the film growth mechanism of non-spontaneous core formation, atoms transference and continuous growth.
     Thirdly, based on fully comprehending and mastering the film characterization methods, the physical characteristics of magnetron sputtered SiC films were generally measured and analyzed by advanced measurements, including SEM, AFM, XRD, EDS, etc. The optimal technique condition for magnetron sputtering SiC/Si film deposition were more verified as 100~ 150W DC sputtering power, and 400~600℃substrate temperature under the situation of 55 mm target-substrate distance and 2.0 Pa sputtering pressure. At the same time, the conducting mechanism of short-range jumping between the fixed-region status related to the MS SiC films were concluded and experimetally analyzed according to the theory of amorphous and polycrystal semiconductor physics. The average electronic activation energy of phonon assised jumping between the fixed-region status was ?W≈0.015 eV.
     Finally, based on semiconductor field emission mechanism and theory, and by field emission measurement equipment with super-high vacuum, the field emission properties of and other effects on MS SiC films were com- prehensively measured and analyzed. The optimal field emission parameters for MS SiC films were as follows: The open field (defined as current density reliably identified from the background noise) was 3.5 V/μm. The threshold field (defined as the field when the emission current density is 0.05 mA/cm2) was 5.6 V/μm. The emission current density was achieved to 0.71 mA/cm2 with the applied field of 10 V/μm. Work function (potential height) was about 1.613 eV. The MS SiC films were with excellent field emission capability.
引文
1 H. Morkoc, S. Strite, G. B. Gao, etal. Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based Semiconductor Device Technology. J. Appl. Phys., 1994, 76 (3) : 1363-1398
    2 R. Izaki, M. Hoshino, T. Yaginuma, etal. Thermal Properties and Thermoelectric microdevices with InN Thin Films. Microelectronics Journal, 2007, 38 (6-7) : 667-671
    3 R. Khenata, A. Bouhemadou, M. Sahnoun, etal. Elastic, Electronic and Optical Properties of ZnS, ZnSe and ZnTe under Pressure. Computational Materials Science, 2006, 38 (1) : 29-38
    4 A. Denisenko, E. Kohn. Diamond Power Devices: Concepts and Limits. Diamond & Related Materials, 2005, 14 (3-7) : 491-498
    5 N. Ekem, S. Korkmaz, S. Pat, etal. Some Physical Properties of ZnO thin films Prepared by RF Sputtering Technique. International Journal of Hydrogen Energy, 2009, 34 (12) : 5218-5222
    6 W. Y. Ching, Y. N. Xu, P. Rulis, etal. The Electronic Structure and Spectroscopic Properties of 3C, 2H, 4H, 6H, 15R and 21R Polymorphs of SiC. Materials Science and Engineering: A, 2006, 422 (1-2) : 147-156
    7 C. Virojanadara, M. Hetzel, L. I. Johansson, etal. Electronic and Atomic Structure of the 4H-SiC(1120 )-c(2×2) Surface. Surface Science, 2008, 602 (2) : 525-533
    8 F. Takeuchi, R. Fukuyama, Y. Hoshino, etal. Atomic and Electronic Structures of
