用户名: 密码: 验证码:
甲烷在高温氧化剂中燃烧特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用当前燃烧领域较完善的研究手段,对甲烷(CH4)在高温氧化剂中着火、拉伸熄灭及燃烧特性进行了研究。
     采用确定温度边界微型反应器,对CH4/air和CH4/O2/CO2(Xo2/Xco2=0.62)混合物的着火和燃烧特性进行研究。实验结果表明来流速度较高和较低条件下混合物在微型反应器内存在两种稳态的火焰响应,常态火焰(normal flame)和弱火焰(weak flame),来流速度在中间区域时对应一种动态火焰,即快速着火熄灭火焰(FREI, flame with repetitive extinction and ignition)。研究表明随着来流速度的降低常态火焰向上游区域迁移,弱火焰的位置受来流速度影响不大。CH4/air和CH4/O2/CO2(XO2/Xco2=0.62)混合物弱火焰对应着火温度非常接近。采用一维稳态计算程序和详细化学反应机理,对确定温度边界微型反应器内火焰燃烧和着火特性进行了计算,得到两种稳态火焰,常态火焰和弱火焰的数值解。数值计算结果和实验结果吻合较好。分析了CH4在常态火焰和弱火焰中的反应过程,并对C02和N2对常态火焰和弱火焰内CH4反应过程的影响进行了详细的讨论。
     利用对冲火焰结构研究了氧化剂温度对非预混对冲火焰拉伸熄灭极限的影响。研究了燃料混合物为常温(300K)的CH4/N2与air(O2/N2)对冲火焰和CH4/CO2与O2/CO2对冲火焰,其中CH4/CO2与O2/CO2对冲火焰氧化剂中氧摩尔分数采用0.40和0.35。得到不同氧化剂温度条件下(300K,700K,1000K)不同火焰的熄灭特性。分别采用光学薄模型(OTM, optical thin model)和绝热模型(ADI, adiabatic)讨论了辐射散热对拉伸熄灭极限的影响,研究结果表明燃料浓度较高时辐射散热对两种对冲火焰拉伸熄灭极限的影响不大。氧化剂温度为常温时(300K),氧化剂中氧摩尔分数为0.35的CH4/CO2与02/C02对冲火焰的熄灭曲线靠近CH4/N2与air (O2/N2)对冲火焰的熄灭曲线。而当氧化剂温度较高时(1000K), CH4/N2与air (O2/N2)对冲火焰的熄灭曲线靠近氧化剂中氧摩尔分数为0.40的CH4/CO2与02/C02对冲火焰的熄灭曲线。对影响拉伸熄灭的参数进行了理论研究,分析表明拉伸熄灭极限主要由焓流密度和动力学特性两个影响因素决定。通过对数值计算结果中化学链起始反应和主要吸放热反应的分析,得到了影响熄灭极限的关键基元为OH,结合理论研究定量的比较了OH生成速率对拉伸熄灭极限的影响。提出估算拉伸熄灭极限的方法,对拉伸熄灭曲线随氧化剂温度的变化进行了合理的解释。
     对高温助燃空气旋流和平行射流两种流动模式下CH4射流火焰燃烧特性进行了比较。研究表明两种高温空气流动模式下射流火焰燃烧特性截然不同,采用高温空气旋流可以稳定射流火焰,并有效的降低NO生成。在此基础上研究了燃烧室外采用空气对流换热和水对流换热条件下甲烷在旋流高温空气中燃烧特性。研究表明当燃烧室外采用空气对流换热条件时,随着助燃空气温度增加,燃烧室气体温度升高,壁面平均热流和出口NO浓度增大;随着过量空气系数的增加,燃烧的最高温度和NO生成量增加,气体平均温度及热流密度先增加后减小,过量空气系数为1.2时温度均匀性好,传热量最大;随助燃空气中氧浓度减小,燃烧室温度均匀性增强,壁面平均热流增大,NO生成量显著减小。
Ignition, stretch extinction and combustion characteristics of methane with high temperature oxidizers were studied by using well developed research methods in this work.
     Combustion and ignition characteristics of a stoichiometric CH4/air and CH4/O2/CO2(Xo2/Xco2=0.62) mixtures were tested in a micro flow reactor with a controlled temperature profile. Two kinds of steady flame responses, namely normal flame and weak flame, were observed experimentally at conditions of high and low inlet velocities. Dynamic flame which termed as FREI (flame with repetitive extinction and ignition) was observed in intermediate inlet velocity regimes. It was observed that the flame position of normal flame is shifted to the upstream with the increase of inlet flow velocity, and the flame location of weak flame is not sensitive to the inlet flow velocity. The ignition temperatures of CH4/air and CH4/O2/CO2(XO2/XCO2=0.62) weak flames are very close. One dimensional steady-state computation code with detail reaction mechanism was used to extend the experimental understanding. Steady flame responses, normal flame and weak flame, were well captured by this computation code. And the reaction path of CH4in both normal flame and weak flame were analyzed, and the effect of CO2and N2on the oxidation process of CH4were studied.
