用户名: 密码: 验证码:
卤族元素掺杂TiO_2的制备及光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体TiO_2可有效降解环境中难生物降解的有机污染物。本文采用水热法、利用廉价原料,制备了纯TiO_2、卤族元素( F、Cl、Br、I )掺杂TiO_2 (HDT),并以硅胶为载体、利用水热原位负载法制备了硅胶负载卤族元素掺杂TiO_2 (HDTS)。运用X射线粉末衍射(XRD)表征了催化剂的晶相组成、X射线光电子能谱(XPS)和X射线荧光光谱(XRF)测定了催化剂的元素组成、低温氮吸附(BET)测定了催化剂比表面积和孔结构、电子透射电镜(TEM)观察了催化剂的形貌结构,最后通过紫外-可见漫反射吸收光谱(UV-Vis DRS)测定了催化剂的吸光特性。以苯酚为模型污染物考察了催化剂的光催化性能,研究不同的制备条件对光催化性能的影响,筛选出最佳催化剂。
     以硫酸钛为钛源,含卤盐为卤源,去离子水为溶剂,制备HDT纳米粒子。制备工艺参数对其光催化活性影响较大,其影响主要为卤盐加入量、煅烧温度。卤族元素的掺杂可促进锐钛矿相TiO_2的生成、抑制其向金红石相的转化,拓宽TiO_2的光吸收范围。适量F、Cl、Br、I的掺杂可提高TiO_2的光催化活性,最佳掺杂量nx/nTi分别为0.30、0.15、0.40、1.00。煅烧温度可影响催化剂的晶粒尺寸、晶型、光吸收特性、晶格畸变和膨胀程度以及掺杂离子进入TiO_2晶格的能力,从而对掺杂纳米TiO_2的光催化性能产生影响。F、Cl、Br、I掺杂TiO_2的最佳煅烧温度依次为80℃、750℃、700℃、340℃。
     I掺杂TiO_2在低于340℃的煅烧条件下,在紫外部分具有强烈的吸收、从而体现很好的光催化活性;在340℃的煅烧条件下,I掺杂TiO_2形成紫色的TiO_2包裹碘单质纳米颗粒,该催化剂在可见光范围具有强烈的吸收、并且呈现很高的可见光光催化活性。
     HDT经硅胶负载后,在保持纳米光催化剂光催化活性的前提下,形成了较大的颗粒,使催化剂易于分离;硅胶进一步促进锐钛矿相TiO_2的生成、抑制其向金红石相TiO_2的转化,抑制TiO_2晶粒的长大,增强催化剂的热稳定性;除此之外,一定量硅胶的加入还可以改变催化剂的吸光特性,增强可见光范围的吸收。HDT经硅胶负载后,比表面积增大、吸附能力增强。由于吸附和光催化的双重作用,可使有机污染物快速降解。
     通过对甲基橙的光催化降解,比较了催化剂光催化活性的强弱、研究了光催化降解规律。所制备的光催化剂,在无光照条件下、均无活性。在全谱光源照射下,按FTi(30)080→ClTi(15)750→BrTi(40)700→ITi(100)340→ITi(100)080的顺序对甲基橙的降解活性递增。经硅胶负载后、活性顺序没有变化,光催化活性都有大幅提高。HDT降解甲基橙时,呈典型的零级反应动力学特征。表观速率常数K与甲基橙初始浓度有关。除了ITi(100)080和ITiSi(100)080-2在较宽的pH值范围内具有较强光催化活性,其它各催化剂都在pH为3和7时、体现较高的催化活性,当pH为其它值时、催化活性下降明显。通过对海水中苯酚的降解,考察了催化剂的在海水环境中的活性。除了ITi(100)340和ITiSi(100)340-2仍保持较高的催化活性外,P-25和制备的其它光催化剂的光催化活性都很差,HDTS的催化活性皆弱于对应的HDT的催化活性。
Semiconductor TiO_2 can degrade organic pollutants in environment efficiently, which is difficult to be degraded by biologic methods. In the current work, pure TiO_2, halogen elements (F, Cl, Br and I)doped TiO_2 (HDT) were prepared by hydrothermal method, using cheapness stuff. Halogen elements doped TiO_2 supported on SiO_2 (HDTS) were prepared by in situ hydrothermal method. The crystal phase composition of catalysts was studied by using the X-ray powder diffraction (XRD). The elements component of catalysts was mensurated by using the X-ray photoelectron spectroscopy (XPS) and the X-ray fluorescence spectrometry (XRF). The surface area and pore structure was studied by using BET. The morphology was observed by using TEM. The optical absorbance performance of catalysts was studied by using the UV - visible diffuse reflectance absorption spectra (UV-Vis DRS). The photocatalytic degradation of phenol is used as model reaction to evaluate the photocatalytic activity of the photocatalysts. The effects of preparation and reaction conditions on the photocatalytic performances are studied.
     The HDT was prepared through a mild hydrothermal route, using Ti(SO_4)_2 as the precursor, containing halogen salt as the halogen source and deionized water as solvent. The photocatalytic activity of samples was influenced greatly by processing parameter. The influence factors were mainly the volume of containing halogen salt and the calcination temperature. Halogen elements, which were doped in TiO_2, can promote anatase phase formation, can inhibit anatase to rutile phase, can broaden the scope of TiO_2 optical absorption. When the amounts of the doping F, Cl, Br and I were moderate, halogen elements can enhance photocatalytic activity of TiO_2. The best doping amounts of F, Cl, Br and I were 30.0%, 15.0%, 40.0% and 100.0%, respectively. Calcined temperature could influence crystal size, phase transformation, light absorption property, distortion and expansion degree of crystal lattice and the ability of doped ions entering into lattice TiO_2, and then influenced the photocatalytic activity of TiO_2. The best calcination temperatures of F-doping, Cl-doping, Br-doping and I-doping TiO_2, were 80℃, 750℃, 700℃and 340℃, respectively.