    6H-SiC(0001)-3×3 Surfaces. Surface Science, 2007, 601 (10) : 2203-2213
    9 T. H. Peng, Y. F. Lou, S. F. Jin, etal. Debye Temperature of 4H-SiC Determined by X-ray Powder Diffraction. Powder Diffr., 2009, 24 (4) : 311-314
    10 V. Kulikovsky, V. Vorlí?ek, P. Bohá?, etal. Hardness and Elastic Modulus of Amorphous and Nanocrystalline SiC and Si Films. Surface and Coatings Technology, 2008, 202 (9) : 1738-1745
    11 E. Schmitt, T. Straubinger, M. Rasp, etal. Defect Reduction in Sublimation Grown SiC Bulk Crystals. Superlattices and Microstructures, 2006, 40 (4-6) : 320-327
    12 W. Cunningham, A. Gouldwell, G. Lamb, Performance of Bulk SiC Radiation Detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 487 (1-2) : 33-39
    13 M. Syv?j?rvi, R. Yakimova, E. Janzén. Growth of SiC from the Liquid Phase: Wetting and Dissolution of SiC. Diamond and Related Materials, 1997, 6 (10) : 1266-1268
    14 C. Cobet, K. Wilmers, T. Wethkamp, etal. Optical Properties of SiC Investigated by Spectroscopic Ellipsometry from 3.5 to 10 eV. Thin Solid Films, 2000, 364 (1-2) : 111-113
    15 R. P. Joshi, D. K. Ferry. Calculations of the Temperature and Field Dependent Electronic Mobility inβ-SiC. Solid-State Electronics, 1995, 38 (11) : 1911-1916
    16 Y. Hoshide, A. Tabata, A. Kitagawa, etal. Preparation of n-type Nanocrystalline 3C-SiC Films by Hot-wire CVD using N2 as Doping Gas. Thin Solid Films, 2009, 517 (12) : 3524-3527
    17 V. Heera, D. Panknin, W. Skorupa. p-Type Doping of SiC by High Dose Al Implantation - Problems and Progress. Applied Surface Science, 2001, 184 (1-4) : 307-316
    18 Xiaolei Su, Wancheng Zhou, Jie Xu, etal. Improvement of Permittivity of SiC with Al Doping by Combustion Synthesis using Al2O3. Journal of Alloys and Compounds, 2010, 492 (1-2) : L16-L19
    19 F. Demichelis, G. Crovini, C. F. Pirri, etal. Boron and Phosphorus Doping of a-SiC:H Thin Films by Means of Ion Implantation. Thin Solid Films, 1995, 265 (1-2) : 113-118
    20 V.A. Dmitriev, M.G. Spencer. Chapter2 SiC Fabrication Technology: Growth and Doping. Semiconductors and Semimetals, 1998, 52 : 21-75
    21 M. Bickermann, R. Weing?rtner, A. Winnacker. On the Preparation of Vanadium Doped PVT Grown SiC Boules with High Semi-insulating Yield. Journal of Crystal Growth, 2003, 254 (3-4) : 390-399
    22 D. Chaussende, P. J. Wellmann, M. Pons. Status of SiC Bulk Growth Processes. J. Phys. D: Appl. Phys., 2007, 40 (20) : 6150-6158
    23 Y. M. Tairov, V. F. Tsvetkov. Investigation of Growth Processes of Ingots of Silicon Carbide Single Crystals. J. Cryst. Growth, 1978, 43 (2) : 209-212
    24 N. Ohtani, T. Fujimoto, M. Katsuno, etal. Growth of Large High-quality SiC Single Crystals. J. Cryst. Growth, 2002, 237-239 (2) : 1180-1186
    25 S. G. Müller, R. C. Glass, H. M. Hobgood, etal. Progress in the Industrial Production of SiC Substrates for Semiconductor Devices. Materials Science and Engineering B, 2001, 80 (1-3) : 327-331
    26 D. Nakamura, I. Gunjishima, S. Yamaguchi, etal. Ultrahigh-quality Silicon Carbide Single Crystals. Nature (UK Edition), 2004, 430 (7003) : 1009-1011