     The effect of oxidizer temperature on the stretch extinction limits of non-premixed counterflow flames was investigated. Extinction stretch rates of CH4/N2(at300K) versus air (O2/N2) flames and CH4/CO2(at300K) versus O2/CO2flames with oxygen mole fractions of0.35and0.40at the oxidizer temperatures of300K,700K and1000K were obtained. An effect of radiative heat loss on stretch extinction limits of oxygen-enriched flames and air-flames was investigated by computations with optical thin model (OTM) and adiabatic flame model (ADI). The results show the influence of radiative heat loss on stretch extinction limits is not significant in relative high fuel mole fraction regions. The extinction curve of the oxygen-enriched flames with oxygen mole fraction of0.35is close to that of the air flames at the oxidizer temperature of300K. However, the extinction curve of air flames with high temperature oxidizer (1000K) is comparable with that of oxygen-enriched flames with oxygen mole fraction of0.40. Scaling analysis based on asymptotic solution of stretch extinction was applied and it was found that the stretch extinction limits can be expressed by two terms. The first term is total enthalpy flux of fuel stream based on thermo-physical parameters. The second term is a kinetic term which reflects an effect of the chemical reaction rate on stretch extinction limits. The OH radicals which play important roles in chain propagating and main endothermic reactions is used to represent the kinetic term of both oxygen-enriched and air flames. The global rates of OH formation in these two cases were compared to understand the contribution of kinetic term to stretch extinction limits. Variation of extinction curves of oxygen-enriched flames and air flames is well explained by the present scaling analysis.
     Combustion characteristics of methane-jet-flames with swirling and parallel high temperature airs were compared. It was found that the combustion characteristics of methane-jet-flames are totally different in swirling and parallel high temperature airs. Swirling high temperature air results low NO formation and uniform temperature distribution. Furthermore, the combustion characteristics of methane-jet-flame in swirling high temperature air under air convection heat transfer boundary and water convection boundary conditions were studied. In the air convection heat transfer boundary case, the effects of important parameters such as air temperature, excessive air ratio and oxygen concentration on combustion characteristics were systematic discussed. The maximum flame temperature, average wall heat flux and NO formation increase with the air temperature. The maximum gas temperature and NO formation increase with the excessive air ratio, the average gas temperature and heat flux increased firstly and then decreased, the maximum heat flux can be obtained at excessive air ratio of1.2. With the decrease of oxygen concentration of high temperature air, NO generation is significantly decreased, and the uniformity of gas and average wall heat flux are increased.
引文
[1]Mohamed A, Massey K, Watkins S, Clothier R. The attitude control of fixed-wing MAVS in turbulent environments[J]. Progress in Aerospace Sciences,2014,66:37-48.
    [2]Gordnier R E, Attar P J. Impact of flexibility on the aerodynamics of an aspect ratio two membrane wing[J]. Journal of Fluids and Structures,2014,45:138-152.
    [3]Lucieer A, Turner D, King D H, Robinson S A. Using an Unmanned Aerial Vehicle (UAV) to capture micro-topography of Antarctic moss beds[J]. International Journal of Applied Earth Observation and Geoinformation,2014,27(Part A):53-62.
    [4]Drouot A, Richard E, Boutayeb M. Hierarchical backstepping-based control of a Gun Launched MAV in crosswinds:Theory and experiment[J]. Control Engineering Practice,2014,25:16-25.
    [5]Lidor A, Sher E, Weihs D. Phase-change-materials as energy source for micro aerial vehicles (MAV)[J]. Applied Thermal Engineering,2014,65(1-2):185-193.
    [6]Troncoso E, Lapena-Rey N, Valero O. Solar-powered hydrogen refuelling station for unmanned aerial vehicles:Design and initial AC test results[J], International Journal of Hydrogen Energy, 2014,39(4):1841-1855.
    [7]Li J P, Song W Y, Luo F T, Shi D Y. Experimental investigation of vitiation effects on supersonic combustor performance[J]. ActaAstronautica,2014,96:296-302.
    [8]Lin C F. Optimum three-dimensional flight of a supersonic aircraft[J]. Applied Mathematical Modelling,1982,6(2):124-129.
    [9]Tsukatani H, Okudaira H, Shitamichi O, Uchimura T, Imasaka T. Selective determination of 2,4-xylenol by gas chromatography/supersonic jet/resonance-enhanced multiphoton ionization/time-of-flight mass spectrometryfJ]. Analytica Chimica Acta,2010,682(1-2):72-76.
