用户名: 密码: 验证码:
过渡区飞行器流场的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相对于某固定尺寸的飞行器,根据气体的稀薄程度不同,可以将大气分为:低空高密度的连续流区,高空极低密度的自由分子流区和介于两者之间的过渡区。飞行于过渡区中的飞行器可以称为过渡区飞行器。随着航空航天事业的发展,越来越多的新型飞行器出现在过渡区中,其周围流场的大部分区域或局部区域存在着明显的稀薄效应,甚至可能出现连续流和稀薄流混合的复杂流场。为了适应这些过渡区飞行器的发展,需要对它们周围的流动问题进行深入研究。
     本文重点围绕过渡区飞行器所遇到的特殊流动问题,建立相应的数值计算程序,对其进行模拟研究,同时也讨论部分流动机理问题和工程方法的适应性问题。
     首先,建立了CFD/DSMC混合计算程序,首次对在高空过渡区飞行的火箭模式激光推进器周围的高温连续/稀薄混合流场进行了数值模拟研究,并与低空大气吸气模式激光推进器周围的连续流场作对比。研究发现,过渡区火箭模式流场中,激波厚度明显增加,激波传播速度加快,推力产生提前,得到的比冲大于800s;另外,高温效应则减慢了激波传播速度,延迟了推力的产生,并导致冲量耦合系数和比冲降低。
     之后,采用DSMC方法,对过渡区稀薄环境下的激波反射规律进行了数值模拟研究,分析了稀薄效应对马赫数变化引起的迟滞现象以及马赫杆高度的影响。研究表明,在本文给定的条件下,存在一个临界努森数,当来流努森数小于该值时,会发生正规反射到马赫反射的转捩,反之则无;另外,随着努森数的增加,马赫反射中的马赫杆高度呈近似线性降低。
     最后,分析了sine-squared和erf-log两种桥函数在一般超音速过渡区气动特性系数计算方面的适应性问题。研究发现,随着飞行马赫数的降低,sine-squared桥函数的精度明显下降,而erf-log桥函数始终保持很好的精度。建议采用erf-log桥函数,计算以低超音速飞行的亚轨道飞行器的过渡区气动特性系数。
According to the characteristic length of an aircraft and the degree of rarefaction of a gas, the atmosphere can be divided into three regimes: continuum regime at low altitude where the density of ambient gas is high, free-molecule flow regime at very high altitude where the gas is very rarefied, and transitional regime between the above ones. The vehicle flying in the transitional regime is called as transitional-regime aircraft. With the development of aerospace science, more and more new aircrafts appear in the transitional regime. Most or part of the flows around them has obviously rarefaction effect. Sometimes, there are hybrid continuum/rarefied flows. In order to follow the development of these transitional-regime aircraft, we need to study these complicated flows.
     This thesis presents a study of some special flows for vehicle flying in the transitional regime by our own numerically computational programs. We also discuss some flow mechanism and analyze the accurate of engineering methods.
     Firstly, a hybrid CFD/DSMC program is completed, and firstly used to simulate the high temperature hybrid continuum/rarefied flow around a laser thruster, which is flying in the transitional regime at higher altitude and operating in a rocket mode. We also perform numerical computation for the continuum flow under air-breathing mode at lower altitude for comparison with the above hybrid flow. For the rocket mode flow, the rarefied-gas effect increases the shock thickness obviously. The closing of the inlet speeds up shock movement and advances thrust production. We obtained a specific impulse of about 800s. Moreover, high temperature effect delays the shock speed, thus delays the thrust production, and reduces impulse coupling coefficient and specific impulse.
     Secondly, DSMC approach is used to simulate the shock reflection phenomenon in the transitional regime where the ambient gas is rarefied. We also analyze the rarefaction effects on the flow-Mach-number-variation-induced hysteresis and the height of Mach stem. We observe a critical Knudsen number at the given condition in this thesis. If the freestream Knudsen number is lower than that value, the transition from the regular to Mach reflection appears. Otherwise, the transition phenomenon disappears. Moreover, with the Knudsen number increasing, the Mach stem height decreases linearly.
     At last, we analyze the accurate of sine-squared and erf-log bridging relations for calculating the supersonic aerodynamics in the transitional regime. It appears that with the Mach number decreasing, the accurate of sine-squared bridging decreases, but erf-log bridging prove adequate. Thus, the erf-log bridging method is recommended to predict the low supersonic aerodynamic coefficients of the sub-orbital spacecrafts.
