用户名: 密码: 验证码:
半焦负载锌锰铜吸附剂的加压浸渍法制备及其中温煤气脱硫性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气化煤气和热解煤气共制合成气的双气头多联产技术是目前认为最具前景的洁净煤技术之一,将富含CO和CO2的气化煤气和富含H2和CH4的热解煤气进行重整,可获得最佳组成的合成气;通过生产焦、醇醚燃料和产生电能,可实现原料组成和能量的合理匹配与梯级利用。该技术中,作为原料用合成气对H2S的含量要求比较苛刻(H2S浓度必须低于0.1ppmv),同时为了避免脱硫过程中引起的“冷热病”和热能的损失,中温煤气脱硫便成为该技术中净化工艺的首选,而精脱硫用吸附剂的制备及其硫化行为是其中必须关注的重点。
     基于此,本文提出了加压浸渍法进行中温脱硫用吸附剂的水热合成的研究。首先对吸附剂载体和活性组分前驱体进行了筛选,然后对前驱体溶液浓度、浸渍压力、浸渍时间、煅烧温度和煅烧时间等操作参数进行了优化。研究结果显示,加压浸渍法是一种有效的吸附剂制备方法,半焦和硝酸锌是可选的吸附剂载体和活性组分;加压浸渍过程能够将锌基活性组分均匀浸渍到半焦载体、并同时有效改善载体半焦的孔隙结构。吸附剂的最佳制备条件为:20%的硝酸锌溶液与35ml的半焦载体,在20atm下浸渍5h,分别在50和100℃下干燥5h,再在500℃纯氮气吹扫下,煅烧5h。原料半焦经加压浸渍后,比表面积和孔容分别从16.65m2/g和0.01cm3/g最大增加到265.49m2/g和0.07cm3/g.
     针对氧化锌脱硫精度高但在中温强还原性气氛下活性组分不太稳定、氧化锰在中温脱硫过程中具有较好的脱硫活性及优良的机械稳定性、氧化铜是耐高温吸附剂的主要活性组分等现状,进行了适量的氧化锰和氧化铜改性氧化锌吸附剂的构思,以期优势互补,得到脱硫活性和机械稳定性俱佳的中温锌锰铜基吸附剂。以锌、锰和铜的可溶性硝酸盐为吸附剂的前驱体,在优选的操作条件下进行加压浸渍,过滤、干燥和高温煅烧,制得吸附剂Z20M4C6SC。在300-550℃范围内的活性评价结果显示,该吸附剂可将煤气中的H2S从500ppmv脱除到0.1ppmv以下(H2S脱除率大于99.98%),其穿透时间在500℃时达到56h,此时最大穿透硫容为13.84%。
     三组分吸附剂Z20M4C6SC的脱硫性能明显好于各单组分吸附剂,最大穿透硫容比三个相应含量单组分吸附剂的简单加和(8.98%)增加了54.12%;双组分吸附剂Z20M4SC的硫容(7.98%)与相应两种单组分吸附剂穿透硫容的加和值(8.02%)几乎相当,显示了三组分吸附剂中铜的引入促进了组分之间的协同作用。
     结合催化剂表征结果进行分析,认为吸附剂Z20M4C6SC脱除煤基气体中H2S的活性组分主要包括ZnO、MnO2、CuO和ZnMnO3,其中ZnMnO3与H2S反应的热力学平衡常数最大(5.499×1018),在脱硫反应中起主导作用。将铜添加到锌锰基吸附剂Z20M4SC中,促进了锌锰复合物ZnMnO3的生成;同时铜的添加提高了活性组分在载体表面的分散度,有利于活性组分和H2S的接触,促进了脱硫反应的进行;另外,铜的添加明显增大了吸附剂的机械强度,有益于改善吸附剂的硫化/再生循环性能。
     采用等效粒子模型分别对吸附剂Z20SC、Z20M4SC和Z20M4C6SC的动力学参数进行了估算,发现三类吸附剂的整个脱硫过程可分为两个反应控制阶段,即反应初期的表面化学反应控制区,和反应中后期的扩散控制区。吸附剂在化学反应控制区的活化能Ea和扩散控制区的活化能Ep显示,三组分吸附剂Z20M4C6SC的数值(6.23和9.39kJ/mol)明显小于双组分Z20M4SC(22.89和33.87kJ/mol)以及单组分Z20SC(18.10和51.21kJ/mol),说明锌基吸附剂Z20SC中添加的锰和铜的共同作用有效降低了硫化反应的活化能,活性组分在载体表面分散度的提高和活性组分粒径的减小可以降低其扩散控制区的活化能。
     CO、H2和H2O是煤气中的主要组成成分,吸附剂Z20M4C6SC对环境气氛的适应性考察实验结果显示,CO或H2独立存在于硫化反应气氛中,对脱硫反应存在明显的抑制作用,这主要是由于它们对吸附剂中活性组分ZnO和CuO的还原和对ZnMnO3的分解引起。但H2和CO的同时存在可以相互减弱各自对吸附剂脱硫性能的抑制程度。H2O作为硫化反应的产物之一,对吸附剂的硫化反应存在着抑制作用,但在复杂气氛H2/CO/H2O/N2/H2S中,优化制得的吸附剂Z20M4C6SC仍具有较好的脱硫效果,在脱硫精度为0.1ppmv时的穿透时间长达42h,说明该吸附剂具有较强的气氛适应能力,是一种较理想的吸附剂。
     硫化动力学参数结果表明,在不同气氛下的硫化反应均存在前期的表面化学反应控制和中后期的扩散控制,吸附剂Z20M4C6SC在H2/CO/N2/H2S、H2/CO/H2O/N2/H2S、H2O/N2/H2S、H2/N2/H2S和CO/N2/H2S各气氛中的穿透硫容大小顺序(13.84%>9.46%>7.64%>6.57%>6.15%)与其在扩散控制区的活化能Ep(9.39<13.44<13.96<14.31<18.10kJ/mol)成对应关系,同时扩散控制区的活化能Ep均大于化学反应控制区的活化能Ea,显示了扩散控制在锌基吸附剂脱硫过程中的重要性。
The dual gas coal-based poly-generation technology is now considered as one of the most promising clean coal techniques. By this technology, the syngas with optimum composition can be acquired by reforming the pyrolysis gas rich in CH4combining with gasification gas rich in CO2, and the step utilization of raw material and rational proportion of energy can be achieved by producing coke, alcohol ether fuel and power. The limitation for the content of H2S in syngas used to synthetize chemicals is very strict (below0.1ppmv) in this technology. To avoid the heat loss caused by heating and cooling gas, the removal of H2S from hot coal gas at mid-temperature has been selected as the preferred procedure of this technology for cleaning syngas. The preparation of sorbent and its desulfurization performance are the main concerns.