    [10]Suresh P S, Radhakrishnan G,Shankar K. Optimal trends in Manoeuvre Load Control at subsonic and supersonic flight points for tailless delta wing aircraft[J], Aerospace Science and Technology,2013,24(1):128-135.
    [11]Zhong Z Z, Chen J X, Peng R G. Design and performance analysis of micro proton exchange membrane fuel cells[J]. Chinese Journal of Chemical Engineering,2009,17 (2):298-303.
    [12]Kim T Y. Fully-integrated micro PEM fuel cell system with NaBH4 hydrogen generator[J]. International Journal of Hydrogen Energy,2012,37 (3):2440-2446.
    [13]Evans A, Bieberle-Hutter A, Rupp J L M, Gauckler L J. Review on microfabricated micro-solid oxide fuel cell membranes[J]. Journal of Power Sources Volume,2009,194(1):119-129.
    [14]Kundu A, Jang J H, Gil J H, Jung C R, Lee H R, Kim S H, Ku B, Oh Y S. Micro-fuel cells—Current development and applications[J]. Journal of Power Sources,2007,170(1): 67-78.
    [15]Fernandez-Pello A C. Micropower generation using combustion:Issues and approaches [J]. Proceedings of the Combustion Institute,2002,29(1):883-899.
    [16]Vican J, Gajdeczko B F, Dryer F L, Milius D L, Aksay I A, Yetter R A. Development of a microreactor as a thermal source for microelectromechanical systems power generation[J]. Proceedings of the Combustion Institute,2002,29(1):909-916.
    [17]Sher E, Sher I. Theoretical limits of scaling-down internal combustion engines[J]. Chemical Engineering Science,2011,66(3):260-267.
    [18]Kyritsis D C, Guerrero-Arias I, Roychoudhury S, Gomez A. Mesoscale power generation by a catalytic combustor using electrosprayed liquid hydrocarbons[J]. Proceedings of the Combustion Institute,2002,29(1):965-972
    [19]Camerettia M C, Tuccilloa R, Piazzesib R. Study of an exhaust gas recirculation equipped micro gas turbine supplied with bio-fuels[J]. Applied Thermal Engineering,2013,59(1-2):162-173.
    [20]Sanaye S, Katebi A.4E analysis and multi objective optimization of a micro gas turbine and solid oxide fuel cell hybrid combined heat and power system[J]. Journal of Power Sources, 2014,247:294-306.
    [21]Kurata O, Iki N, Matsunuma T, Maeda T, Hirano S, Kadoguchi K, Takeuchi H, Yoshida H. Micro gas turbine cogeneration system with latent heat storage at the University:Part I:Plan and energy flow test.Applied Thermal Engineering[J]. Applied Thermal Engineering,2014, 65(1-2):513-523.
    [22]Kurata O, Iki N, Matsunuma T, Maeda T, Hirano S, Kadoguchi K, Takeuchi H, Yoshida H. Micro gas turbine cogeneration system with latent heat storage at the University:Part Ⅱ:Part load and thermal priority mode[J]. Applied Thermal Engineering,2014,65(1-2):246-254.
    [23]Yang W M, Li D T, Pan J F. Microscale combustion research for application to micro thermophotovoltaic systems[J]. Energy Conversion and Management,2003,44(16):2625-2634.
    [24]Yang W M, Chou S K, Shu, et al.. Development of a micro thermophotovoltaic system[J]. Applied Physics Letters,2002,81(27):5255-5257.
    [25]邓军,李德桃,潘剑锋,等.微型火焰管中燃烧的研究[J].工程热物理学报,2004,25(3):537-539.
    [26]潘剑锋,李德桃,杨文明,等.微型热光电系统燃烧器的研究[J].中国机械工程,2005,16(6):527-529.
    [27]潘剑锋,李德桃,杨文明,等.微热光电系统燃烧的若干影响因素的实验研究[J].机械工程学报,2004,40(12):120-123.
    [28]Pan J f, Li D T, Yang W M, et al.. Micro-scale combustion research for Application to micro thermophotovoltaic systems[J]. Heat Transfer Asian Research,2005,34(6):369-379.
    [29]Yang W M, Chou S K, Shu C, et al.. Combustion in Micro-Cylindrical Combustors with and without a Backward Facing Step[J]. Applied Thermal Engineering,2002,22(16):1777-1787.
    [30]Yang W M, Chou S K, Li J. Micro thermophotovoltaic Power Generaotor with High Power Density[J]. Applied Thermal Engineering,2009,29(14-15):3144-3148.
    [31]Maruta K. Micro and mesoscale combustion[J].Proceedings of the Combustion Institute,2011, 33(1):125-150.