引文
[1] Cercignani C. Rarefied gas dynamics. Cambridge: Cambridge University Press, 2000.
    [2] Bird G A. Molecular gas dynamics and the direct simulation of gas flows. New York: Oxford University Press, 1994.
    [3]沈青.稀薄气体动力学.北京:国防工业出版社, 2003.
    [4]吴其芬,陈伟芳,黄琳,石于中.稀薄气体动力学.长沙:国防科技大学出版社, 2004.
    [5] Tsien H S. Superaerodynamics, Mechanics of rarefied gases. J Aero Sci, 1946, 13:653-664.
    [6] Mohamed Gad-el-Hak. Flow physics in MEMS. Mec Ind, 2001, 2:313-341.
    [7] Bird G A. Approach to translational equilibrium in a rigid sphere gas. Phys Fluids, 1963, 6:1518-1519.
    [8] Wagner W. A convergence proof for Bird’s direct simulation Monte Carlo method for the Blotzmann equation. J Stat Phys, 1992, 66:1011-1044.
    [9] Pulvirenti M, Wagner W, Zavelani M B. Convergence of particle schemes for the Boltzmann equation. Euro J Mech, 1994, B7:339-359.
    [10] Chapman S, Cowling T G. The mathematical theory of non-uniform gases. Cambridge: Cambridge University Press, 1970.
    [11] Myrabo L N, Messitt D G, Mead Jr F B. Ground and flight tests of a laser propelled vehicle. AIAA 98-1001, 1998.
    [12] Kantrowitz A R. Propulsion to orbit by ground based lasers. Aero & Astro, 1972, 9(3):40-42.
    [13] Myrabo L N, Ing D. The future of flight. New York: Baen Books, 1985.
    [14] Myrabo L N. World record flights of beam-riding rocket lightcraft: Demonstration of“disruptive”propulsion technology. AIAA 2001-3789, 2001.
    [15] http://news.rpi.edu/update.do?artcenterkey=1221&setappvar=page(1)
    [16] Wang T S, Cheng Y S, Liu J, Myrabo L N, Mead F B. Performance modeling of an experimental laser propelled lightcraft. AIAA 2000-2347, 2000.
    [17] Wang T S, Cheng Y S, Liu J, Myrabo L N, Mead F B. Advanced performance modeling of experimental laser lightcrafts. AIAA 2001-0648, 2001.
    [18] Wang T S, Mead F B, Larson C W. Analysis of the effect of pulse width on laser lightcraft performance. AIAA 2001-3664, 2001.
    [19] Katsurayama H, Komurasaki K, Arakawa Y. Numerical analyses on pressure wave propagation in repetitive pulse laser propulsion. AIAA 2001-3665, 2001.
    [20] Brandstein A, Levy Y. Laser propulsion system for space vehicles. J Propul Power, 1998,14(2):261-269.
    [21] Surzhikov S T. Radiative gas dynamics of laser propulsion thruster nozzles. AIAA 99-3550, 1999.
    [22] Molina-Morales P, Toyoda K, Komurasaki K, et al. CFD simulation of a 2-KW class laser thruster. AIAA 2001-0650, 2001.
    [23] Rezunkov Y, Andreev A, Golovachov Y, et al. Simulation of laser propulsion at space conditions. Procedings of SPIE 4760: 799-809, 2002.
    [24] Chen Y S, Liu J W, Wang T S. Numerical modeling of laser supported propulsion with an aluminum surface breakdown model. Beamed Energy Propulsion, 2003, 664:138-148.
    [25] Golovachov Y P, Kurakin Y A, Rezunkov Y A, et al. Numerical analysis of gasdynamic aspects of laser propulsion. Beamed Energy Propulsion, 2003, 664:149-159.
    [26] Kim S D, Pang J S, Jeung I S, et al. Numerical simulation of flow characteristics of supersonic airbreathing laser propulsion vehicle. Beamed Energy Propulsion, 2003, 664:160-169.
    [27] Vchivkov K V, Nakashima H, Ichikawa F, et al. Optimization of thrust efficiency in laser fusion rocket by using three-dimensional hybrid particle-in-cell code. Vacuum, 2004, 73:427-432.
