用户名: 密码: 验证码:
镍基高温合金表面铬铝涂层的制备与抗高温腐蚀性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高温结构材料服役环境越来越苛刻,高温防护涂层正向高性能、复杂环境、多功能化方向发展。通过对在高温结构材料表面进行渗合金化处理,获得防护涂层是提高其抗高温腐蚀性能的有效方法。本文采用渗铬和渗铝相结合的工艺在镍基高温合金基体表面制备了铬铝合金涂层,并研究了其对基体的防护效果。
     两步法制备的铬铝涂层的微观结构、厚度、抗剥蚀性与制备工艺参数相关。当渗铬温度为1080℃,保温时间9h,渗铬剂配比为:氯化铵质量百分含量为1%、铬粉质量百分含量为30%、氧化铝质量百分含量为69%;渗铝温度为750℃,保温时间15h,渗铝剂配比为:氯化铵质量百分含量为1.5%、铝粉质量百分含量为10%、氧化铝质量百分含量为88.5%;热处理温度为800℃保温15h时可以得到期望的内扩散型β-NiAl与y'-NiAl相,涂层组织均匀致密。
     单一渗铝涂层、内扩散型铬铝涂层和单一渗铬涂层都可以提高K38G合金在800℃、950℃、1100℃下的抗氧化性能。由于铝化物涂层表面产物是生长速度较慢的氧化铝膜,所以单一渗铝涂层与内扩散铬铝涂层的抗氧化性能优于单一渗铬涂层。又由于单一渗铝涂层在氧化过程中发生了严重的元素互扩散现象导致表面生成了生长较快的氧化物相,所以单一渗铝涂层氧化性能不如内扩散型铬铝涂层。
     单一渗铬涂层、内扩散型铬铝涂层都可以提高K38G合金在950℃下的抗热腐蚀性能。在以热腐蚀为主要破坏形式的环境中,铬元素可以迅速生成稳定的铬化物涂层,所以单一渗铬涂层、内扩散型铬铝涂层和K38G合金拥有比单一渗铝涂层更好的抗热腐蚀性能。由于在热腐蚀过程中内扩散型铬铝涂层外层富Al的氧化膜在熔盐中发生溶解而失去保护性,但因为涂层内层富Cr能迅速发生反应形成抗热腐蚀的Cr203膜同时抑制Al进一步发生碱性溶解,从而使内扩散型铬铝涂层拥有比K38G合金更优的抗热腐蚀性能
     考虑高温抗氧化性能和抗热腐蚀性能,内扩散型铬铝涂层具有最佳的综合抗高温腐蚀性能。
One of the most effective ways to improve the high temperature corrosion resistance of the high temperature structural materials is the application of surface coatings. The protective coatings are being improved towards high performance, complicated structure and multi-functions in order to meet requirements for materials used in aggressive environments. The Cr-Al coating is fabricated by two-step packing diffusion method on the surface of K38G alloy. The protective effects of coatings were studied.
     The microstructure, thickness and anti-spalling property of the two-step fabricated Cr-Al coating are related to the fabrication parameters such as diffusion temperature, diffusion time and the content of the diffusion reagent.In the present study,the optimized fabrication steps are diffusion Cr at 1080℃for 9h using the diffusion reagent content:NH4Cl:1wt.%,Al2O3: 59wt.%,Cr:40wt.%;and then diffusion Al at 750℃for 9h using the diffusion reagent content: NH4Cl:1.5wt%, Al2O3:88.5wt%, Cr:10wt%.After heat treatment at 800℃for 15h,dense and homogenous inner diffusion Cr-Al coating consisted ofβ-NiAl and y'-NiAl can be fabricated.During the oxidation process, Al2O3 layer was formed on the surface of the Al coating and the inner diffusion Cr-Al coatings, which grows more slowly than that of Cr2O3 layer formed on the surface of the Cr coating.Therefore, the oxidation resistances of the Al coating and the inner diffusion Cr-Al coating are better than that of the Cr coating.Compared to the inner diffusion Cr-Al coating, the worse oxidation resistance of the Al coating can be attributed to the heavy interdiffusion between the Al coating and K38G alloy.
     Cr coating,inner diffusion Cr-Al coating can be the hot corrosion resistance coatings of K38G alloy at 950℃.Because of the producing of Cr2O3 which is stable in the hot corrosion environment, the hot corrosion resistance of Cr coatings,inner diffusion Cr-Al coatings and K38G alloy are better than that of Al coatings.And the hot corrosion resistance of Cr coating is better than that of the inner diffusion Cr-Al whose hot corrosion resistance is better than that of K38G alloy.In the hot corrosion environment,the Cr element in the coating would form protective Cr2O3 scales even if the Al2O3 layer initially formed lost its protection.