    [32]Ju Y Q Maruta K. Microscale combustion:Technology development and fundamental research[J]. Progress in Energy and Combustion Science,2011,37(6):669-715.
    [33]Epstein A H, Senturia S D. Macro Power From Micro Machinery[J]. Science,1997, 276:1211-1224.
    [34]Epstein A H, Senturia S D. Al-Midani. Micro-Heat Engines[J]. Gas Turbines, and Rocket Engines. Proceeding of AIAA,1997:1773-1797.
    [35]Epstein A H. Millimeter-Scale, Micro-Electro-Mechanical Systems Gas Turbine Engines[J]. Journal of Engineering for Gas Turbines and Power,2004,126:205-226.
    [36]Waitz I A, Gautam G, Tzeng Y S. Combustors for Micro-Gas Turbine Engines[J]. Journal of Fluids Engineering,1998,120(1):109-117.
    [37]Spadaccini C M, Zhang X, Cadou C P, Miki N, Waitz I A. Preliminary development of a hydrocarbon-fueled catalytic micro-combustor[J]. Sensors and Actuators A-Physical,2003, 103:219-224.
    [38]Spadaccini C M, Mehra A, Lee J, Zhang X, et al.. High Power Density Silicon Combustion Systems for Micro Gas Turbine Engines[J]. Journal of Engineering for Gas Turbines and Power. 2003,125(3):709-719.
    [39]Hamed B G, Ebrahimi R. Numerical estimation of blowout, flashback, and flame position in MIT micro gas-turbine chamber[J]. Chemical Engineering Science,2013,104(18):857-867.
    [40]Kim N I, Kato S, Kataoka T, Yokomori T, Maruyama S, Fujimori T, Maruta K. Flame Stabilization and Emission of Small Swiss-roll Combustors as Heaters[J]. Combustion and Flame,2005,141(3):229-240.
    [41]Kim N I, Aizumi S, Yokomori T, Kato S, Fujimori T, Maruta K. Development and scale effects of small Swiss-roll combustors[J]. Proceedings of the Combustion Institute,2007, 31(2):3243-3250.
    [42]Tsuji H. Gupta A K, Hasegawa T, et al. High temperature Air Combustion:From Energy Conservation to Pollution ReductionfM]. New York:CRC PRESS,2003.
    [43]Wiinning J A,Wiinning J G. Flameless oxidation to reduce thermal NO-formation[J]. Progress in Energy and Combustion Science,1997,23(1):81-94.
    [44]Cavaliere A, Joannon M. Mild Combustion[J]. Progress in Energy and Combustion Science, 2004,30(4):329-366.
    [45]Weber R, John P S, Willem K. On the (MILD) combustion of gaseous, liquid, and solid fuels in high temperature preheated air[J]. Proceedings of the Combustion Institute,2005,30(2): 2623-2629.
    [46]Zhang H, Yue G X, Lu J f, et al. Development of high temperature air combustion technology in pulverized fossil fuel fired boilers[J]. Proceedings of the Combustion Institute,2007, 31(2):2779-2785.
    [47]Wu S R, Chang W C, Jack C. Low NOx heavy fuel oil combustion with high temperature air[J]. Fuel,2007,86(5-6):820-828.
    [48]Gupta A K, Bolz S, Hasegawa T. Effect of Air Preheat Temperature and Oxygen Concentration on Flame Structure and Emission [J]. Journal of Energy Resources Technology,1999, 121(3):209-216.
    [49]Yang W H, Blasiak W. Numerical simulation of properties of a LPG flame with high-temperature air[J]. International Journal of Thermal Sciences,2005,44(10):973-985.
    [50]Blasiak W, Yang W H, Rafidi N, Physical properties of a LPG flame with high-temperature air on a regenerative burner[J]. Combustion and Flame,2004,136(10):567-569.
    [51]Yang W H, Blasiak W. Mathematical modelling of NO emissions from high-temperature air combustion with nitrous oxide mechanism[J]. Fuel Processing Technology,2005, 86(9):943-957.
    [52]Yang W H, Blasiak W. Numerical study of fuel temperature influence on single gas jet combustion in highly preheated and oxygen deficient air[J]. Energy,2005,30(2-4):385-398.
    [53]Galletti C, Parente A, Tognotti L. Numerical and experimental investigation of a mild combustion burner[J]. Combustion and Flame,2007,151(4):649-664.
    [54]Szego G G, Dally B B, Nathan G J. Scaling of NOx emissions from a laboratory-scale mild combustion furnace[J]. Combustion and Flame,2008,154(1-2):281-295.
    [55]吕清刚,朱建国.煤粉在循环流化床高温空气下的燃烧与NOx排放[J].中国电机工程学报,2007,27(32):9-14.