    27 O. Kordina, C. Hallin, A. Ellison, etal. High Temperature Chemical Vapor Deposition of SiC. Appl. Phys. Lett., 1996, 69 (10) : 1456-1458
    28 A. Ellison, B. Magnusson, B. Sundqvist, etal. Chapter 1 - Highlights - SiC Crystal Growth by HTCVD. Materials Science Forum, 2004, 457 : 9-14
    29 M. Fanton, D. Snyder, B. Weiland, etal. Growth of Nitrogen-doped SiC Boules by Halide Chemical Vapor Deposition. J. Cryst. Growth, 2006, 287 (2) : 359-362
    30 M. Fanton, D. Snyder, H. J. Chung, etal. Chapter 2 - Bulk Crystal Growth - 2.3 Hexagonal Polytypes - Growth of Bulk SiC by Halide Chemical Vapor Deposition. Materials Science Forum, 2004, 457 : 87- 90
    31 P. Wellmann, P. Desperrier, R. Müller, etal. SiC Single Crystal Growth by a Modified Physical Vapor Transport Technique. J. Cryst. Growth, 2005, 275 (1-2) : e555-e560
    32 D. Chaussende, M. Ucar, L. Auvray, etal. Control of the Supersaturation in the CF-PVT Process for the Growth of Silicon Carbide Crystals: Research and Applications. Crystal Growth and Design, 2005, 5 (4) : 1539-1544
    33 D. Chaussende, C. Balloud, L. Auvray, etal. Chapter 2 - Bulk Crystal Growth - 2.3 Hexagonal Polytypes - Characterization of Thick 2-Inch 4H-SiC Layers Grown by the Continuous Feed-Physical Vapor Transport Method. Materials Science Forum, 2004, 457 : 91-94
    34 D. Chaussende, L. Latu-Romain, L. Auvray, etal. Chapter 2 - SiC Epitaxy - 2.2 Heteroepitaxial Growth - Large Area DPB Free (111) b-SiC Thick Layer Grown on (0001) a-SiC Nominal Surfaces by the CF-PVT Method. Materials Science Forum, 2005, 483 : 225-228
    35 V. Dmitriev, A. Cherenkov. Growth of SiC and SiC-AlN Solid Solution by Container-free Liquid Phase Epitaxy. J. Cryst. Growth, 1993, 128 (1-4) : 343-348
    36 M. Syv?j?rvi, R. Yakimova, H. H. Radamson, etal. Liquid Phase Epitaxial Growth of SiC. J. Cryst. Growth, 1999, 197 (1-2) : 147-154
    37 J. Wollweber, V. Chevrier, D. Siche, etal. Growth of 3C SiC Single Crystals from Convection Dominated Melts. Materials Science Forum, 2000, 338 : 119-124
    38 K. Kusunoki, K. Kamei, N. Okada, etal. Part 1 - Chapter 1 - SiC Bulk Growth - Solution Growth of SiC Crystal with High Growth Rate Using Accelerated Crucible Rotation Technique. Materials Science Forum, 2006, 527 : 119-122
    39 C. Jacquier, G. Ferro, F. Cauwet, etal. SiC Homoepitaxial Growth at Low Temperature byVapor-Liquid-Solid Mechanism in Al-Si Melt. Crystal Growth and Design, 2003, 3 (3) : 285-288
    40 N. Boutarek, D. Chaussende, R. Madar. Chapter 2 - SiC Epitaxy - 2.1 Homoepitaxial Growth - High SiC Growth Rate Obtained by Vapour-Liquid-Solid Mechanism. Materials Science Forum, 2007, 556 : 105-108
    41 S. Nishino, Y. Hazuki, H. Matsunami, etal. Chemical Vapor Deposition of Single Crystallineβ-SiC films on Silicon Substrate with Sputtered Intermediate Layer. J. Electrochem. Soc., 1980, 127 (12) : 2674-2680