     Before calcination at 340℃, the white I-doping TiO_2 showed a much better photocatalytic activity under full-spectrum light irradiation for its drastic photoabsorption in the range of wavelengths from 200 to 325 nm. After calcination at 340℃for two hours, the white I-doping changed into the purple nanoparticles, which were (I2)n encapsulated inside TiO_2. The purple nanoparticles exhibited an obvious photocatalytic activity under visible light illumination for its strong absorption in the range of wavelengths from 384 to 700 nm.
     HDTS was synthesized by a mild and easy hydrothermal route using Ti(SO4)2, containing halogen salt and commercial silica material. Besides the benefit of nanoparticles catalytic activity enhancement, HDTS can be separated from the suspension solution easier than TiO_2 nanoparticles. The SiO_2 can promote anatase phase formation, inhibit the transformation of anatase to rutile phase, inhibit the growth of TiO_2 nanoparticles, and then enhance the thermal stability of the catalyst. In addition, adding a certain amount of SiO_2 can also change the light absorption property of the photocatalysis, enhance the absorption of visible-light range. The surface area of HDT that is supported by SiO_2 is improved significantly, and then their absorption capacity is enhanced. Organic pollutants could be degraded fleetly because of the dual function of adsorption and photocatalysis.
     Then research on the process of photocatalytic decomposition of methylene orange, the activity of photocatalysis was compared and the law of photocatalytic decomposition was studied. The results of vacancy study and dark study show that the photocatalysis are noneffective. Under full-spectrum light irradiation, according to the order of FTi(30)080→ClTi(15)750→BrTi(40)700→ITi(100)340→ITi(100)080, the activities of the photocatalysis to decomposed methylene orange are more and more efficient. After silica gel loading, the order of activity does not change, but the activity is enlarged. When the HDT decomposed methylene orange, the model of the reaction is zero order dynamics characteristic. The speed constant K, which is apparent, concerns on the initial concentration of methyl orange. ITi(100)080 and ITiSi(100)080-2 have the better activity in a wide pH value scope. When the pH value is 3 or 7, the other photocatalysis have the best activity. Researching on the process of photocatalytic decomposition of phenol in seawater, the photocatalysis compatibility is inspected. ITi(100)340 and ITiSi(100)340-2 still maintained their high activity, but the other photocatalysis and P-25 did not. The activity of the HDTS is not better than that of HDT.
引文
[1] Fujishima A., Honda K.. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238: 37~38
    [2] Parmon V.N., Zamaraev K. I.. in Photo Catalysis Foundamentals and Applications, N. Serpone, E. Pelizzetti, Eds, WileyInterscience, New York, 1989, P.565
    [3] Pelizzetti E., Schiavello M.. Eds. Photochemical Conversion and Storage of Solar Energy, Kluwer Academic Publishers, Dordrecht,, 1991.
    [4] Matsumura M., Saho Y., Tsubomura H.. Photocatalytic hydrogen production from solutions of sulfite using platinized cadmium sulfide powder. J. Phys. Chem., 1983, 87(20): 3807~3808
    [5] Domen K., Kudo A., Onishi T., et al. Photocatalytic decomposition of water into hydrogen and oxygen over nickel(II) oxide-strontium titanate (SrTiO3) powder. J. Phys. Chem., 1986, 90: 292~295
    [6]上官文峰.太阳能光解水制氢的研究进展.无机化学学报, 2001, 17(5): 619~626
    [7]韩世同,习海玲,史瑞雪.半导体光催化研究进展与展望.化学物理学报, 2003, 16(5):339~349
    [8] Cary J. H., Bull. Environ. Contam. Tox., 1976, 16:697-701
    [9] Ollis D. F.. Contaminant Degradation in Water. Environ. Sci. Technol., 1985, 19:480-484
    [10] Ollis D.F., Pelizzetti E. Serpone N.. Destruction of Water Contaminant. Environ. Sci. Technol.,1991, 25(9):1523-1529
    [11] Ollis D. F.. Heterogeneous Photocatalysis for Water Purification: Prospects and Problem. Homogeneous and Heterogeneous Photocatalysis, Ed by Pelizzetti E., Serpone N., Dordrecht D.. Reidel Publishing Company, 1986, p673-689
    [12] Brogarello E., Serpone N., Barbeni M., et al..Photocatalysis to Work, Homogeneous and Heterogeneous Photocatalysis, Ed by Pelizzetti E, Serpone N. Dordrecht D.. Reidel Publishing Company, 1986, p673-689
    [13] Oliver B. G., Carey J. H.. Photodegradation of wastes and Pollutants in Aquatic Environment. Homogeneous and Heterogeneous Photocatalysis, Ed by Pelizzetti E., Serpone N., Dordrecht D.. Reidel Publishing Company, 1986, p629-650