    [56]楼波,罗玉和,马晓茜.回转窑内生物质高温空气燃烧NOx生成模型与验证[J].中国电机工程学报,2007,27(29):68-73.
    [57]曹小玲,蒋绍坚,吴创之,等.高温空气发生器热态实验研究[J].中国电机工程学报,2005,25(2):109-113.
    [58]Hwang C H, Lee S, Kim J H, et al. An experimental study on flame stability and pollutant emission in a cyclone jet hybrid combustor[J]. Applied Energy,2009,86(7-8):1154-1161.
    [59]李星,贾力,等.天然气高温空气燃烧特性数值研究[J].中国电机工程学报.2009,29(32):37-44.
    [60]李星,贾力.交变热流下燃烧室外对流换热特性数值研究[J].工程热物理学报,2011,32(1):129-132.
    [61]Li X, Jia L, Yang H. Numerical investigation of a symmetrical combustion burner and external convection heat transfer characteristics[C]. Proceedings of the International Heat Transfer Conference (IHTC14),2010, v3:7-12.
    [62]Li X, Jia L, Zhang T T, Yang L X. Numerical study on high temperature air combustion In U-Type tube[C].2008 Proceedings of the ASME Summer Heat Transfer Conference,2008, v3:111-117.
    [63]李鹏飞,米建春,Dally B B, Craig R A,王飞飞.当量比和反应物混合模式对无焰燃烧的影响[J].中国电机工程学报,2011,31(5):20-27.
    [64]Li P F, Dally B B, Mi J C, Wang F F. MILD oxy-combustion of gaseous fuels in a laboratory-scale furnace[J]. Combustion and Flame,2013,160(5):933-946.
    [65]Li X, Jia L, Onishi T, Grajetzki P, Nakamura H, Tezuka T, Hasegawa S, Maruta K. Study on stretch extinction limits of CH4/CO2 versus high temperature O2/CO2 counterflow non-premixed flames. Combustion and Flame[J]. Combustion and Flame,2014,161(6): 1526-1536.
    [66]Petersen E L, Kalitan D M, Simmons S, Bourque G, Curran H J, Simmie J M, Methane/propane oxidation at high pressures:Experimental and detailed chemical kinetic modeling[J]. Proceedings of the Combustion Institute,2007,31(1):447-454.
    [67]Metcalfe W K, Burke S M, Ahmed S S, Curran H J. A Hierarchical and Comparative Kinetic Modeling Study of C1-C2 Hydrocarbon and Oxygenated Fuels [J]. International Journal of Chemical Kinetics,2013,45 (10):638-675.
    [68]Zhang Y, Huang Z, Wei L, Zhang J, Law C K. Experimental and modeling study on ignition delays of lean mixtures of methane, hydrogen, oxygen, and argon at elevated pressures[J]. Combust and Flame,2012,159 (3):918-931.
    [69]Cong T L, Dagaut P. Experimental and Detailed Kinetic Modeling of the Oxidation of Methane and Methane/Syngas Mixtures and Effect of Carbon Dioxide Addition[J].Combustion Science and Technology,2008,180 (10-11):2046-2091.
    [70]Reyes M, Tinaut F V, Andres C, Perez A. A method to determine ignition delay times for Diesel surrogate fuels from combustion in a constant volume bomb:Inverse Livengood-Wu method[J]. Fuel,2012,102:289-298.
    [71]Maruta K, Park J K, Oh K C, Fujimori T, Minaev S, Fursenko R. Characteristics of Microscale Combustion in Narrow Heated Channel[J]. Combustion, Explosion and Shock Waves,2004, 40(5):516-523.
    [72]Maruta K, Kataoka T, Kim N I, Minaev S, Fursenko R. Characteristics of combustion in a narrow channel with a temperature gradient[J]. Proceedings of the Combustion Institute,2005, 30(2):2429-2436.
    [73]Tsuboi Y, Yokomori T, Maruta K. Extinction characteristics of premixed flame in heated microchannel at reduced pressures[J]. Combustion Science and Technology,2008, 180(10-11):2029-2045.
    [74]Tsuboi Y, Yokomori T, Maruta K. Lower limit of weak flame in a heated channel[J]. Proceedings of the Combustion Institute,2009,32(2):3075-3081.
    [75]Minaev S, Maruta K, Fursenko R. Nonlinear dynamics of flame in a narrow channel with a temperature gradient[J]. Combustion Theory and Modelling,2007,11 (2):187-203.
    [76]Oshibe H, Nakamura H, Tezuka T, Hasegawa S, Maruta K. Stabilized three-stage oxidation of DME/air mixture in a micro flow reactor with a controlled temperature profile[J]. Combustion and Flame,2010,157(8):1572-1580.