    42 S. Nishino, J. A. Powell, H. A. Will. Production of Large-area Single-crystal Wafers of Cubic SiC for Semiconductor Devices. Appl. Phys. Lett., 1983, 42 (5) :460-462
    43 R. L. Myers, Y. Shishkin, O. Kordina, etal. High Growth Rates (>30μm/h) of 4H–SiC Epitaxial Layers using a Horizontal Hot-wall CVD Reactor. J. Cryst. Growth, 2005, 285 (4) : 486-490
    44 S. Nakazawa, T. Kimoto, K. Hashimoto, etal. High-purity 4H-SiC Epitaxial Growth by Hot-wall Chemical Vapor Deposition. J. Cryst. Growth, 2002, 237-239 (part 2) : 1213-1218
    45 J. Zhang, U. Forsberg, M. Isacson, etal. Growth Characteristics of SiC in a Hot-wall CVD Reactor with Rotation. J. Cryst. Growth, 2002, 241 (4) : 431-438
    46 J. Zhang, A. Ellison, ?. Danielsson, etal. Epitaxial Growth of 4H SiC in a Vertical Hot-wall CVD Reactor: Comparison Between up- and down-flow Orientations. J. Cryst. Growth, 2002, 241 (4) : 421-430
    47 K. Fujihira, T. Kimoto, H. Matsunami. Growth and Characterization of 4H–SiC in Vertical Hot-wall Chemical Vapor Deposition. J. Cryst. Growth, 2003, 255 (1-2) : 136-144
    48 B. Schroeder, U. Weber, H. Seitz, etal. Current Status of the Thermo-catalytic (hot-wire) CVD of Thin Silicon Films for Photovoltaic Applications. Thin Solid Films, 2001, 395 (1-2) : 298-304
    49 T. Itoh, Y. Katoh, T. Fujiwara, etal. Preparation of Silicon–carbon Alloy Films by Hot-wire CVD and Their Rroperties. Thin Solid Films, 2001, 395 (1-2) : 240-243
    50 K. Chikusa, K. Takemoto, T. Itoh, etal. Preparation of B-doped a-Si1?xCx:H Films and Heterojunction p–i–n Solar Cells by the Cat-CVD Method. Thin Solid Films, 2003, 430 (1-2) : 245-248
    51 B. P. Swain, T. K. Gundu Rao, M. Roy, etal. Effect of H2 Dilution on Cat-CVD a-SiC:H Films. Thin Solid Films, 2006, 501 (1-2) : 173-176
    52 S. Yagi, K. Abe, A. Yamada, etal. Semiconductors - C Stability in Si1-yCy Epitaxial Films Grownby Low-Temperature Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2003, 42 (4) : 1499-1502
    53 A. Tabata, M. Mori. Structural Changes of Hot-wire CVD Silicon Carbide Thin Films Induced by Gas Flow Rates. Thin Solid Films, 2008, 516 (5) : 626-629
    54 A. Tabata, Y. Komura, T. Narita, Growth of Silicon Carbide Thin Films by Hot-wire Chemical Vapor Deposition from SiH4/CH4/H2. Thin Solid Films, 2009, 517 (12) : 3516-3519
    55 Y. Hoshide, A. Tabata, A. Kitagawa, etal. Preparation of n-type Nanocrystalline 3C-SiC Films by Hot-wire CVD using N2 as Doping Gas. Thin Solid Films, 2009, 517 (12) : 3524-3527
    56 T. Chen, Y. Huang, H. Wang, Microcrystalline Silicon Carbide Thin Films Grown by HWCVD at Different Filament Temperatures and Their Application in n-i-p Microcrystalline Silicon Solar Cells. Thin Solid Films, 2009, 517 (12) : 3513-3515
    57 F. Finger, O. Astakhov, T. Bronger, etal. Microcrystalline Silicon Carbide Alloys Prepared with HWCVD as Highly Transparent and Conductive Window Layers for Thin Film Solar Cells. Thin Solid Films, 2009, 517 (12) : 3507-3512
    58 A. Dasgupta, Y. Huang, L. Houben, etal. Effect of Filament and Substrate Temperatures on the Structural and Electrical Properties of SiC Thin Films Grown by the HWCVD Technique. Thin Solid Films, 2008, 516 (5) : 622-625