    [14] Ollis D. F., Elizzetti P. E., Serponc N.. Heterogeneous Photocatalysis in the Environment:Application to Water Purification. Photocatalysis Fundamentals and Applications, Ed. by Serpone N., Pelizzetti E. New York: John Wiley&Sons, 1989:609-637
    [15] Ollis D. F., Process Economics For Water Purification: A Comparative Assessment. Photocatalysis and Environment, Trends and Applecation, Dd by Schiavello, M. Dordrecht: Kluwer Academic Publishers, 1988:663-677
    [16] Pelizzetti E., Minero C., Pramauro E.. Photocatalytic Processes for Destruction of Organic Water Contaminants. Chemical Reactor Technology of Environmentally safe Reactors and Products, Ed by de Lasa H. I. et al. Dordrecht: Kluwer Academic Publishers, 1993:577-608
    [17] Hoffmann M. R., Martin S. T., Choi W., et al.. Environmental applications of semiconductor Photocatalysis. Chem. Rev., 1995, 95: 69~96
    [18] Fujishima A., Rao T. N., Tryk D. A.. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C: Photochem. Rev., 2000, 1: 1~21
    [19] Herrmann J. M., Guillard C., Pichat P.. Heterogeneous photocatalysis: an emerging technology for water treatment. Catalysis Today, 1993, 17: 7~20
    [20] Khalil L. B., Moural W. E., Rophael M. W.. Photocatalytic reduction of environmental pollutant Cr(VI) over some semiconductors under UV/visible light illumination. Appl. Cata. B: Eviron., 1998, 17: 267~273
    [21] Ollis D. F., Al-Ekabi E.. Photocatalytic purification and treatment of water and air. Elsevier, Amsterdam, 1993
    [22] Fu X. Z., Zeltner W. A., Anderson M. A.. Applications in photocatalytic purification of air. 1996, Elsevier Science B. V., 103: 445~461
    [23]藤屿昭.工业材料. 1997,45(10): 25
    [24]赵青南,余家国,赵修建,等. TiO2涂层的溶胶-疑胶法制备及其光催化性能.陶瓷,1998, (6):35-37
    [25]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用.北京:化学工业出版社,2002
    [26]姜月顺,李铁津,王维平,等.光化学.北京:化学工业出版社,2005
    [27] Hoffmann M. R., Martin S.T., Choi W., et al.. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev., 1995, 95: 69-95
    [28]宋桂明,周玉,白后善.纳米陶瓷粉体的制备技术及产业化.矿冶, 2001,10(2):55-60,35
    [29] Matteazzi P., Wolf F.. Mechanomaking of nanostructured hypereutectic white irons: powder farication . Materials Science and Technology, 1999, 15(7): 779-790
    [30] Mateazzi P., Le G.C., Bauer G. E.. Mechanosynthesis of carbides and silicides. Mater.Sci. Monogr, 1991, 66 B: 793-802
    [31] Calka A., Nikolov J.I.. Direct synthesis of AIN and AI-AINc omposites by room temperature magneto ball miling: the effect of milling condition on formation of nanostructures. Nanostruct. Mater., 1995, 6(1-4): 40 9-12
    [32] Wexler D., Calka A., Mosbah A.Y.. Microstructure and properties of Ti-TiN in-situ composites prepared by reactive ball milling of Ti in a mmonia followed by hot pressing. Materials Science Forum, 2000: 343-346
    [33]施利毅,李春忠,房鼎业,等. TiC14-O2体系高温反应制备超细TiO2光催化材料的研究.无机材料学报,1999,14(5):717-725
    [34]胡黎明,李春忠,姚光辉,等.钛酸丁酯高温裂解合成TiO2超细粒子粉末.无机材料学报,1992,7(4):448-454
    [35]傅鹤鉴,汪庆华,马洪,等.用激光化学反应制备非晶态TiO2及其性质初探.四川大学学报(自然科学版),1996,33(5):564-567
    [36]高晓云,陈伟雄,胡定一,等.激光热解法制备TiO2超微粉.无机材料学报,1993,8(1):57-62
    [37]孟季茹,赵磊,梁国正,等.无机非金属纳米微粒的制备方法.化工新型材料,2000, 28(4):23-27
    [38] Ding Z., Hu X. J., Lu G. Q., et al.. Novel Silica Gel Supported TiO2 Photocatalyst Synthesized by CVD Method . Langmuir, 2000, 16(15): 6216-6222
    [39]高恩勤,张莉,杨迈之,等.水热法合成纳米TiO2及其在Gratzel电池中的应用.物理化学学报,2001,17(2):177-180
    [40]段学臣,高桂兰,吴湘伟,等.纳米二氧化钛粉末的研制.稀有金属与硬质合金,2002,30(4):17-20
    [41]牛新书,许亚杰,张学治,等.微乳液法制备纳米二氧化钛及其光催化活性.功能材料,2003,34(5):548-549
    [42]李晓娥,陈秀娟,张淼,等.醇盐水解制备纳米级二氧化钦.稀有金属材料与工程,1995,24(5):65-70
    [43]祖庸,李晓娥,卫志贤.超细TiO2的合成研究.西北大学学报(自然科学), 1998,28(1): 51-56
    [44]李凤生.超细粉体技术.北京国防工业出版社,2000
    [45]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001
    [46] Kim T.K., Lee M.N., Lee S.H., et al.. Development of surface coating technology of TiO2 powder and improvement of photocatalytic activity by surface modification. Thin Solid Films, 2005, 475: 171-177
    [47]孙静,高濂,张青红.制备具有光催化活性的金红石相纳米氧化钛粉体.化学学报,2003, 61(1):74-77
    [48] Brus L. E.. Diffusion-controlled reactions: A variational formula for the optimum reaction coordinate. J. Chem. Phys., 1983, 79: 5566-5578
    [49] Brus L. E.. Electron–electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys., 1984, 80:4403-4407
    [50] Tarc J. in Optical Properties of Solids, Ed. By F. Albeles, North Holland, Amsterdam, 1970, 279.