     On the basis of above analyses, the high-pressure impregnation method is proposed for the hydrothermal synthesis of the sorbent and the performance of prepared sorbent removing H2S from hot coal gas at mid-temperature is researched in this paper. Firstly, the support and active component precursors were screened out. Then, the optimal concentration of precursor solution and operation parameters of impregnation pressure, impregnation time, calcination temperature and calcination time were determined. The experiment results show that the high-pressure impregnation is an effective sorbent preparation method, and semi-coke (SC) and zinc nitrate are the suitable support and precursor, respectively. The high-pressure impregnation method presents an outstanding advantage of perfectly improving the pore structure of SC support at the same time of effectively impregnating the active component precursor on semi-coke support. The optimal Zn-based sorbent preparation conditions are shown as follows:35ml semi-coke support and20%Zn(NO3)2precursors solution were placed in an autoclave through high-pressure impregnation at20atm for5h, then the sample was filtered and dried at50℃for5h, dried at100℃for5h. Finally, the sample was calcined at500℃in pure N2for5h. The BET results show that by high-pressure impregnation, the specific surface area and pore volume of the raw semi-coke are expanded from16.65m2/g and0.01cm3/g to265.49m2/g and0.07cm3/g, respectively.
     Zinc oxide is recognized as high accuracy sorbent, but it is unstable at high temperature in the strong reducing atmosphere. While manganese oxide shows good desulfurization activity and excellent mechanical stability, and copper oxide exhibits excellent mechanical stability and good dispersion in the high temperature desulfurization process. So, an idea is designed that the desulfurization performance of Zn-based sorbent is modified by the join of manganese oxide and copper oxide, and the Zn-Mn-Cu-based sorbent with good desulfurization activity and mechanical stability is expected to get. Zinc nitrate, manganese nitrate, and copper nitrate aqueous solutions were used as precursors and the Z20M4C6SC sorbent was prepared at the optimal operation conditions by high-pressure impregnation. This sorbent possesses a good desulfurization performance and it can effectively remove H2S from500to below0.1ppmv (H2S removal efficiency is above99.98%) in a temperature range of300-550℃. It can maintain this high desulfurization precision of0.1ppmv for56h, with the maximal sulfur capacity of13.84%at500℃.