    59 M. B. J. Wijesundara, D. Gao, C. Carraro, etal. Nitrogen Doping of Polycrystalline 3C-SiC Films Grown using 1,3-disilabutane in a Conventional LPCVD Reactor. J. Cryst. Growth, 2003, 259 (1-2) : 18-25
    60 H. W. Zheng, J. F. Su, Z. X. Fu, etal. Heteroepitaxial Growth and Characterization of 3C-SiC Films on on-axis Si (1 1 0) Substrates by LPCVD. Ceramics International, 2008, 34 (3) : 657-660
    61 X. A. Fu, J. L. Dunning, C. A. Zorman, etal. Polycrystalline 3C-SiC Thin Films Deposited by Dual Precursor LPCVD for MEMS Applications. Sensors and Actuators A: Physical, 2005, 119 (1) : 169-176
    62 H. W. Zheng, Z. X. Fu, B.X. Lin, etal. Controlled-growth and Characterization of 3C-SiC and
    6H-SiC Films on C-plane Sapphire Substrates by LPCVD. Journal of Alloys and Compounds, 2006, 426 (1-2) : 290-294
    63 S. S. Noh, X. A. Fu, L. Chen, etal. A Study of Electrical Properties and Microstructure of Nitrogen-doped Poly-SiC Films Deposited by LPCVD. Sensors and Actuators A: Physical, 2007,136 (2) : 613-617
    64 N. I. Cho, Y. Choi, S. J. Noh. Plasma Assisted Process for Deposition of Silicon Carbide Thin Films. Current Applied Physics, 2006, 6 (2) : 161-165
    65 F. Liao, S. Park, J. M. Larson, etal. High-rate Chemical Vapor Deposition of Nanocrystalline Silicon Carbide Films by Radio Frequency Thermal Plasma. Materials Letters, 2003, 57 (13-14) : 1982-1986
    66 X. H. Wang, K. Eguchi, C. Iwamoto, etal. Ultrafast Thermal Plasma Physical Vapor Deposition of Thick SiC Films. Science and Technology of Advanced Materials, 2003, 4 (2) : 159-165
    67 H. S. Kim, Y. J. Park, I. H. Choi, etal.β-SiC Thin Film Growth using Microwave Plasma Activated CH4-SiH4 Sources. Thin Solid Films, 1999, 341 (1-2) : 42-46
    68 W. Yu, W. B. Lu, Y. B. Yang, etal. Fabrication of Nanocrystalline Silicon Carbide Thin Film by Helicon Wave Plasma Enhanced Chemical Vapour Deposition. Thin Solid Films, 2007, 515 (5) : 2949-2953
    69 K. Yasui, K. Asada, T. Maeda, etal. Growth of High Quality Silicon Carbide Films on Si by Triode Plasma CVD using Monomethylsilane. Applied Surface Science, 2001, 175-176 : 495-498
    70 C. Iliescu, B. T. Chen, J. S. Wei, etal. Characterisation of Silicon Carbide Films Deposited by Plasma-enhanced Chemical Vapour Deposition. Thin Solid Films, 2008, 516 (6) : 5189-5193
    71 Z. P. Wang, H. R. Yousefi, Y. Nishino, etal. Preparation of Silicon Carbide Film by a Plasma Focus Device. Physics Letters A, 2008, 372 (48) : 7179-7182
    72 C. R. Stoldt, M. C. Fritz, C. Carraro, etal. Micromechanical Properties of Silicon-carbide Thin Films Deposited using Single-source Chemical-vapor Deposition. Appl. Phys. Lett., 2001, 79 (3) : 347-349
    73 C. R. Stoldt, C. Carraro, W. R. Ashurst, etal. A Low-temperature CVD Process for Silicon Carbide MEMS. Sens. Actuators A, 2002, 97 (2) : 410-415
    74 H. Nakazawa, M. Suemitsu, S. Asami. Gas-source MBE of SiC/Si using Monomethylsilane. Thin Solid Films, 2000, 369 (1-2) : 269-272