    [51] Anpo M., Shima T., Kubodawa Y.. Esr and photoluminescence evidence for the photocatalytic formation of hydroxyl radicals on small TiO2 particles. Chem. Lett., 1985 :1799-1802
    [52] Anpo M., Shima T., Kodama S., et al.. Photocatalytic hydrogenation of propyne with water on small-particle titania: size quantization effects and reaction intermediates. J. Chem. Phys., 1987, 91:4305-4412
    [53] Anpo M., Kubodawa Y. Rev. Chem. Intermed., 1987, 8:105
    [54] Anpo M., Nakaya H., Kodama S., et al.. Photocatalysis over binary metal oxides. Enhancement of the photocatalytic activity of titanium dioxide in titanium-silicon oxides. J. Phys. Chem., 1986, 90: 1633-1638
    [55] Anpo M., Kawamura T., Kodama S., et al.. Photocatalysis on titanium-aluminum binary metal oxides: enhancement of the photocatalytic activity of titania species . J. Phys. Chem., 1988, 92: 438-443
    [56] Anpo M., Shima T., Che M.. Chem. Express, 1988, 3:403
    [57] Fu X., Zeltner W. A., Anderson M. A.. The gas-phase photocatalytic mineralization of benzene on porous titania-based catalysts. Appl. Catal. B: Environ, 1995, 6: 209-204
    [58] Hidaka H., Nagaoka H., Nohara K., et al.. A mechanistic study of the photoelectrochemical oxidation of organic compounds on a TiO2/TCO particulate film electrode assembly. J. Photochem. Photobiol, A: Chem., 1996, 98: 73-78
    [59] Vinodgopal K., Hotchandani S., Kamat P.V.. Electrochemically assisted photocatalysis: titania particulate film electrodes for photocatalytic degradation of 4-chlorophenol. J. Phys. Chem., 1993, 97: 9040-9044
    [60] Kesselman J.M., Lewis N.S., Hoffman M.R.. Photoelectrochemical Degradation of 4-Chlorocatechol at TiO2 Electrodes: Comparison between Sorption and Photoreactivity. Environ. Sci. Technol., 1997, 31: 2298-2302
    [61] Ronaldo P., Patricio P. Z., et al.. Electrochemically assisted photocatalytic degradation of reactive dyes. Appl. Catal. B: Environ., 1999, 22: 83-90
    [62] Butterfield I.M., Christense P.A., Hamnett A., et al.. Applied studies on immobilized titanium dioxide films as catalysts for the photoelectrochemical detoxification of water. J. appl. Electrochem, 1997, 27: 385-395
    [63] Kim D.H., Anderson M.A.. Photoelectrocatalytic degradation of formic acid using a porous titanium dioxide thin-film electrode. Environ. Sci. Technol., 1994, 28: 479-483
    [64] Horikoshi S., Hidaka H., Serpone N.. Environmental Remediation by an Integrated Microwave/UV-Illumination Method. 1. Microwave-Assisted Degradation of Rhodamine-B Dye in Aqueous TiO2 Dispersions. Environ. Sci. Technol., 2002, 36: 1357-1366
    [65] Horikoshi S., Hidaka H.. Chem. Ind., 2002, 53, 740
    [66] Horikoshi S., Hidaka H., Serpone N.. Hydroxyl radicals in microwave photocatalysis. Enhanced formation of OH radicals probed by ESR techniques in microwave-assisted photocatalysis in aqueous TiO2 dispersions. Chem. Phys. Lett., 2003, 376, 475-480
    [67] Mason T.J.. Current trends and future prospects, in: G.J. Price (Ed.), Current Trends in Sonochemistry, The Royal Society of Chemistry, Cambridge, London, 1992, p. 171
    [68] Davydov L., Reddy E.P., France P., Smirniotis P.G.. Sonophotocatalytic destruction of organic contaminants in aqueous systems on TiO2 powders. Appl. Catal. B: Environ., 2001,32:95-105
    [69] Ollis D. F., Pellizzetti E.. Heterogeneous photoassisted catalysis: conversions of perchloroethylene, dichioroethane, chloroacetic acids and chlorobenzenes. Journal of Catalysis, 1994, 88(1): 89- 96
    [70] Michael A., Gonzalez, Garry H.. Photocatalytics elective oxidatioin of hydrocarbons in the aqueous phase. Journal of Catalysis, 1999, 83: 159-162
    [71] Selli E.. Role of humic acids in the TiO2-photocatalyzed degradation of tetrachloroethene in water. Wat. Res., 1999, 33(8): 1827-1836
    [72] Chen D.. Photodegradation Kinetics of 4-nitrophenol in TiO2 suspension. Wat. Res., 1998, 32(11): 3223-3234
    [73] John C., Critendden, Liu J.B., et al. Photocatalytic oxidation of chlorinated hydrocarbons in water. Wat. Res., 1997, 31(3): 429-438
    [74]王文保,岳永德.纳米TiO2光催化降解水溶性染料溶液的研究.农村生态环境, 1999, 15 (3): 58-60
    [75]张汝冰.均匀沉淀法制备纳米TiO2及其在环保领域的应用.环境化学,1999, 18 (6): 579-583
    [76]沈伟韧,贺飞,赵文宽等. TiO2纳米粉体的制备及光催化活性.武汉大学学报(自然科学版),1999, 45(4): 389-392
    [77]孙福侠.纳米TiO2光催化降解苯酚的动力学研究.催化学报,1999,20 (3):301-304
    [78]武正簧,田芳,赵君芙.利用TiO2薄膜光催化降解苯酚.天然气化学杂志,2000,(04): 164-174