     In the present study, the inner diffusion Cr-Al coating performed the best high temperarure corrosion resistance.
引文
[1]李美栓.金属的高温腐蚀,第1版.北京:冶金工业出版社,2001,410
    [2]G. W. Goward. Protective Coatings propose, role and design. Material Science and Technology,1986, (2):194-200
    [3]刘槟,易茂中.粉末深度技术研究情况浅析.湖南冶金,1999(4):43-45
    [4]J. H. Chen, J. A. Little. Degradation of the Platinum Aluminide Coating on CMSX4 at 1100℃. Surface and Coatings Technology,1997,92:69-77
    [5]D. Punola, D. Sikkenga, M. Sutton. Platinum-Aluminide Coating Enhances Durability. Advanced Materials& Processes,1995,12:29-30
    [6]庞英,管恒荣,孙晓峰,姜晓霞.Pt-A1涂层在两种熔盐中的高温热腐蚀性为.腐蚀科学与防护技术,1997,(9):34-37
    [7]庞英,管恒荣,孙晓峰,姜晓霞.镀铂层在与扩散处理对铂铝涂层显微结构的影响.材料工程,1996,(4):20-22
    [8]J. H. Sun, H. C. Jang, E. Chang. Effects of Pretreatment on Structure and Oxidation Behaviour of d. c.-Sputtered Platinum Aluminide Coatings. Surface and Coatings Technology,1994,64:195-203
    [9]潘邻等.化学热处理应用技术.北京:机械工业出版社,2004,180
    [10]李铁藩.金属高温氧化和热腐蚀,第一版.北京:化学工业出版社,2003:274
    [11]S-C. kuang, High-temperature coating for titanium luminides using the pack-cementation technique. Oxid. Met.,1990,34:217-228
    [12]V. Gauthier, F. Dettenwanger, M. Schutze, V. Shement and W. J. Quadakkers, Oxidation-resistant aluminide coatings onγ-TiAl. Oxidation. Met.,2003,59:233-255
    [13]T. Nishimoto, T. Izumi, S. Hayashi, T. Narita. Two-step Cr and Al diffusion coating on TiAl at high temperature. Intrmetallics,2003,11:225-235
    [14]周月波.新型Ni-A1纳米复合镀层的高温氧化行为研究:[学位论文].沈阳:中国科学院金属研究所,2005
    [15]F. H. Stott, G. C. Wood and J. Stringer. The influence of alloying elements on the development and maintenance of protective scales. Oxid. Met.,1995,44:113-145
    [16]Z. G. Zhang, F. Gesmundo, P. Y. Hou and Y. Niu. Criteria for the formation of protective Al2O3 scales on Fe-Al and Fe-Cr-Al alloys. Corrosion Science,2006,48:741-765
    [17]杨忠林.铝-硅涂层防护性能的研究.中国腐蚀与防护学报,1981,1:28-37
    [18]P. Kofstad. International workshop on "new fundamentals of scale growth". Oxid. Met,, 1989,32:125-135
    [19]Z. D. Xiang, S. R. Rose, P. K. Datta. Vapor phase codeposition of Al and Si to form diffusion coatings on y-TiAl. Mater. Sci. Eng.,2003, A356:181-189
    [20]L. Swadzba, G. Moskal, M. Hetmanczyk, B. Mendala, G. Jarczyk. Structure and resistance to oxidation of an Al-Si diffusion coating deposied by Arc-PVD on a TiAlCrNb alloy. Surf. Coat. Technol.,2003,165:273-280
    [21]A. T. Cape. US Patent,3.102.044(1963)
    [22]K. Bungardt, G. Lehnert, H. Meinhardt, US Patent,3.677.789(1972)
    [23]K. Bungardt, G. Lehnert, H. Meinhardt, US Patent,3.692.554(1972)
    [24]K. Bungardt, G. Lehnert, H. Meinhardt, US Patent,3.819.338(1974)
    [25]E. J. Felten. Use of platinum and rhodium to improve oxide adherence on Ni-8Cr-6Al alloys. Oxid. Met.,1976,10:23-28
    [26]E. J. Felten, F. S. Pettit. Development, growth and adhension of Al2O3 on platinum-aluminum alloys. Oxid. Met.,1976,10:189-223
    [27]J. H. W. Dewit, P. A. Vanmanen. The precious metal effect in high temperature corrosion. Mat. Sci. Forum,1994,154:109-118
    [28]H. M. Tawancy, N. Sridhar, N. M. Abba, D. Rickerby. Comparative thermal stability characteristics and isothermal oxidation behavior of an aluminized and a Pt-aluminized Ni-based alloy. Script Metal. Mat.,1995,33:1431-1438
    [29]Y. Niu, W. T. Wu, D. H. Boone, J. S. Smith, J. Q. Zhang, C. L. Zeng. Oxidation behavior of simple and Pt-modified aluminide coatings on IN738 at 1100degree C. Journal de Physique 1993, IV 3(C9):511-519