    75 N. Moronuki, M. Kojima, A. Kakuta. Single-crystal SiC Thin-film Produced by Epitaxial Growth and its Application to Micro-mechanical Devices. Thin Solid Films, 2008, 516 (16) : 5244-5348
    76 J. S. Pelt, M. E. Ramsey, S. M. Durbin. Characterization of Crystalline SiC Films Grown by Pulsed Laser Deposition. Thin Solid Films, 2000, 371 (1-2) : 72-79
    77 Y. S. Katharria, S. Kumar, R.J. Choudhary, etal. Pulsed Laser Deposition of SiC Thin Films at Medium Substrate Temperatures. Thin Solid Films, 2008, 516 (18) : 6083-6087
    78 Y. S. Katharria, S. Kumar, R. Prakash, etal. Characterizations of Pulsed Laser Deposited SiC Thin Films. Journal of Non-Crystalline Solids, 2007, 353 (52-54) : 4660-4665
    79 C. Ghica, C. Ristoscu, G. Socol, etal. Growth and Characterization ofβ-SiC Films Obtained by fs Laser Ablation. Applied Surface Science, 2006, 252 (13) : 4672-4677
    80 Y. H. Tang, T. K. Sham, D. Yang, etal. Preparation and Characterization of Pulsed Laser Deposition (PLD) SiC Films. Applied Surface Science, 2006, 252 (10) : 3386-3389
    81 H. ElGazzar, E. Abdel-Rahman, H. G. Salem, etal. Preparation and Characterizations of Amorphous Nanostructured SiC Thin Films by Low Energy Pulsed Laser Deposition. Applied Surface Science, 2010, 256 (7) : 2056-2060
    82 W. K. Choi. Chapter 1– Optical, Structural, and Electrical Properties of Amorphous Silicon Carbide Films. Silicon-Based Materials and Devices 1: Materials and Processing, Academic Press, 2001 : 1-71
    83 Z. D. Sha, X. M. Wu, L. J. Zhuge. Structure and Photoluminescence Properties of SiC Films Synthesized by the RF-magnetron Sputtering Technique. Vacuum, 2005, 79 (3-4) : 250-254
    84 J. C. Zhou, X. Q. Zheng. Structure and Electronic Properties of SiC Thin-films Deposited by RF Magnetron Sputtering. Transactions of Nonferrous Metals Society of China, 2007, 17 (2) : 373-377
    85 S. M. Rajab, I. C. Oliveira, M. Massi, etal. Effect of the Thermal Annealing on the Electrical and Physical Properties of SiC Thin Films Produced by RF Magnetron Sputtering. Thin Solid Films, 2006, 515 (1) : 170-175
    86 L. Gou, C. S. Qi, J. G. Ran, etal. SiC Film Feposition by DC Magnetron Sputtering. Thin Solid Films, 1999, 345 (1) : 42-44
    87 Y. M. Lei, Y. H. Yu, C. X. Ren, etal. Compositional and Structural Studies of DC Magnetron Sputtered SiC Films on Si(111). Thin Solid Films, 2000, 365 (1) : 53-57
    88 S. Inoue, T. Namazu, H. Tawa, etal. Stress Control of a-SiC Films Deposited by Dual Source dc Magnetron Sputtering. Vacuum, 2006, 80 (7) : 744-747
    89陈治明,李守智编著.宽禁带半导体电力电子器件及其应用.北京:机械工业出版社, 2008年10月
    90 V. V. Buniatyan, V. M. Aroutiounian. Wide Gap Semiconductor Microwave Devices. J. Phys. D:Appl. Phys., 2007, 40 (20) : 6355-6389
    91 N. G. Wright, A. B. Horsfall. SiC Sensors: a Review. J. Phys. D: Appl. Phys., 2007, 40 (20) : 6345-6354
    92 A. Trinchi, S. Kandasamy, W. Wlodarski. High Temperature Field Effect Hydrogen and Hydrocarbon Gas Sensors Based on SiC MOS Devices. Sensors and Actuators B: Chemical, 2008, 133 (2) : 705-716