    [79]吴合进,吴鸣.增强型电场协助光催化降解有机污染物.催化学报,2000,21(5):241-242
    [80]孙奉玉.二氧化钛表面光学特性与光催化活性的关系.催化学报,1998,19 (2):121-125
    [81]崔斌,杨亚婷. TiO2薄膜光催化降解4-(2-吡啶偶氮)间苯二酚的研究.化学研究与应用, 2000,12(4):394-397
    [82] Cao L.X., Gao Z., Steven L., et al.. Photocatalytic oxidation of toluene on nanoscale TiO2 catalysts: Studies of deactivation and regeneration. Journal of Catalysis, 2000, 196: 253-261
    [83]陈士夫,程雪丽.空心玻璃微球附载TiO2清除水面漂浮的油层.中国环境科学,1999, 19(1):47-50
    [84]方佑龄,赵文宽,尹少华,等.纳米TiO2在空心陶瓷微球上的固定化及光催化分解辛烷.应用化学,1997,14(2):81-83
    [85]方佑龄,赵文宽,张国华,等.用浸涂法制备飘浮负载型TiO2薄膜光催化降解辛烷.环境化学,1997,16(5):413- 417
    [86]武正簧. TiO2薄膜在光催化下处理含铬废水.太原理工大学学报,1999,30(3):289- 290
    [87]金华峰,李文戈. Fe/Ti/Si复台纳米微粒光催化降解NO2-.化学研究与应用,2001,13 (2):153- 156
    [88]高远,徐安武.掺铁TiO2用于NO2-光催化降解研究.中山大学学报,2000, 39 (5):44-48
    [89] Maira A.J., Yeung K. L., Lee C.Y., et al. Size effects in gas-phasephoto-oxidatin of trichloroethylene using nanometer sized TiO2 catalysts. Journal of Catalysis, 2000, 192: 185-196
    [90] Cao L.X., Huang A.M., Spiess F.J., et al.. Gas-phase oxidation of 1-butene using nanoscale TiO2 photocatalytts. Journal of Catalysis, 1999, 188: 48-57
    [91]李庆霖,席禅娟,金援声.多相光催化的一个分支-气固相催化及其在环境治理方面的应用.太阳能学报,1994, 15 (3):279-282
    [92]陶跃武,赵梦月.空气中有害物质的光催化去除.催化学报,1997,18 (4):345-347
    [93] Obuchi E., Sakamoto T., Nakano K.. Photocatalytic decomposition of acetal-dehyde over TiO2/SiO2 catalyst. Chemical Engineering Science, 1999, (54): 1525-1530
    [94]李功虎,马胡兰.纳米二氧化钛气相光催化降解三氯乙烯.催化学报,2000,21 (4):350-354
    [95] Kim J.S., Joo H.K., Lee T.K., et al.. Photocatalytic activity of TiO2 films preserved under different conditions: The gas-phase photocatalytic degradation reaction of trichloroethylene. Journal of Catalysis, 2000, 194: 484-486
    [96]张峰,李庆霖,杨建军,等. TiO2光催化剂的可见光敏化研究.催化学报,1999,20(3):329-332
    [97]邱星林,徐安武.纳米级TiO2光催化净化大气环保涂料的研制.中国涂料,2000,(4):30-32
    [98]肖汉宁,李玉平.纳米二氧化钛的光催化特性及其应用.陶瓷学报,2001,22 (3):191-195
    [99] Aoyanna Y., Nakanisi R., Murai K.. Kenky hokokusho-toyo shokuhin kogyo tanki daigaku. Toyo Shokuhin Kenkyu Sho, 2000, 23: 101- 108
    [100]王传义,刘春艳,沈涛.半导体光催化剂的表面修饰.高等学校化学学报,1998, 19(12): 2013-2019
    [101] Hyung M. S., Jae R. C., Hoe J.H., et al. Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 163: 37-44
    [102] Xu M.W., Bao S.J., Zhang X.G.. Enhanced photocatalytic activity of magnetic TiO2 photocatalyst by silver deposition. Materials Letters, 2005, 59: 2194-2198
    [103] Linsebigler A.L., Lu G., Yates J.T.. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chem. Rev., 1995, 95:735-758
    [104] Bedja I., Kamat P.V.. Synthesis and Photoelectrochemical Behavior of TiO2 Capped SnO2 Nanocrystallites. J. Phys. Chem., 1995, 99: 9182-9188
    [105]赵德明,史惠祥,颜晓莉,等.掺杂过渡金属离子的纳米二氧化钛光催化氧化对氯苯酚的研究.化工环保,2003,23(2):75-78
    [106] Yang Y., Li X.J., Chen J.T., et al.. Effect of doping mode on the photocatalytic activities of Mo/TiO2. Journal of Photochemistry and Photobiology A: Chemistry 2004, 163: 517-522
    [107]孙晓君,井立强,蔡伟民,等.掺Pb的TiO2纳米功能材料的制备及其光催化性能.压电与声光,2002,32(3):232-235
    [108] Liu G.G., Zhang X.Z., Xu Y.J., et al.. Effect of ZnFe2O4 doping on the photocatalytic activity of TiO2. Chemosphere, 2004, 55: 1287-1291
    [109]赵秀峰,孟宪锋,张志红,等. Pb掺杂TiO2薄膜的制备及光催化活性研究.无机材料学报,2004,19(1):140-146
    [110]余建朋,郑泽根.金属离子掺杂对TiO2光催化性能影响分析.重庆大学学报,2003,26(12):138-141
    [111] Karvinen S., Lamminmaki R.J.. Preparation and characterization of mesoporous visible-light-active anatase. Solid State Sciences, 2003, 5: 1159-1166
    [112] Sato S.. Photocatalytic activity of NOx-doped TiO2 in the visible light region. Chem. Phys. Lett.,1986, 123 :126-127
    [113] Asahi R., Morikawa T., Ohwaki T., et. al.. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science, 2001, 293: 269-271
    [114] Asah R., Morikawa T., Ohwaki T., et. al.. Visible-light Photocatalysis in nitrogen-dopedtitanium oxides. Science, 2001, 293: 269-271
    [115] Yin S., Yamaki H., Komatsu M., et. al.. Preparation of nitrogen-doped titania with high visble light induced photocatalytic activity by mechanochemicallreaction of titania and hexamethylenetetramine. Journal of Materials Chentistry, 2003, 13: 2996~3001
    [116] Sano T., Negishi N., Koile K., et. al.. Preparation of a visible light-responsive photocatalyst from a complex of Ti4+ with a nitrogen-containing ligand. Journal of Materials Chemistry, 2004, 14: 380-384.