    [77]Yamamoto A, Oshibe H, Nakamura H, Tezuka T, Hasegawa S, Maruta K. Stabilized three-stage oxidation of gaseous n-heptane/air mixture in a micro flow reactor with a controlled temperature profile[J]. Proceedings of the Combustion Institute,2011,33(2):3259-3266.
    [78]Hori M, Yamamoto A, Nakamura H, Tezuka T, Hasegawa S, Maruta K. Study on octane number dependence of PRF/air weak flames at 1-5 atm in a micro flow reactor with a controlled temperature profile[J]. Combustion and Flame,2012,159(3):959-967.
    [79]Hori M, Nakamura H, Tezuka T, Hasegawa S, Maruta K. Characteristics of n-heptane and toluene weak flames in a micro flow reactor with a controlled temperature profile[J]. Proceedings of the Combustion Institute,2013,34(2):3419-3426.
    [80]Suzuki S, Hori M, Nakamura H, Tezuka T, Hasegawa S, Maruta K. Study on cetane number dependence of diesel surrogates/air weak flames in a micro flow reactor with a controlled temperature profile[J]. Proceedings of the Combustion Institute,2013,34(2):3411-3417.
    [81]Kamada T, Nakamura H, Tezuka T, Hasegawa S, Maruta K. Study on combustion and ignition characteristics of natural gas components in a micro flow reactor with a controlled temperature profile[J]. Combustion and Flame,2014,161(1):37-48.
    [82]Nakamura H, Tanimoto R, Tezuka T, Hasegawa S, Maruta K. Soot formation characteristics and PAH formation process in a micro flow reactor with a controlled temperature profile[J]. Combustion and Flame,2014,161(2):582-591.
    [83]Spalding D B. A Theory of Inflammability Limits and Flame-Quenching[J]. Proceedings of the Royal Society of London, Series A,1957,240:83-100.
    [84]Williams F A. Combustion Theory, second ed.[M].Benjamin/Cummings,1985.
    [85]Maruta K, Yoshida M, Ju Y G, Niioka T. Experimental Study on Methane-Air Premixed Flame Extinction at Small Stretch Rates in Microgravity[J]. Proceedings of the Combustion Institute, 1996,26:1283-1289.
    [86]Ju Y G,Guo H S, Maruta K, Liu F S. On the Extinction Limit and Flammability Limit of Non-adiabatic Stretched Methane-Air Premixed Flame[J]. Journal of Fluid Mechanics,1997, 342:315-334.
    [87]Maruta K, Yoshida M, Guo H S, Ju Y G, Niioka T. Extinction of Low-stretched Diffusion Flame in Microgravity[J]. Combustion and Flame,1998,12:181-187.
    [88]Maruta K, Abe K, Hasegawa S, Maruyama S, Sato J. Extinction characteristics of CH4/CO2 versus O2/CO2 counterflow non-premixed flames at elevated pressures up to 0.7 MPa[J]. Proceedings of the Combustion Institute,2007,31(1):1223-1230.
    [89]Chelliah H K, Law C K, Ueda T, Smooke M D, Williams F A. An experimental and theoretical investigation of the dilution, pressure and flow-field effects on the extinction condition of methane-air-nitrogen diffusion flames[J]. Proceedings of the Combustion Institute,1991,23(1): 503-511.
    [90]Balakrishnan G, Trees D, Williams F A. An experimental investigation of strain-induced extinction of diluted hydrogen-air counterflow diffusion flames[J].Combustion and Flame, 1994,98 (1-2):123-126.
    [91]Bundy M, Hamins A, Lee K Y. Suppression limits of low strain rate non-premixed methane flames[J].Combustion and Flame,2003,133 (3):299-310.
    [92]Tsuji H. Counterflow diffusion flames[J]. Progress in Energy and Combustion Science,1982, 8(2):93-119
    [93]Warnatz J, Maas U, Dibble R W. Combustion:Physical and Chemical Fundamentals, Modelling and Simulation, Experiments, Pollutant Formation, third ed.[M]. Springer-Verlag, Berlin, Heidelberg, New York,2000:95-96.
    [94]Law C K. Combustion Physics[M]. Cambridge university press, Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo,2006:95-100.
    [95]Riechelmanna D, Fujimoria T, Satoa J. Effect of dilution on extinction of methane diffusion flame in high temperature air up to 1500 K[J]. Combustion Science and Technology,2002, 174(2):23-46.
    [96]Maruta K, Muso K, Takeda K, Niioka T, Reaction Zone Structure in Flameless Combustion [J]. Proceedings of the Combustion Institute,2000,28(2):2117-2123.
    [97]Chigier N A, Beer J M. Velocity and Static Pressure Distribution in Swirling Air Jets Issuing from Annular and Divergent Nozzles[J]. ASME Journal of Basic Engineering,1964,4:788-796.