    [30]G. H. Meier, F. S. Pettit. High temperature corrosion of alumina-forming coatings for surperalloys. Surf. Coat. Technol.,1989,39-40:1-17
    [31]H. M. Tawancy, H. M. Abbas, T. N. Rhys-Jones. Effect of substrate composition on the oxidation of platinum-aluminized nickel-based superalloy. Surf. Coat. Technol.,1992, 54-55:1-7
    [32]S. Aplerine. High temperature-resistance palladium-modified aluminide coatings for nickel-base superalloy. Mater. Sci. Eng.,1989, A120-121:367-372
    [33]S. K. M. S. K. Roy, and S. K. Bose. Influence of superficial coating of CeO2 on the oxidation behavior of AISI304 stainless steel, Oxid. of Met.,1993,39:221-229
    [34]M. Landkof, A. V. Levy, D. H. Boone, R. Gray, and E. Yaniv. The effect of surface additives on the oxidation of chromia-forming alloys. Corr,1985,41:344-357
    [35]S. Roure, F. Czerwiski, and A. Petric. Influence of CeO2-coating on th high-temperature oxidation of chromium. Oxid. of Met.,1994,42:75-102
    [36]D. P. Moon. Role of reactive elements in alloy protection. Materials Science and Technology,1989,5:754-764
    [37]R. Cueff, H. Buscail, E. Caudron and F. Riffard. The effect of Yittrium on the oxidation of a commercial Fe-Cr-Al alloy at 1173K. Materials Science Forum Vol,2001,369-372: 311-318
    [38]X. Y. Li, S. Taniguchi, Y. Matsunaga, K. Nakagawa and K. Fujita. Influence of siliconizing on the oxidation behavior of a y-TiAl. Intermetallics 2003,11:143-150
    [39]郑传林,谢锡善,董建新,徐重,贺志勇.TiAl双层辉光离子渗铬的工艺研究.宇航材料工艺,2002,2:51-54
    [40]江垚,贺跃辉,汤义务,李智,黄伯云.TiAl基合金的表面渗碳行为及机理.材料研究学报,2005,19:139-146
    [41]T. Thongtem, T. Somchai, M. J. Mcnallan. High temperature nitridation of the intermetallic compound TiAl at 1000-1200K. Surface and Interface Analysis,1999,28: 61-64
    [42]B. Wang, J. Gong, A. Y. Wang, C. Sun, R. F. Huang and L. S. Wen. Oxidation behavior of NiCrAlY coatings on Ni-based alloy. Surf. Coat. Technol,2002:149:70-75
    [43]B. Wang, J. Gong, C. Sun, R. F. Huang and L. S. Wen. The behavior of MCrAlYcoatings on Ni3Al-based superalloy. Mater. Sci. Eng.,2003, A357:39-44
    [44]C. Zhou, J. Yu, S. Gong and H. Xu. Influence of water vapor on the oxidation behavior of low pressure plasma sprayed NiCrAlY coating at high temperature. Surf. Coat. Technol., 2002,161:86-91
    [45]D. Xie, Y. Xiong and F. Wang. Effect of an enamel coating on the oxidation and hot corrosion behavior of a HVOF-sprayed Co-Ni-Al-Ycoating. Oxid. Met.,2003,59: 503-516
    [46]M. Saremi and M. Bahraini. Electrodeposition of NiCrAlY coating on In-738Ni superalloy and its oxidation and hot corrosion performance. Transaction of the Institute of Metal Finishing,2003,81:24-27
    [47]Z. Tang, F. Wang and W. Wu. Effect of MCrAlY overlay coatings on oxidation resistance of TiAl intermetallics. Surf. Coat. Technol.,1998,99:248-252
    [48]Y. Xiong, S. Zhu and F. Wang. The oxidation behavior of TiAlNb intermetallics with coatings at 800℃. Surf. Coat. Technol.,2005,197:322-326
    [49]Z. Tang, F. Wang and W. Wu. The effect of several coatings on cyclic oxidation of TiAl intermetallics. Surf. Coat. Technol.,1998,110:57-61
    [50]G. W. Goward. Progress in coatings for gas turbine airfoils. Surf. Coat. Technol.,1998, 108-109:73-79
    [51]T. Sekigawa, K. Oguir, J. Kochiyama and K. Miho. Endurance test of oxidation-resistant CVD-SiC coating on C/C composites for space vehicle. Materials Transactions,2001,42: 825-828