    [117] Burda C., Lou Y. B., Chen X. B., et. al.. Enhanced nitrogen doping in TiO2 nanoparticles. Nano Letters, 2003, 3: 1049-1051.
    [118] Ohno T., Mitsui T., Matsumura M.. Photocatalytic activity of S-doped TiO2 photocatalyst under visible light. Chem. Lett., 2003, 32:364-365
    [119] Umebayashi T., Yamaki T., Itoh H., et al.. Band gap narrowing of titanium dioxide by sulfur doping. Appl. Phys. Lett., 2002, 81(3): 454-456
    [120] Irie H., Watanabe Y., Hashimoto K.. Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst. Chem. Lett., 2003, 32(8):772-773
    [121] Lettmann C., Hildenbrand K., Kisch H., et al.. Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst. Appl. Catal. B: Environ., 2001, 32: 215-227
    [122] Giannakopoulou T., Todorova N., Trapalis C. , et al.. Effect of fluorine doping and SiO2 under-layer on the optical properties of TiO2 thin films. Mater. Lett. , 2007, 61: 4474– 4477
    [123] Yu J. G., Yu J. C., Cheng B., et al.. The effect of F--doping and temperature on the structural and textural evolution of mesoporous TiO2 powders. J. Solid State Chem., 2003,174: 372–380.
    [124] Yu J. C., Yu J. G., Ho W. K., et al.. Effects of F- Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders[J]. Chem. Mater. 2002, 14: 3808-3816
    [125]江宏富,周作兴,刘杏芹,等. F离子掺杂TiO2的性能研究.感光科学与光化学,2007,25:223-229
    [126]黄冬根,廖世军,党志.氟掺杂锐钛矿型TiO2溶胶的制备,表征及催化性能.化学学报,2006,64 (17) : 1805-1811
    [127] Zhang J. C., Li Q., Cao W. L.. Preparation of TiO2- MoO3 nano- composite photocatalystby supercritical fluid dry method. Chin. J. Environ. Sci., 2005, 17(2): 350-352
    [128] Li D., Haneda H., Hishita S., et al.. Fluorine-doped TiO2 powders prepared by spray pyrolysis and their improved photocatalytic activity for decomposition of gas-phase acetaldehyde. J. Fluorine Chem., 2005, 126: 69–77.
    [129] Li D., Haneda H. , Labhsetwar N .K., et al.. Visible-light-driven photocatalysis on fluorine-doped TiO2 powders by the creation of surface oxygen vacancies. Chem. Phys. Lett., 2005, 401: 579–584.
    [130] Wang J. S., Yin S., Zhang Q. W., et al. Mechanochemical synthesis of Sr-TiO3-xFx with high visible light photocatalytic activities for nitrogen monoxide destruction. J. Mater. Chem., 2003, 13(9): 2348-2352
    [131]陈恒,龙明策,徐俊,等.可见光响应的氯掺杂TiO2的制备、表征及其光催化活性[J].催化学报,2006, 27(10):890-894
    [132] Luo H. M., Takata T., Lee Y., et al.. Photocatalytic Activity Enhancing for Titanium Dioxide by Co-doping with Bromine and Chlorine. Chem. Mater. 2004,16: 846-849
    [133] Hong X. T., Wang Z. P., Cai W. M., et al.. Visible-Light-Activated Nanoparticle Photocatalyst of Iodine-Doped Titanium Dioxide. Chem. Mater. 2005, 17:1548-1552.
    [134]文晨,孙柳,张纪梅,等.碘掺杂对纳米TiO2催化剂光催化活性的影响[J].高等学校化学学报, 2006,27(12):2408-2410
    [135] Liu G., Chen Z. G., Dong C. L., et al.. Visible Light Photocatalyst: Iodine-Doped Mesoporous Titania with a Bicrystalline Framework . J. Phys. Chem. B, 2006, 110: 20823-20828.