    [28] Evans J A, Oghbaei M, Anderson K S. Modeling and simulation of a laser-powered lightcraft using advanced simulation tools. Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Inforation in Engineering Conference - DET2005. New York: American Society of Mechanical Engineers, 27-34, 2005.
    [29]李俊美,洪延姬,文明,姚宏林.激光推进中一种光船结构的设计.装备指挥技术学院学报, 2002, 13(6):97-100.
    [30]李倩,洪延姬,曹正蕊,李俊美.粗糙度与激光强度分布对光船聚焦性能的影响.装备指挥技术学院学报, 2004, 15(4):94-97.
    [31]曹正蕊,洪延姬,文明,李倩.吸气式激光推进器速度与高度耦合特性的数值研究.推进技术, 2007, 28(5):489-494.
    [32]庄礼深.连续与稀薄流环境下吸气式激光推进器流场的数值模拟[硕士学位论文].北京:清华大学, 2006.
    [33]龚平,唐志平.大气呼吸模式激光推进的机理分析及数值模拟.爆炸与冲击, 2003, 23(6):501-508.
    [34] Gong P, Tang Z P. Experimental investigation and numerical simulation of air-breathing mode for laser propulsion. J Beijing Inst Tech, 2004, 13(3):190-194.
    [35]郑力铭,朱定强,徐旭,等.激光推进火箭发动机吸收室的数值模拟.推进技术, 2002, 23(5):387-390.
    [36]王海兴,陈熙.激光推进的初步数值模拟研究.工程热物理学报, 2004, 25:83-86.
    [37] Wadsworth D C, Erwin D A. One-dimensional hybrid continuum/particle simulation approach for rarefied hypersonic flows. AIAA paper 90-1690, 1990.
    [38] Wadsworth D C, Erwin D A. Two-dimensional hybrid continuum/particle simulation approach for rarefied flows. AIAA paper 92-2975, 1992.
    [39] Hash D B, Hassan H A. Assessment of schemes for coupling Monte Carlo and Navier-Stokes solution methods. J Thermophys Heat Transf, 1996, 10:242-249.
    [40] Sun Q, Boyd I D, Candler G V. A hyprid continuum/particle approach for modeling subsonic, rarefied gas flows. J Comput Phys, 2004, 194:256-277.
    [41] Roveda R, Goldstein D B, Varghese P L. Hybrid Euler/particle approach for continuum/ rarefied flows. J Spacecr Rockets, 1998, 35(3):258-265.
    [42] Roveda R, Goldstein D B, Varghese P L. Hybrid Euler/direct simulation Monte Carlo calculation of unsteady slit flow. J Spacecr Rockets, 2000, 37(6):753-60.
    [43] Garcia A L, Bell J B, Crutchfield W Y, Alder B J. Adaptive mesh and algorithm refinement using direct simulation Monte Carlo. J Comput Phys, 1999, 154:134-155.
    [44] Aktas O, Aluru N R. A combined continuum/DSMC technique for multiscale analysis of microfluidics filters. J Comput Phys, 2002, 178:342-372.
    [45] Fan J, Shen C. Statistical simulation of low-speed rarefied gas flows. J Comput phys, 2001, 167:393-412.
    [46] Wang W L, Boyd I D. Hybrid DSMC-CFD Simulations of hypersonic flow over sharp and blunted bodies. AIAA 2003-3644, 2003.
    [47] Schwartzentruber T E, Boyd I D. A hybrid particle-continuum method applied to shock waves. J Comput Phys, 2006, 215:402-416.
    [48] Glass C E, Gnoffo P A. A 3-D Coupled CFD-DSMC solution method with application to the Mars Sample return orbiter. NASA TM-2000-210322, 2000.
    [49] Wu J S, Lian Y Y, Cheng G, Koomullil R P, Tseng K C. Development and verification of a coupled DSMC-NS scheme using unstructured mesh. J Comput phys, 2006, 219:579-607.
    [50] Abbate G, Thijsse B J, Kleijn C R. Coupled navier-stokes/DSMC method for transient and steady-state gas flows. Comput Sci, ICCS 2007, Part I, LNCS 4487: 842-849.
    [51] Mach E. Uber den Verlauf von Funkenwellen in der Ebene und im Raume. Sitzungsbr Akad Wiss Wien, 1878, 78:819-838.