    [98]Chigier N A, Beer J M, Grecov D, et al. Jet flames in rotating flow fields[J]. Combustion and Flame,1970,14(2):171-179.
    [99]Syred N, Gupta A K, Beer J M. Temperature and density gradient changes arising with the precessing vortex core and vortex breakdown in swirl burners[J]. Symposium (International) on Combustion,1975,15(l):587-597.
    [100]Gupta A K, Syred N, Beer J M. Fluctuating temperature and pressure effects on the noise output of swirl burners[J]. Symposium (International) on Combustion,1975,15(1):1367-1377.
    [101]Claypole T C, Syred N. The effect of swirl burner aerodynamics on NOx formation[J]. Symposium (International) on Combustion,1981,18(1):81-89.
    [102]Takagi T, Okamoto T. Characteristics of combustion and pollutant formation in swirling flames[J]. Combustion and Flame,1981,43:69-79.
    [103]Weber R, Dugue J. Combustion accelerated swirling flows in high confinements[J]. Progress in Energy and Combustion Science,1992,18(4):349-367.
    [104]Hubner A W, Tummers M J, Hanjali K, et al. Experiments on a rotating-pipe swirl burner[J]. Experimental Thermal and Fluid Science,2003,27(4):481-489.
    [105]Tummers M J, Hubner A W, Veen E H, et al. Hysteresis and transition in swirling nonpremixed flames. Combustion and Flame,2009,156(2):447-459.
    [106]Kalt P A M, Masri A R, Barlow R S, et al. Swirling turbulent non-premixed flames of methane: Flow field and compositional structure[J]. Proceedings of the Combustion Institute,2002, 29(2):1913-1919.
    [107]Abdeli Y M, Masri A R. Recirculation and flowfield regimes of unconfined non-reacting swirling flows[J]. Experimental Thermal and Fluid Science,2003,27(5):655-665.
    [108]Masri A R, Kalt P A M, Barlow R S. The compositional structure of swirl-stabilised turbulent nonpremixed flames[J]. Combustion and Flame,2004,137(1-2):1-37.
    [109]Murphy J J, Shaddix C R. Combustion kinetics of coal chars in oxygen-enriched environments [J].Combustion and Flame,2006,144 (4):710-729.
    [110]Bejarano P A, Levendis Y A. Single-coal-particle combustion in O2/N2 and O2/CO2 environments[J].Combustion and Flame,2008,153 (1-2):270-287.
    [111]Rathnam R K, Elliott L K, Wall T F, Liu Y, Moghtaderi B. Differences in reactivity of pulverised coal in air (O2/N2) and oxy-fuel (O2/CO2) conditions[J].Fuel Processing Technolgy, 2009,90(6):797-802.
    [112]Buhre B J P, Elliott L K, Sheng C D, Gupta R P, Wall T F. Oxy-fuel combustion technology for coal-fired power generation[J]. Progress in Energy and Combustion Science,2005, 31(4):283-307.
    [113]Toftegaard M B, Brix J, Jensen P A, Glarborg P, Jensen A D. Oxy-fuel combustion of solid fuels [J]. Progress in Energy and Combustion Science,2010,36(5):581-625.
    [114]Fujimori T, Yamada T. Realization of oxyfuel combustion for near zero emission power generation[J]. Proceedings of the Combustion Institute,2013,34 (2):2111-2130.
    [115]杨浩林.甲烷/富氧扩散火焰的燃烧特性和NOx排放的研究[D].安徽:中国科学技术大学:2006.
    [116]赵黛青,杨浩林,杨卫斌.旋流对同轴富氧扩散燃烧NOx排放的影响[J].燃烧科学与技术.2008,14(05):383-387.
    [117]李庆钊,赵长遂,武卫芳,李英杰,段伦博.O2/CO2气氛下煤粉燃烧反应动力学的试验研究[J].动力工程,2008,28(03):447-452.
    [118]赵然,刘豪,胡翰,闫志强,孔凡海,吴辉,邱建荣.O2/CO2气氛下甲烷火焰中NO均相反应机理研究[J].中国电机工程学报,2009,29(20):52-59.
    [119]徐敏,邱建荣,李骏.CH4火焰中CO2对NO行为影响的实验研究[J].环境科学与技术.2002,25(02):1-4.
    [120]王宏,董学文,邱建荣,郑楚光.燃煤在O2/CO2方式下NOx生成特性的研究[J].燃料化学学报,2001,29(05):458-462.
    [121]Cong T L, Dagaut P. Oxidation of H2/CO2 mixtures and effect of hydrogen initial concentration on the combustion of CH4 and CH4/CO2 mixtures:Experiments and modeling[J]. Proceedings of the Combustion Institute,2009,32(1):427-435.