    [136] Su W. Y., Zhang Y. F., Li Z. H., et al.. Multivalency Iodine Doped TiO2: Preparation, Characterization, Theoretical Studies, and Visible-Light Photocatalysis. Langmuir, 2008, 24: 3422-3428
    [137] Usseglio S., Damin A., Scarano D., et al.. (I2)n Encapsulation inside TiO2: A Way To Tune Photoactivity in the Visible Region. JACS, 2007, 129: 2822-2828
    [138] Long M. C., Cai W. M., Wang Z. P., et al.. Correlation of electronic structures and crystal structures with photocatalytic properties of undoped, N-doped and I-doped TiO2. Chem. Phys. Lett., 2006, 420: 71–76
    [139] Toshiya W.. Photocatalytic activity and photo-induced wettability conversion of TiO2 thinfilm prepared by Sol-Gel process on soda-lime glass. Journal of Sol-Gel Science and Technology, 2000, 19(1-3): 71-76
    [140] Uchida H., Itoh S., Yoneyama H., et al.. Photocatalytic decomposition of propyzamide using TiO2 supported on activated carbon. Chemistry Letters, 1993, 122: 178-192
    [141]方佑龄,赵文宽,尹少华,等.纳米TiO2在空心陶瓷微球上的固定化及光催化分解辛烷.应用化学,1997,14(2):81-83
    [142] Fabiyi M.E., Skelton R.L.. Photocatalytic mineralisation of methylene blue using buoyant TiO2-coated polystyrene beads. Journal of Photochemistry and Photobiology A: Chemistry, 2000, 132: 121-128
    [143] Tetsuto N., Yoshihisa O., Donald A. et al.. Decomposition of endocrine-disrupting chemicals in water by use of TiO2 photocatalysts immobilized on polytetrafluoroethylene mesh sheets. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 151: 207-212
    [144] Zhang L., Zhu Y.F., He Y., et al.. Preparation and performances of mesoporous TiO2 filmphotocatalyst supported on stainless steel. Applied Catalysis B: Environmental, 2003, 40: 287-292
    [145] Byrne J.A., Eggins B.R., Brown N.M.D., et al.. Immobilisation of TiO2 powder for the treatment of polluted water. Applied Catalysis B: Environmental, 1998, 17: 25-36
    [146] Anita R., Bernadette L., Machiraju S.. Use of porous lavas as supports of photocatalysts. Catalysis Communications, 2002, 3: 165-171
    [147] Roberto L., Pozzo, Miguel A., et. al.. Towards a precise assessment of the performance of supported photocatalysts for water detoxification processes. Catalysis Today, 1999, 54: 143-157
    [148] Xu Y.M., Wei Z., Liu W.P.. Enhanced photocatalytic activity of supported TiO2: dispersing effect of SiO2. Journal of Photochemistry and Photobiology A: Chemistry, 1999, 122: 57- 60
    [149] Mohd. A.N., Lim C. K., Keiichi T., et al.. Fabrication of photocatalytic TiO2-epoxidized natural rubber on Al plate via electrophoretic deposition. Applied Catalysis B: Environmental, 2003, 46: 165-174
    [150] Yuan R.S., Zheng J.T., Guan R.B., et al.. Surface characteristics and photocatalytic activity of TiO2 loaded on activated carbon fibers. Colloids and Surfaces A: Physicochem. Eng.Aspects, 2005, 254: 131-136
    [151] Zhang Q.H., Gao L., Guo J.K.. Preparation and characterization of nanosized TiO2 powders from aqueous TiCl4 solution. Nanostructured Materials, 1999, 11: 1293-1300.
    [152] Iguchi Y., Ichiura H., Kitaoka T., et al.. Preparation and characteristics of high performance paper containing titanium dioxide photocatalyst supported on inorganic fiber matrix. Chemosphere, 2003, 53: 1193-1199
    [153] Noorjahan M., Durga Kumari V., Subrahmanyam M., et al.. A novel and efficient photocatalyst: TiO2-HZSM-5 combinate thin film. Applied Catalysis B: Environmental, 2004, 47: 209-213
    [154] Sambandam A., Minjoong Y.. Photocatalytic activities of the nano-sized TiO2-supported Y-zeolites. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2003, 4: 5-18
    [155] Arana J., Dona-Rodriguez J.M., Tello Rendón E., et al.. TiO2 activation by using activated carbon as a support Part II. Photoreactivity and FTIR study. Applied Catalysis B: Environmental, 2003, 44: 153-160
    [156] Macedo L.C., Zaia D. A .M., Moore G. J., et al.. Degradation of leather dye on TiO2: A study of applied experimental parameters on photoelectrocatalysis. J. Photochem. Photobiol., A, 2007, 185: 86–93
    [157] Mohamad S., Daniel V., Corinne F., et al.. Photocatalytic degradation of azo dye Metanil Yellow: Optimization and kinetic modeling using a chemometric approach. Appl. Catal., B, 2007, 77: 1–11
    [158] Urh C., Urska L. S., Polonca T.. Degradation of neonicotinoid insecticides by different advanced oxidation processes and studying the effect of ozone on TiO2 photocatalysis. Appl. Catal., B, 2007, 75:229–238
    [159] Shankar M. V., Cheralathan K. K., Banumathi A., et al.. Enhanced photocatalytic activity for the destruction of monocrotophos pesticide by TiO2/H?. J. Mol. Catal. A: Chem., 2004, 223: 195–200
    [160]陈士夫,梁新,陶跃武,等.空心玻璃微球附载TiO2光催化降解有机磷农药. 1999,17:85-91
    [161] Roberta L., Ziolli, Wilson F., et al. Photocatalytic decomposition of seawater-solublecrude-oil fractions using high surface area colloid nanoparticles of TiO2. J. Photochem. Photobiol., A, 2002,147: 205–212
    [162] T?mea P., Imre D.. Photocatalytic degradation of hydrocarbons by bentonite and TiO2 in aqueous suspensions containing surfactants. Colloids Surf., A, 2004 ,230: 191–199
    [163] Wang X. L., Pehkonen S. O., Ajay K. R.. Photocatalytic reduction of Hg(II) on two commercial TiO2 catalysts. Electrochim. Acta, 2004, 49: 1435–1444
    [164] Theodora P., Nikolaos P., Xekoukoulotakis., et al. Photocatalytic transformation of acid orange 20 and Cr(VI) in aqueous TiO2 suspensions. J. Photochem. Photobiol., A, 2007, 186: 308–315
    [165] Kim S. J., Lee H.G., Kim S. J., et al.. Photoredox properties of ultrafine rutile TiO2 acicular powder in aqueous 4-chlorophenol, Cu–EDTA and Pb–EDTA solutions. Appl. Catal., A, 2003, 242: 89–99
    [166]陈晓慧,柳丽芬,杨凤林,等. CdS/ TiO2光催化去除水体中氨氮的研究.感光科学与光化学,2007,25:89-101
    [167] Hirofumi A., Tsunehiro T., Nobuhiko A., et al.. Reduction of NO over TiO2-Supported Cu Catalysts. J. Catal., 1997, 168: 412-420
    [168] Haruo I., Toshiyuki T., Naoki T., et al.. Synthesis and characterization of Al2O3 and ZrO2–TiO2 nano-composite as a support for NOx storage–reduction catalyst. J. Catal., 2007, 251: 315–320
    [169]Yu K. P., Grace W. M.. Decomposition of gas-phase toluene by the combination of ozone and photocatalytic oxidation process (TiO2/UV, TiO2/UV/O3, and UV/O3). Appl. Catal., B, 2007, 75: 29–38
    [170]Young C., Lim T.M., Chiang K., et al.. Photocatalytic oxidation of toluene and trichloroethylene in the gas-phase by metallised (Pt, Ag) titanium dioxide. Appl. Catal., B, 2008, 78: 1–10
    [171]Liu J. J., Li X. P., Zuo S. L., et al.. Preparation and photocatalytic activity of silver and TiO2 nanoparticles/montmorill- onite composites. Appl. Clay Sci., 2007, 37: 275–280
    [172]柳丽芬,李秀婷,杨凤林,等. Ag/ TiO2光催化氧化还原反应脱除水体中无机氮.感光科学与光化学,2006,24:291-300
    [173] Zhu A.M., Nie L.H., Zhang X. L., et al.. A New Approach to Plasma CVD of TiO2Photocatalyst onγ-Al2O3 Pellet Filled in Dielectric Barrier Discharges at Atmospheric Pressure. Plasma Sci. Technol., 2004, 6(6): 2546-2548.