    [52] Neumann J Von. Oblique reflection of shock. Explos Res Rep 12, Navy Dept, Bureau of Ordinance, Washington DC, 1943.
    [53] Neumann J Von. Refraction, intersection and reflection of shock waves. NAVORD Rep 203-45, Navy Dept, Bureau of Ordinace, Washington DC, 1945.
    [54] Henderson L F, Lozzi A. Experiments on transition of Mach reflection. J Fluid Mech, 1975,68:137-155.
    [55] Hornung H G, Oertel H, Sandeman R J. Transition to Mach reflection of shock waves in steady and pseudosteady flow with and without relaxation. J Fluid Mech, 1979, 90:541-560.
    [56] Hornung H G, Robinson M L. Transition from regular to Mach reflection of shock waves. Part 2: The steady-flow criterion. J Fluid Mech, 1982, 123:155-164.
    [57] Azevedo D J. Analytical prediction of shock patterns in a high-speed wedge bounded duct. PhD thesis, Dept Mech & Aero Engng, State University NY, Buffalo, 1989.
    [58] Azevedo D J, Liu C S. Engineering approach to the prediction of shock patterns in bounded high-speed flows. AIAA J, 1993, 31:83-90.
    [59] Li H, Ben-Dor G. A parametric study of Mach reflection in steady flows. J Fluid Mech, 1997, 341:101-125.
    [60] Tan L H, Ren Y X, Wu Z N. Analytical and numerical study of the near flow field and shape of the Mach stem in steady flows. J Fluid Mech, 2006, 546:341–362.
    [61] Li H, Ben-Dor G. Application of the minimum entropy production to shock wave reflections. Part 1: Steady flow. J Appl Phys, 1996, 80(4):2038-2048.
    [62] Chpoun A, Passerel D, Li H, Ben-Dor G. Reconsideration of oblique shock wave reflection in steady flows. Part I: Experimental investigation. J Fluid Mech, 1995, 301:19-35.
    [63] Fomin V M et al. The study of transition between regular and Mach reflection of shock waves in different wind tunnels. Proc Of 12th Int Mach Reflection Symp, 137-151, Pilanesberg, South Africa, 30 June-4 July, 1996.
    [64] Skews B W. Aspect ratio effects in wind tunnel studies of shock wave reflection transition. Shock Waves, 1997, 7:373-383.
    [65] Ivanov M S, Gimelshein S F. Hysteresis effect in stationary reflection of shock waves. Phys Fluids, 1995, 7(4):685-687.
    [66] Ivanov M, Zeitoun D, Vuillon J, Gimelshein S, Markelov G. Investigation of the hysteresis phenomena in steady shock reflection using kinetic and continuum methods. Shock waves, 1996, 5:341-346.
    [67] Shirozu T, Nishida M. Numerical studies of oblique shock reflection in steady two dimensional flows. Memoirs Fac Eng Kyushu Univ, 1995, 55:193-204.
    [68] Ben-Dor G, Ivanov M, Vasiliev E I, Elperin T. Hysteresis processes in the regular reflection←→Mach reflection transition in steady flows. Prog Aerospace Sci, 2002, 38:347-387.
    [69] Ben-Dor G, Elperin T, Golshtein E. Monte Carlo analysis of the hysteresis phenomenon in steady shock wave reflections, AIAA J, 1997, 35(11):1777-1779.
    [70] Ivanov M S, Markelov G N, Kudryavtsev A N, Gimelshein S F. Transition between regular and Mach reflections of shcok waves in steady flows. AIAA 97-2511, 1997.
    [71] Gimelshein S F, Markelov G N, Ivanov M S. Relaxation and rarefaction effects on shock wave reflections. AIAA 98-2819, 1998.
    [72] Wilmoth R G, Mitcheltree R A, Moss J N. Low-density aerodynamics of the stardust sample return capsule. AIAA 97-2510, 1997.
    [73] Ivanov M S, Markelov G N, Gimelshein S F, Mishina L V, Krylov A N, Grechko N V. High-altitude capsule aerodynamics with real gas effects. J Spacecr Rockets, 1998, 35(1):16-22.
    [74] Wilmoth R G, Blanchard R C, Moss J N. Rarefied transitional bridging of blunt body aerodynamics. 21st International Symposium on Rarefied Gas Dynamics, 26-31, 1998.