    [52]S. Taniguchi, T. Shibada, T. Yamada, X. Liu and S. Zou. High temperature oxidation resistance of TiAl compound by IBED Si3N4 coating. ISIJ Int,1993,33:869-876
    [53]M. Kawate, A. K. Hashimoto and T. Suzuki. Oxidation resistance of Cr1-XAlXN and Tii-xAlxN films. Surf. Coat. Technol.,2003,165:163-167
    [54]G. W. Goward. Progress in coatings for gas turbine airfoils. Surf. Coat. Technol.,1998, 108-109:73-79
    [55]K. L. Choy. Chemical vapor deposition of coatings. Progress in Materials Science,2003, 48:57-170
    [56]D. Barrow. Sol-gel method yields thicker ceramic coatings. Adv. Mater.&Proc,1998,4: 35-35
    [57]L-D. Piveteau, M. I. Girona and L. Schlaphach. Thin films of calcium phosphateand titanium dioxide by a sol-gel rotue:a new method for coating medical. J MatSci:Mat in Med,1999,10:161-167
    [58]H-M. Kim, F. Miyajc, T. Kokubo and T. Nakanura. Prepration of bioactive Ti and its alloys via simple chemical surface treatment. J Bio Mat. Res.,1996,32:409-417
    [59]J. Karthikeyan, C. C. Berndt and S. Reddy, et. al. Naomaterial deposits formed by DC plasma spraying of liquid. JAm. Ceram. Soc.,1998,81:121-128[68]
    [60]D. J. Taylor, B. D. Fabes. Laser processing of sol-gel coating. J Non-cryst. Solids,1992, 457:147-148
    [61]Yasuharu, H., Kouichi, H., Yohachi, Y. Crystal Growth and Electrical Properties of Lead-free Piezoelectric Material (Nao.5Bio.5)TiO3-BaTiO3. Jpn Soc Appl Phys,2001,40: 5722-5726
    [62]钟华仁.热处理质量控制.北京:国防工业出版社,177
    [63]J. R. Nicholls, N. J. Simms, W. Y. Chan, and H. E. Evans. Smart overlay coatings-concepts and practice. Surf. Coat. Technol.,2002,149:236-244
    [64]J. R. Nicholls. Smart Coatings-A Bright Future. Mater. World,1996,4:19-21
    [65]P. F. Tortorelli, M. P. Brady and I. G. Wright. Concepts for Smart Protective. High Temperature Coatings,17th Annual Conference on Fossil Energy Materials, April 24, 2003
    [66]H. Hosoda, S. Miyazaki and S. Hanada. Potential of IrAl base alloy as ultrahigh-temperature smart coatings. Intermetallics,2000,8:1081-1090
    [67]X. Ren, F. Wang. High temperature oxidation and hot corrosion behavior of a sputtered NiCrAlY coating with and without aluminizing. Surf. Coat. Technol., in press
    [68]郑伟涛等.薄膜材料与薄膜技术,第1版.北京:化学工业出版社,2004
    [69]C. A. Johnson, J. A. Ruud, R. Bruce, D. Wortman. Relationships between residual stress, microstructure and mechanical properties of electron beam-physical vapor deposition thermal barrier coatings. Surf. Coat. Technol.,1998,180-109:80-85
    [70]曲敬信,汪泓宏主编,表面工程手册,第1版.北京:化学工业出版社,1998,357-405
    [71]黄守伦.实用化学热处理与表面强化新技术.北京:机械工业出版社,154
    [72]柳祥训,钟华仁,张淑芳.化学热处理问答.北京:国防工业出版社,228
    [73]R.W.卡恩,P.哈森,E.J.克雷默主编.材料科学与技术丛书(第17B卷).北京:科学出版社,1999.257
    [74]J. Angenete. Oxidation of Simple and Pt-Modified Aluminide Diffusion Coating on Ni-Base Superalloys-I. Oxide scale Mocrostructure. Oxidtion of Metals,2003,60(1/2): 47-82
    [75]G. W. Goward etc. Trans of ASM,1976
    [76]张鹏飞.K4104合金铝-硅-稀土涂层抗高温氧化性能的研究.哈尔滨工程大学,2005,32-35
    [77]尹衍生,高振民,张景德等.Fe3A1/A1203陶瓷复合梯度涂层抗热震性研究.硅酸盐学报,2003,31(9):867-873
    [78]E. L. Simons, G. V. Browning, H. A. Liebharskey, Sodium sulfate in gas turbines Corrosion,1955,11(12):17-26
    [79]R. A. Rapp, K. S. Goto, in Proc. Fused Salts Symp., J Brauntein, ED., The Electrochem. Soc, Princeton,1979
    [80]张允书,热腐蚀的盐溶机理及其局限性,中国腐蚀与防护学报,1992,12:1-10
    [81]R. Andresen, Solubility of oxygen and sulfur dioxide in molten sodium sulfate and oxygen and carbon dioxide in molten sodium carbonate, J Electrochem. Soc.,1979,126: 328-334

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700