    [174] Arai Y., Tanaka K., Khlaifat A.L.. Photocatalysis of SiO2-loaded TiO2. J. Mol. Catal. A: Chem., 2006, 243: 85–88
    [175]Jin Z.L., Zhang X. J., Li Y. X., et al.. 5.1% Apparent quantum efficiency for stable hydrogen generation over eosin-sensitized CuO/TiO2 photocatalyst under visible light irradiation. Catal. Commun., 2007, 8: 1267–1273
    [176] Ozcan O., Yukruk F., Akkaya E.U., et al.. Dye sensitized artificial photosynthesis in the gas phase over thin and thick TiO2 films under UV and visible light irradiation. Appl. Catal., B: Environmental, 2007, 71: 291–297.
    [177] Iwasaki M., Hara M., Kawada H., et al.. Cobalt Ion-Doped TiO2 Photocatalyst Response to Visible Light. J. Colloid Interface Sci., 2000, 224: 202–204
    [178] Jiang H.Q., Wang P., Guo X. L., et al.. Preparation and characterization of low-amount Yb3+-doped TiO2 photocatalyst. Russ. Chem. Bull., International Edition, 2006, 55(10): 1743-1747.
    [179] Kim D.H., Lee K.S., Kim Y.S., et al.. Photocatalytic Activity of Ni 8 wt%-Doped TiO2 Photocatalyst Synthesized by Mechanical Alloying Under Visible Light. J. Am. Ceram. Soc., 2006, 89 (2): 515–518
    [180] Xu X. H., Wang M., Hou Y., et al.. Preparation and characterization of Bi-doped TiO2 photocatalyst. J. Mater. Sci. Lett. 2002, 21: 1655–1656
    [181] Moon J., Takagi H., Fujishiro Y., et al.. Preparation and characterization of the Sb-doped TiO2 photocatalysts. J. Mater. Sci., 2001, 36: 949–955.
    [182] Minero C., Mariella G., Maurino V., et al.. Photocatalytic Transformation of Organic Compounds in the Presence of Inorganic Anions. 1. Hydroxyl-Mediated and Direct Electron-Transfer Reactions of Phenol on a Titanium Dioxide-Fluoride System. Langmuir 2000, 16, 2632-2641
    [183]冯彩霞,王岩,金振声,张顺利. N掺杂纳米TiO2可见光催化氧化丙烯的动力学行为.物理化学学报,2008,24(4):633-638.
    [184] Chen S.F., Chen L., Gao S., et. al.. The Preparation of Nitrogen-doped Photocatalyst TiO2-xNx by Ball Milling. Chemical Physics Letters 2005, 413: 404-409.
    [185] Yin S., Ihara K., Aita Y., et. al.. Visible-light Induced Photocatalytic Activity of TiO2?xAy (A =N, S) Prepared by Precipitation Route. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 179: 105-114.
    [186] Janus M., Inagaki M., Tryba B., et. al.. Carbon-modified TiO2 Photocatalyst by Ethanol Carbonization. Applied Catalysis B: Environmental, 2006, 63: 272-276
    [187] Zhang J.C., Li Q., Cao W.L.. Preparation of TiO2- MoO3 Nano-composite Photocatalyst by Supercritical Fluid Dry Method. Chin. J. Environ. Sci., 2005, 17(2): 350-352
    [188]赵振国.吸附作用应用原理.北京:化学工业出版社,2005: 137-144
    [189]赵清华,全学军,谭怀琴,等. La掺杂TiO2光催化剂的制备与表征.催化学报,2008,29(3):269–274
    [190]盛雪,余足玲,刘士荣,等.溶胶凝胶法制备磷钨酸掺杂TiO2薄膜及其光催化性能.环境工程学报,2008,2(8):1026–1030
    [191]吴树新,秦永宁,马智,等.掺杂纳米二氧化钛光催化性能的研究.物理化学学报,2004,20(2):138–143
    [192] Tang P.S., Hong Z.L., Zhou S.F., et a1.. Preparation of Nanosized TiO2 Catalyst with High Photocatalytic Activity under Visible Light Irradiation by Hydrothermal Method. Chinese Journal of Catalys, 2004, 25(12): 925–927
    [193]石金娥,闫吉昌,王悦宏,等.不同形貌TiO2的水热合成及对苯酚的降解研究.高等学校化学学报,2006,27(8):l5l3–l5l7
    [194]胡春,王怡中,汤鸿霄. TiO2光催化氧化苯酚动力学研究.环境科学,1997,15 (4): 472-479

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700