    [75]吴雄,陈伟芳,石于中.复杂外形气动特性的DSMC模拟与桥函数估算.导弹与航天运载技术, 2003, 263:51-56.
    [76]陈伟芳,王全利,吴雄.再入体过渡区气动特性预测.国防科技大学学报, 2004, 26(1):5-7.
    [77] Fujita K, Inatani Y, Hiraki K. Attitude stability of blunt-body capsules in hypersonic rarefied regime. J Spacecr Rockets, 2004, 41(6):925-931.
    [78] Blanchard R C, Buck G M. Rarefied-flow aerodynamics and thermosphere structure from shuttle flight measurements. J Spacecr Rockets, 1986, 23(1):18-24.
    [79] Swaminathan P K. Transition regime aerodynamic heating of missiles. J Spacecr Rockets, 1996, 33(5):607-613.
    [80] Cercignani C. Rarefied Gas Dynamics: From Basic Concepts to Actual Calculations. Cambridge: Cambridge University Press, 2000.
    [81]姚宏林,陈健华,洪延姬,窦志国.高温空气状态方程计算方法,装备指挥技术学院学报, 2003, 14(6):101-105.
    [82] Debye P, Huckel E. Theory of electrolyte. Physik Z, 1923, 24:185-305.
    [83]吴子牛.计算流体力学基本原理.北京:科学出版社, 2001.
    [84] Koura K, Matsumoto H. Variable soft sphere model for inverse power law of Lennard-Jones potential. Phys Fluids A, 1991, 3(10):2459-2465.
    [85] Koura K, Matsumoto H. Variable soft sphere model for air species. Phys Fluids A, 1992, 4(5):1083-1085.
    [86] Hassan H A, Hash D. A generalized hard-sphere model for Monte Carlo simulation. Phys Fluids A, 1993, 5(3):738-744.
    [87] Fan J. A generalized soft-sphere model for Monte Carlo simulation. Phys Fluids, 2002, 14(12):4399-4405.
    [88] Larsen P S, Borgnakke C. Statistical collision model for simulating polyatomic gas with restricted energy exchange. Rarefied gas dynamics, edit by M Becker and M Fiebig, A.7-1,DFVLR-Press, 1974.
    [89] Borgnakke C, Larsen P S. Statistical collision model for Monte Carlo simulation of polyatomic gas mixture. J Comput Phys, 1975, 18:405-420.
    [90] Haas B L, McDonald J D, and Dagum L. Models of Thermal Relaxation Mechanics for Particle Simulation Methods. J Comput Phys, 1993, 107(2):348-358.
    [91] Bergemann F, Boyd I D. New-discrete vibrational energy model for the direct simulation Monte Carlo method. Rarefied Gas Dynamics, Progress in Astronautics and Aeronautics, 1994, 158:174-183.
    [92] Cercignani, C, Lampis M. Kinetic models for gas-surface interactions. Thransport Theory and Statistical Physics, 1971, 1(2):101-114
    [93] Lord RG. Some extensions to the Cercignani-Lampis gas-surface scattering kernel. Physics of Fluids A, 1991, 3(4):706-710
    [94] Boyd I D, Chen G, Cander G V. Predictiong the faluire of the continuum fluid equations in transitional hypersonic flows. AIAA 94-2352, 1994.
    [95] Wang W L, Boyd I D. Predictiong continuum breakdown in hypersonic viscous flows. Phys fluids, 2003, 15:91-100.
    [96] Bird G A. Breakdown of transitional and rotational equilibrium in gaseous expansions. AIAA J, 1970, 8:1998-2003.
    [97] Tiwari S. Coupling the Boltzmann and Euler equations with automatic domain decomposition. J Comput Phys, 1998, 144:710-726.
    [98] Girard S A, Anthony N P. The fluid mechanicsof pulsed laser propulsion. AIAA J, 1977, 15(6):835-842.
    [99] Ageev V P, Barchukov A I, Bunkin F V, et al. Experimental and theoretical modeling of laser propulsion. Acta Astronautica, 1980, 7(1):79-90.
    [100] Ivanov M S, Ben-Dor G, Elperin T, Kudryavtsev A, Khotyanovsky D. Mach–number–variation-induced hysteresis in steady flow shock wave reflections. AIAA J , 2001, 39(5):972–974.
    [101]瞿章华.高超声速空气动力学.长沙:国防科技大学出版社,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700