    93 A. A. Talin, K. A. Dean, J. E. Jaskie. Field Emission Displays: a Critical Review. Solid-State Electronics, 2001, 45 (6) : 963-976
    94 D. H. Chen, S. P. Wong, W. Y. Cheung, etal. Electron Field Emission from SiC/Si Heteostructures Synthesized by Carbon Implantation using a Metal Vapor Vacuum Arc Ion Source. Applied Physics Letters, 1998, 72 (15) : 1926-1928
    95 D. H. Chen, S. P. Wong, W. Y. Cheung, etal. Influence of Surface Morphology on the Field Emission Properties of Planar SiC/Si Heterostructures Formed by Ion Beam Synthesis. Solid State Communications, 2003, 128 (11) : 435-439
    96 I. Kleps, D. Nicolaescu, I. Stamatin, Field Emission Properties of Silicon Carbide and Diamond-like Carbon (DLC) Films Made by Chemical Vapour Deposition Techniques. Applied Surface Science, 1999, 146 (1-4) : 152-157
    97 A. A. Evtukh, N. I. Klyui, V. G. Litovchenko, etal. Peculiarities of Field Emission from Silicon Carbide Films. Applied Surface Science, 2003, 215 (1-4) : 237-241
    98赵武,张志勇,闫军锋,等.碳化硅薄膜制备及其场发射特性.天津大学学报, 2008, 41 (1) : 28-32
    99 X. T. Zhou, H. L. Lai, H. Y. Peng, etal. Thinβ-SiC Nanorods and Their Field Emission Properties. Chemical Physics Letters, 2000, 318 (1-3) : 58-62
    100 D. C. Lim, H. S. Ahn, D. J. Choi, etal. The Field Emission Properties of Silicon Carbide Whiskers Grown by CVD. Surface and Coatings Technology, 2003, 168 (1) : 37-42
    101 J. H. Park, W. J. Kim, D. J. Kim, etal. Selective Growth ofβ-SiC Whisker on a Patterned Si (111) Substrate for a Field Emission Device. Thin Solid Films, 2007, 515 (13) : 5519-5523
    102 W. M. Zhou, Y. J. Wu, E. S.W. Kong, etal. Field Emission From Nonaligned SiC Nanowires. Applied Surface Science, 2006, 253 (4) : 2056-2058
    103 J. J. Niu, J. N. Wang, N. S. Xu. Field Emission Property of Aligned and Random SiC NanowiresArrays Synthesized by a Simple Vapor–Solid Reaction. Solid State Sciences, 2008, 10 (5) : 618- 621
    104陈光华,邵乐喜,贺德衍,等.宽带隙薄膜材料场电子发射研究的背景、现状和问题.物理, 2000, 29 (5) : 278-282
    105唐伟忠著.薄膜材料制备原理、技术及应用(第2版).北京:冶金工业出版社, 2003年1月
    106郝跃,彭军,杨银堂.碳化硅宽带隙半导体技术.北京:科学出版社, 2000年5月
    107陈光华,邓金祥编著.新型电子薄膜材料.北京:化学工业出版社, 2002年9月
    108刘恩科,朱秉升,罗晋生编著.半导体物理学.北京:电子工业出版社, 2003年8月
    109漆汉宏,田永君,魏艳君,等.高温超导体R-T曲线虚拟仪器测试系统.微计算机信息, 2003, 19 (12) : 80-80, 37
    110 Qi Hanhong, Tian Yongjun, Wei Yanjun, etal. Virtual Instrument Testing System for R-T Curve of the High Temperature Superconductor. Microcomputer Information, 2003, 19 (12) : 81-81, 90
    111肖莹,漆汉宏.基于GPIB接口总线的虚拟仪器.微计算机信息. 2004, 20 (6) : 87-87, 89
    112 Xiao Ying, Qi Hanhong. Virtual Instrument Based on GPIB Interface Bus. Microcomputer Information, 2004, 20 (6) : 88-89
    113陈光华,张阳编著.金刚石薄膜的制备及应用.北京:化学工业出版社, 2004年3月
    114张连俊,赵立芳,罗恩泽.场致电子发射技术分析.电子器件, 2000, 23 (3) : 210-212
    115 R. Stratton. Theory of Field Emission from Semiconductors. Physical Review, 1962, 125 (1) : 67- 82
    116王如志,王波,严辉.场电子发射研究现状及理论概述.物理, 2002, 31 (2) : 84-87

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700