     The desulfurization performance of three metal Zn-Mn-Cu-based sorbent is obviously better than that of single metal sorbent, and its sulfur capacity is54.12%greater than the simple summation (8.98%) of three single metal oxide sorbents Z20SC, M4SC, and C6SC. The sulfur capacity (7.98%) of bi-metal Z20M4SC sorbent is nearly similar to the simple summation (8.02%) of Z20SC and M4SC. These results show that copper has a significant promoting function in the process of desulfurization of three metal Zn-Mn-Cu sorbent.
     XRD results show that CuO, ZnO, MnO2and ZnMnO3are the active components of Z20M4C6SC sorbent. The equilibrium constant of the reaction between ZnMnO3and H2S is the maximum (5.499×1018) and ZnMnO3in Z20M4C6SC sorbent plays an important role in the process of removing H2S from hot coal gas. The addition of copper in the Zn-Mn-sorbent promotes the formation of new phase ZnMnO3, and improves the dispersion of active components on support, thus enhances the reactivity of active components with H2S. Meanwhile, the addition of copper also enhances the mechanical strength of the sorbent and it is helpful for improving the sulfidation/regeneration performance.
     By the equivalent grain model, dynamic parameters of Z20SC, Z20M4SC and Z20M4C6SC were calculated respectively. It is suggested that the desulfurization reaction of the Zn-based sorbents is mainly controlled by the chemical reaction in the initial stage and later by the gas diffusion through the reacted layers. The chemical reaction activation energy Ea and diffusion activation energy Ep of three metal Z20M4C6SC sorbent (6.23and9.39kJ/mol) are lower than bi-metal Z20M4SC sorbent (22.89and33.87kJ/mol) and single metal Z20SC sorbent (18.10and51.21kJ/mol). These results show that the combined action of manganese and copper effectively reduces the desulfurization reaction active energy and improves the desulfurization activity of Zn-based sorbent.
     CO, H2and H2O are the main components of coal-based gas. The experiment results that the adaptability of Z20M4C6SC sorbent on ambient gas indicates that CO or H2independently existing in feeding gas clearly inhibites its desulfurization reaction. And this phenomenon is mainly caused by the reduction of active component ZnO and CuO, and decomposition of ZnMnO3in the reducing environment. But CO mixed in the gas containing H2, or H2mixed in the gas containing CO obviously weakens their inhibition degree for desulfurization performance. As one of the products of the desulfurization reaction, the effect of H2O on desulfurization reaction is negative, according to chemical reaction equilibrium principle. Obviously, the sulfur capacity of Z20M4C6SC (13.84%>9.46%>7.64%>6.57%>6.15%) in different ambient gas of H2/CO/N2/H2S, H2/CO/H2O/N2/H2S, H2O/N2/H2S, H2/N2/H2S and CO/N2/H2S is related to the diffusion activation energy Ep (9.39<13.44<13.96<14.31<18.10kJ/mol). And the diffusion activation energy Ep is higher than chemical reaction activation energy Ea. So, it is suggested that the diffusion through the reacted layers is very important for the desulfurization reaction of Zn-based sorbents and H2S.
引文
[1]谢克昌,张永发,赵炜.“双气头”多联产系统基础研究——焦炉煤气制备合成气[J].山西能源与节能,2008,49:10-12.
    [2]Westmoreland P R, Harrison D P. Evaluation of candidate solids for high-temperature desulfurization of low-btu gases[J]. Environmental Science and Technology,1976,10 (7): 659-661.
    [3]Oldaker E C, Poston A M, Farrior W L. Removal of hydrogen sulfide from hot-low-btu gas with iron oxide-fly ash sorbents[R]. Morgantown:Morgantown Energy Technology Center,1975.
    [4]Wakker J P, Gerritsen A W, Moulijn J A. High temperature H2S and COS removal with MnO and FeO on γ-Al3O2 acceptors[J]. Industrial and Engineering Chemistry Research, 1993,32(1):139-149.
    [5]Sasaoka E, Sakamoto M, Ichio T, etc. Reactivity and durability of iron oxide high temperature desulfurization sorbents[J]. Energy & Fuels,1993,7 (5):632-638.
    [6]Sasaoka E, Ichio T, Kasaoka S. High-temperature hydrogen sulfide removal from coal-derived gas by iron ore[J]. Energy & Fuels.1992,6 (5):603-608.