    [122]Liu F, Guo H, Smallwood G J. The chemical effect of CO2 replacement of N2 in air on the burning velocity of CH4 and H2 premixed flames[J]. Combustion and Flame,2003,133 (4):495-497.
    [123]Watanabe H, Arai F, Okazaki K. Role of CO2 in the CH4 oxidation and H2 formation during fuel-rich combustion in O2/CO2 environments[J]. Combustion and Flame,2013, 160(11):2375-2385.
    [124]Watanabe H, Yamamoto J, Okazaki K. NOx formation and reduction mechanisms in staged O2/CO2 combustion[J]. Combustion and Flame,2011,158 (7):1255-1263.
    [125]Kee R J, Grcar J F, Smooke M D, Miller J A. A Fortran Program for Modeling Steady Laminar One-dimensional Premixed Flames, Report No. SAND85-8240, Sandia National Laboratories, 1985.
    [126]Smith G P, Golden D M, Frenklach M, Moriarty N W, Eiteneer B, Goldenberg M, Bowman C T, Hanson R K, Song S, Gardiner W C, Lissianski V V, Qin Z. .
    [127]Selle L, Poinsot T, Ferret B. Experimental and numerical study of the accuracy of flame-speed measurements for methane/air combustion in a slot burner[J]. Combustion and Flame,2011, 158 (1):146-154.
    [128]Metcalfe W K, Burke S M, Ahmed S S, Curran H J. [DB]. http://www.nuigalway.ie/c3/documents/supp_mat_v9.pdf
    [129]Wang H, You X Q, Joshi A V, Davis S G, Laskin A, Egolfopoulos F, Law C K. USC Mech Version II. High-Temperature C ombustion Reaction Model of H2/CO/C1-C4 Compounds. , May 2007.
    [130]Cheng Z, Wehrmeyer J A, Pitz R W. Experimental and numerical studies of opposed jet oxygen-enriched methane diffusion flames[J]. Combustion Science and Technology,2006, 178(12):2145-2163.
    [131]Linan A. The asymptotic structure of counterflow diffusion flames for large activation energies, Acta Astronautica[J].Acta Astronautica,1974,1 (7-8):1007-1039.
    [132]Fendell F E. Ignition and extinction in combustion of initially unmixed reactants[J]. Journal of Fluid Mechanics,1965,21(2):281-303.
    [133]Chung S H, Law C K. Structure and extinction of convective diffusion flames with general Lewis numbers[J]. Combustion and Flame,1983,52:59-79.
    [134]Chao B H, Law C K. Asymptotic theory of flame extinction with surface radiation[J]. Combustion and Flame,1993,92 (1-2):1-24.
    [135]Kim J S, Williams F A. Extinction of diffusion flames with nonunity Lewis numbers[J]. Journal of Engineering Mathematics,1997,31:101-118.
    [136]Liu F, Smallwood G J, Gulder O L, Ju Y G. Asymptotic analysis of radiative extinction in counterflow diffusion flames of nonunity Lewis numbers[J]. Combustion and Flame,2000, 121 (1-2):275-287.
    [137]Won S H, Dooley S, Dryer F L, Ju Y G.A radical index for the determination of the chemical kinetic contribution to diffusion flame extinction of large hydrocarbon fuels[J]. Combustion and Flame,2012,159 (2):541-551.
    [138]Dandy D S. [DB]. http://navier.engr.colostate.edu/-dandy/code/.
    [139]Jawarneh A M. Vatistas G H. Reynolds Stress Model in the Prediction of Confined Turbulent Swirling Flows[J]. Journal of Fluids Engineering,2006,128(6):1377-1382.
    [140]Denis V, Luc V. Turbulent combustion modeling[J]. Progress in Energy and Combustion Science,2002,28(3):193-266.
    [141]解茂昭,等.内燃机计算燃烧学(第二版)[M].大连:大连理工大学出版社,2005:35-62.
    [142]Gatski T B, Jongen T. Nonlinear eddy viscosity and algebraic stress models for solving complex turbulent flows[J]. Progress in Aerospace Sciences,2000,36(8):655-682.
    [143]Modest M F. The Weighted-Sum-of-Gray-Gases Model for Arbitrary Solution Methods in Radiative Transfer[J]. ASME Journal Heat Transfer,1991,13(3):650-656.
    [144]Hill S C, Smoot L D. Modeling of nitrogen oxides formation and destruction in combustion systems[J]. Progress in Energy and Combustion Science,2000,26(4-6):417-458.
    [145]Kumar S, Paul P J, Mukunda H S. Prediction of flame liftoff height of diffusion/partially premixed jet flames and modeling of mild combustion burners[J]. Combustion Science and Technology.2007,179:2219-2253.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700