    [7]李彦旭,田青平,郭汉贤,等.氧化铁吸附剂高温煤气脱硫行为的研究--还原及硫化动力学[J].燃料化学学报,1998,26(2):130-134.
    [8]White J D, Groves Jr F R, Harrison D P. Elemental sulfur production during the regeneration of iron oxide high-temperature desulfurization sorbent[J]. Catalysis Today, 1998,40(1):47-57.
    [9]Harrison D P. Performance analysis of ZnO-based sorbents in removal of H2S from fuel gas[C]. NATO/ASI Series, Series G Ecological Sciences,1998,213-242.
    [10]Susan L, Kanaswami J, Maria F S. High temperature hydrogen sulfide removal from fuel gas by regenerable zinc oxide-titanium oxide sorbents[J]. Indusrtrial and Engineering Chemistry Research,1989,28(5):535-541.
    [11]Focht G D, Ranade P V, Harrison D P. High temperature desulfurization using zinc ferrite:Reduction and sulfidation kinetics[J]. Chemical Engineering Science,1988,43(11): 3005-3013.
    [12]Ahmed M A, Alonso L, Palacios J M, etc. Structural changes in zinc ferrites as regenerable sorbents fot hot coal gas desulfurization[J]. Solid State Ionics,2000,138(1-2): 51-62.
    [13]Pineda M, Palacios J M, Alonso L, etc. Modelling of performance of zinc ferrites as high-temperature desulfurizing sorbents in a fixed-bed reactor[J]. Fuel,1997,76(7): 567-573.
    [14]Pineda M, Palacios J M, Alonso L, etc. Performance of zinc oxide based sorbents for hot coal gas desulfurization in multicycle tests in a fixed-bed reactor[J]. Fuel,2000,79(8): 885-895.
    [15]梁美生.铁酸锌高温煤气脱硫行为及气氛效应研究[D].太原,太原理工大学,2005.
    [16]Lee Y J, Park N K, Han G B, etc. The preparation and desulfurization of nano-size ZnO by a matrix-assisted method for the removal of low concentration of sulfur compounds[J]. Current Applied Physics,2008,8(6):746-751.
    [17]Park N K, Lee Y J, Han G B, etc. Synthesis of various zinc oxide nanostructures with zinc acetate and activated carbon by a matrix-assisted method[J]. Colloids and Surfaces A, 2008,313-314:66-71.
    [18]Park N K, Lee J D, Lee T J, etc. The preparation of a high surface area metal oxide prepared by a matrix-assisted method for hot gas desulphurization[J]. Fuel,2005,84(17): 2165-2171.
    [19]Wang X H, Jia J P, Zhao L, etc. Chemisorption of hydrogen sulphide on zinc oxide modified aluminum-substituted SBA-15[J]. Applied Surface Science,2008,254(17): 5445-5451.
    [20]Vander Ham A G J, Venderbosch R H, Prins W, etc. Survey of desulfurization processes for coal gas [J]. NATO ASI Series, Series G Ecological Sciences,1998,42:117-136.
    [21]Sasaoka E, Hirano S, Kasaoka S, etc. Stability of zinc-oxide high-temperature desulfurization sorbents for reduction[J]. Energy & Fuels,1994,8(3):763-769.
    [22]Jung S Y, Lee S J, Lee T J, etc. H2S removal and regeneration properties of Zn-Al-based sorbents promoted with various promoters[J]. Catalysis Today,2006, 111(3-4):217-222.
    [23]Pineda M, Palacios J M, Alonso L E, etc. Performance of zinc oxide based sorbents for hot coal gas desulfurization in multicycle tests in a fixed-bed reactor[J]. Fuel,2000, 79(8):885-895.
    [24]Bu X P, Ying Y J, Ji X G, etc. New development of zinc-based sorbents for hot gas desulfurization[J]. Fuel Processing Technology,2007,88(2):143-147.
    [25]Bu X P, Ying Y J, Zhang C Q, etc. Research improvement in Zn-based sorbent for hot gas desulfurization[J]. Powder Technology,2008,180(1-2):253-258.
    [26]Grindley T, Steinfeld G. Development and testing of regenerable hot-coal-gas desulfurization sorbents[R]. Morgantown:Morgantown Energy Technology Center, 1981.
    [27]Kobayashi M, Shirai H, Nunokawa M. Elucidation sulfidation mechanisums of zinc ferrite in reductive gas environment by in situ X-ray diffraction analysis and mossbauer spectroscopy[J]. Industrial and Engineering Chemistry Research,2009,39(6): 1934-1943.
    [28]Kobayashi M, Shirai H, Nunokawa M. High-temperature sulfidation behavior of reduced zinc ferrite simulated coal gas revealed by in situ X-ray diffraction analysis and mossbauer spectroscopy[J]. Energy & Fuel,2002,16(3),:601-607.
    [29]Kobayashi M, Shirai H, Nunokawa M. Measurements of sulfur capacity proportional to sulfidation on sorbent containing zinc ferrite-silica composite powder in pressurized coal gas[J]. Industrial and Engineering Chemistry Research,2002,41(12):1903-2909.
    [30]Ikenaga N, Ohgaito Y. Preparation of zinc ferrite in the presence of carbon material and its application to hot-gas cleaning[J]. Fuel.2004,83(6):661-669
    [31]Haldipur G B, Schmidt D K, Smith K J, etc. KRW process development coal gasification hot-gas clean-up[R]. Morgantown:Morgantown Energy Technology Center,1987.
    [32]Robin A M, Kassman J S, Leininger T F, etc. Integration and testing of hot gas desulfurization and entrained-flow gasification for power generation systems[R]. Morgantown:Morgantown Energy Technology Center,1989.
    [33]Gupta R P, Gangwal S K. Enhanced durability of desulfurization sorbents for fluidized-bed applications[R]. Morgantown:Morgantown Energy Technology Center,1991.
    [34]Grindley T. Study of fluidized-bed desulfurization with zinc ferrite technical note[R]. Morgantown:Morgantown Energy Technology Center,1991.
    [35]Akyurtlu J F, Akyurtlu A. Hot gas desulfurization with vanadium-promoted zinc ferrite sorbents[J]. Gas Separation and Purification,1995,9(1):17-25.
    [36]Ikenaga N O, Ohgaito Y, Matsushima H, etc. Preparation of zinc ferrite in the presence of carbon material and its application to hot-gas cleaning[J]. Fuel,2004,83(6):661-669.
    [37]Hatori M, Sasaoka E, Uddin M A. Role of TiO2 on oxidative regeneration of spent high-temperature sulfurization sorbent ZnO-TiO2[J]. Industrial and Engineering Chemistry Research,2001,40(8):1884-1890.
    [38]Ryu S O, Kukpark N. Multicyclic study on improved Zn/Ti-based desulfurization sorbents in mid-temperature conditions[J]. Industrial and Engineering Chemistry Research,2004,43(6):1466-1471.
    [39]Mojtahedi W, Salo K, Abbasian J. Desulfurization of hot coal-gas in fluidized-bed with regenerable zinc titanate sorbents[J]. Fuel Processing Technology,1994,37(1):53-65.
    [40]Mojtahedi W, Abbasian J. H2S removal from coal gas at elevated temperature and pressure in fluidized bed with zinc titanate sorbents, Part I:cyclic tests[J]. Energy & Fuels,1995,9(3):429-434.
    [41]Ayala R E, Jain S C. Development of durable mixed-metal oxide sorbents for high-temperature desulfurization of coal gases in moving-bed reactors[R]. Washington: USDOE Morgantown Energy Technology Center,1993.
    [42]Siriwardane R V, Poston J A, Grover E Jr. Spectroscopic characterization of molybdenum-containing zinc titanate desulfurization sorbents[J]. Industrial and Engineering Chemistry Research,1994,33(11):2810-2818.
    [43]Poston J A. A reduction in the spalling of zinc titanate desulfurization sorbents through the addition of lanthanum oxide [J]. Industrial and Engineering Chemistry Research, 1996,35(3):875-882.
    [44]Jung S Y, Lee S J, Park J J, etc. Properties of nanosize zinc titanium desulfurization sorbents promoted with iron and cerium oxides[J]. Industrial and Engineering Chemistry Research,2008,47 (14):4909-4916.
    [45]Garcia E, Cilleruelo C, Ibarra J V, etc. Kinetic study of high-temperature removal of H2S by novel metal oxide sorbents[J]. Industrial and Engineering Chemistry Research,1997, 36(3):846-853.
    [46]Wang C, Xu B, Wang X, etc. Preparation and photocatalytic activity of ZnO/TiO2/SnO2 mixture[J]. Journal of Solid State Chemistry,2005,178(11):3500-3506.
    [47]张密林,张红霞,陈野.(锌、铜、锰)复合脱硫剂的制备及性能研究[J].化学工业与工程技术,2004,25(6):29-32.
    [48]Garcia E, Palacios J M, Alonso L, etc. Performance of Mn and Cu mixed oxides as regenerable sorbents for hot coal gas desulfurization [J]. Energy & Fuels,2000,14 (6): 1296-1303.
    [49]Alonso L, Palacios J M. A TEM and XRD study of the structural changes involved in manganese-based regenerable sorbents for hot coal gas desulfurization[J]. Chemistry of Materials,2002,14 (1):225-231.
    [50]Atakul H, Wakker J P, Gerritsen A W, etc. Regeneration of MnO/γ-Al2O3 used for high-temperature desulfurization of fuel gases[J]. Fuel,1996,75 (3):373-378.
    [51]张金昌,王树东,吴迪镛,等Mn-Fe/γ-Al2O3高温脱H2S的实验研究[J].煤气与热力,1997,17(5):23-26.
    [52]王海堂.铁锰基中温煤气脱硫吸附剂的气氛效应研究[D].太原:太原理工大学,2010.
    [53]任秀蓉.铁锰基吸附剂中温脱硫性能及气氛效应的研究[D].太原:太原理工大学,2010.
    [54]Takashi K, Kawasshima H, Akira T, etc. Removal of H2S from hot gas in the presence of Cu-containing sorbents[J]. Fuel,1989,68(1):74-79.
    [55]Patrick V, Gavalas G R, Flytzani-Stephanopoulos M, etc. High-temperature sulfidation regeneration of CUO-Al2O3 sorbents[J]. Industrial and Engineering Chemistry Research, 1989,28,931-937
    [56]侯相林,高荫本,陈诵英.载体对氧化铜高温脱硫过程影响的研究[J].燃料化学学报,1998,26(5):452-456
    [57]Gasper-Galvin L D, Atimtay A T. Hot gas desulfurization sorbent[P]. US:5227351, 1993-07-13.
    [58]Gasper-Galvin L D, Atimtay A T, Gupta R P. Zeolite-supported metal oxide sorbents for hot-gas desulfurization[J]. Industrial and Engineering Chemistry Research,1998,37(10): 4157-4166.
    [59]Kay D A R, Wilson W G. Regeneration of cerium oxide from sulfur-containing cerium compounds formed in desulfurization of sulfur-containing fluid with cerium oxide[P]. US:4826664,1989.
    [60]Li Z J, Flytzani-Stephanopoulos M. Cu-Cr-O and Cu-Ce-O regenerable oxide sorbents for hot gas desulfurization[J]. Industrial and Engineering Chemistry Research,1997, 36(1):187-196.
    [61]Kobayashi M, Flytzani-Stephanopoulos M. Reduction and sulfidation kinetics of cerium oxide and Cu-modified cerium oxide[J]. Industrial and Engineering Chemistry Research, 2002,41(13):3115-3123.
    [62]Wang Z, Flytzani-Stephanopoulos M. Cerium oxide-based sorbents for regenerative hot reformate gas desulfurization[J]. Energy & Fuels,2005,19(5):2089-2097.
    [63]高春珍.氧化铈高温煤气脱硫剂的制备与活性评价[D].太原:太原理工大学,2003.
    [64]郭波.铈基氧化物高温煤气脱硫行为的研究[D].太原:太原理工大学,2008.
    [65]Zeng Y, Zhang S, Groves F R, etc. High temperature gas desulfurization with elemental sulfur production[J]. Chemical Engineering Science,1999,54(15-16):3007-3017.
    [66]Zeng Y, Kaytakoglu S, Harrison D P. Reduced cerium oxide as an efficient and durable high temperature desulfurization sorbent[J]. Chemical Engineering Science,2000,55(21): 4893-4900.
    [67]Akiti Jr T T, Constant K P, Doraiswamy L K, etc. Development of an advanced calcium-based sorbent for desulfurizing hot coal gas[J]. Advances in Environmental Research,2001,5(1):31-38.
    [68]Akiti Jr T T, Constant K P, Doraiswamy L K, etc. An improved core-in-shell sorbent for desulfurizing hot coal gas[J]. Advances in Environmental Research,2002,6(4):419-428.
    [69]Akiti Jr T T, Constant K P, Doraiswamy L K, etc. A regenerable Calcium-based core-in-shell sorbent for desulfurizing hot coal gas[J]. Industrial and Engineering Chemistry Research,2002,41(3):587-597.
    [70]Hasler D J L, Doraiswamy L K, Wheelock T D. A plausible model for the sulfidation of a Calcium-based core-in-shell sorbent[J]. Industrial and Engineering Chemistry Research, 42(12):2644-2653.
    [71]Van D H A G J, Heesink A B M, Prins W, etc. Proposal for a regenerative high-temperature process for coal gas cleanup with calcined limestone[J]. Industrial and Engineering Chemistry Research,1996,35(5):1487-1495.
    [72]王尚弟,孙俊全.催化剂工程导论[M].北京:化学工业出版社,2001:38-60.
    [73]王海堂,靳庆麦,廖俊杰,等.制备方法对中高温煤气脱硫剂性能的影响[J].现代化工,2009,29(SI):216-218.
    [74]樊慧玲.氧化铁高温煤气脱硫行为及助剂影响规律的研究[D].太原:太原理工大学,2004.
    [75]张密林,张红霞,陈野.ZnO型复合脱硫剂的制备研究[J].应用科技,2004,31(12):58-60.
    [76]Zhang R J, Huang J J, Zhao J T, etc. Sol-gel auto-combustion synthesis of zinc ferrite for moderate temperature desulfurization[J]. Energy & Fuels,2007,21(5):2682-2687.
    [77]Wan Z Y, Liu B S, Zhang F M, etc. Characterization and performance of LaxFeyOz/MCM-41 sorbents during hot coal gas desulfurization[J]. Chemical Engineering Journal,2011,171(2):594-602.
    [78]Simona B, Gervasini A, Vittorio R. Preparation of highly dispersed CuO catalysts on oxide supports for de-NOx reactions[J]. Ultrasonics Sonochemistry,2003,10(2):61-64.
    [79]孙剑峰,刘建忠,王洁,等.超声浸渍法制备高温煤气脱硫剂及其表征和活性研究[J].中国电机工程学报,2009,29(35):83-88.
    [80]龙海云,李芬芳,李景胜,等.水热法制备纳米Ti02及其在水相介质中分散性的研究[J].广州化学,2007,32(3):11-15.
    [81]彭建洪,朱刚强,王娟,等.水热法合成ReMn2O5 (Re=Gd, Sm, Yb)纳米粉体[J].无机化学学报,2009,25(6):1067-1072.
    [82]张莹.超声辅助浸渍法制备γ-Al2O3负载铜锰基吸附剂及其脱硫性能的研究[D].太原:太原理工大学,2011.
    [83]司伟平.超临界水浸渍法制备锰基中温脱硫剂的研究[D].太原:太原理工大学,2010.
    [84]邱彪.超临界水浸渍法制备炭基负载金属氧化物中温脱硫用吸附剂的研究[D].太原:太原理工大学,2011.
    [85]樊惠玲,郭红生,郭汉贤,等.氧化锌脱硫中氢的气氛效应及动力学表征[J].燃料化学学报.1998,26(5):440-445.
    [86]金国杰,樊惠玲,李春虎,等.氧化锌脱硫中氢和氧的双气氛效应及动力学研究[J].燃料化学学报.2003,32(4):328-332.
    [87]史建明.铁钙氧化物高温煤气吸附剂的硫化行为和气氛效应[D].太原:太原理大学,2001.
    [88]刘文静,樊惠玲,李春虎,等.CO对ZnO脱硫行为的影响[J].太原科技,2001,6:51-52.
    [89]樊惠玲,郭汉贤,李春虎,等.一氧化碳和氧对氧化锌脱硫行为的影[J].复旦学报(自然科学版),2003,42(3):274-279.
    [90]黄戒介,赵建涛,陈富艳,等.氧化钙脱硫可逆反应过程的研究[J].燃料化学学报,2005,33(2):146-149.
    [91]李彦旭,李春虎,郭汉贤,等.钙铁氧化物高温脱硫过程中H2和H2O效应[J].2000,28(2):120-123.
    [92]Woods M C, Gangwal S C, Harrison D P, etc. Kinetics of the reactions of zinc ferrite sorbent in high-temperature coal gas desulfurization[J]. Industrial and Engineering Chemistry Research,1991,30(1):100-107.
    [93]Flytzani-Stephanopoulous M. Detailed studies of novel regeneration dorbents for high temperature coal-gas desulfurization[R]. Cambridge:D Massachusetts Institution of Technology,1987.
    [94]郭汉贤,王恩过,梁生兆.微量TG法研究氧化锌脱硫的催化加氢效应及动力学行为[J].燃料化学学报,1993,21(3):261-269.
    [95]郭汉贤,王恩过,梁生兆.T305氧化锌脱硫剂脱除COS宏观动力学研究[J].自然科学进展-国家重点实验室通讯,1994,41:59-68.
    [96]王恩过,张拴兵,郭汉贤.T305脱硫剂脱除H2S反应的宏观动力学行为[J].工业催化,1993,4:21-28.
    [97]张拴兵,郭汉贤,梁生兆.T305脱硫剂脱除H2S反应的微观动力学[J].太原工业大学学报,1991,22(3):1-9.
    [98]Fan H L, Li C H, Guo H X, etc. Microkinetics of H2S removal by zinc oxide in the presence of moist gas atmosphere[J]. Journal of Natural Gas Chemistry,2003,12(1): 43-48.
    [99]樊惠玲,郭汉贤,上官炬,等.氧化锌颗粒脱硫中固体扩散的动力学分析[J].燃料化学学报,2000,28(4):368-371.
    [100]朱炳辰.化学反应工程[M].北京:化学工业出版社,1998:111-112.
    [101]Gibson J B, Harrison D P. The reaction between hydrogen sulfide and spherical pellets zinc oxide[J]. Industrial and Engineering Chemistry Process Design Development, 1980,19:231-237.
    [102]Ranade P V, Harrison D P. The variable property grain model applied to the zinc oxide hydrogen sulfide reaction[J]. Chemical Engineering Science,1981,36(6):1079-1089.
    [103]王恩过,张拴兵,郭汉贤.T305脱硫剂脱除H2S反应的宏观动力学行为[J].工业催化,1993,4:21-28.
    [104]李彦旭,张拴兵,郭汉贤.T302锌锰系脱硫剂脱除H2S的宏观动力学行为[J].化工 学报,1995,46(6):725-733.
    [105]Li Y X, Guo H X, Li C H. A study on the apparent kinetics of H2S removal using a ZnO-MnO desulfurizer[J]. Industrial and Engineering Chemistry Research,1997,36(9): 3982-3987.
    [106]郭汉贤.应用化工动力学[M].北京:化学工业出版社,2003:472-478.
    [107]应幼菊,宋文立,余洁,等.高温煤气脱硫吸附剂的研制[J].洁净煤技术,1997,3(3):38-43.
    [1]王安友,郭曙强,潘晋波,等.负载型氧化锌脱硫剂的实验研究[J].煤炭转化,2010,23(10):16-21.
    [2]Ko T H, Chu H, Chaung L K. The sorption of hydrogen sulfide from hot syngas by metal oxides over supports[J]. Chemosphere,2005,58(4):467-474.
    [3]付三玲,蔡淑珍,张晓军,等.水热法制备ZnO晶体及纳米材料研究进展[J].人工晶体学报,2006,5(10):1016-1020.
    [1]郑仙荣.改性活性半焦脱硫剂制备方法研究与性能测试[D].太原:太原理工大学,2003.
    [2]付三玲,蔡淑珍,张晓军,等.水热法制备ZnO晶体及纳米材料研究进展[J].人工晶体学报,2006,5(10):1016-1020.
    [3]王桂茹.催化剂与催化作用[M].大连:大连理工大学出版社,2007,34-35.
    [4]王桂茹.催化剂与催化作用[M].大连:大连理工大学出版社,2007,9-10.
    [1]侯相林,高荫本,陈诵英.载体对氧化铜高温脱硫过程影响的研究[j].燃料化学学报,1998,26(5):452-456.
    [2]曹忠良,王珍云.无机化学反应方程式手册[M].湖南:湖南科学技术出版社,1985:164-165.
    [3]Kaushik V K, Sivaraj C H, Rao P K. ESCA characterization of copper/alumina catalysts prepared by deposition-precipitation using urea hydrolysis[J]. Applied Surface Science, 1991,51(1-2):27-33.
    [4]Genoveva B, Lin Y S. Characteristics and desulfurization-regeneration properties of sol-gel-derived copper oxide on alumina sorbents[J]. Separation and purification technology,2004,39(3):167-179.
    [5]李彦旭.铁钙氧化物高温脱硫及动力学研究[D].太原,中国科学院山西煤炭化学研究所,1998.
    [1]Sasaoka E, Hirano S, Kasasoka S, eta. Characterization of reaction between zinc oxide and hydrogen sulfide[J]. Energy & Fuels,1994,8:1100-1105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700