用户名: 密码: 验证码:
协同自组装法合成多功能介观纳米复合材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来科学家们一直对介观纳米复合材料有着浓厚的兴趣。这类材料具有纳米级尺寸,较高的比表面积和大的孔体积,这使它们可以应用于吸附,催化,能源存储,药物缓释和细胞传递等诸多领域。纳米粒子的结构和组成是实现这些性能的关键。在介观纳米复合材料中,介孔氧化硅纳米复合材料已经被广泛使用。它们可以通过精确控制溶胶-凝胶过程而合成出来,表面修饰过程简单,并且具有很好的生物相容性和低的细胞毒性。然而其他介观纳米材料或纳米复合材料也具有较大的优势,如介孔有机硅材料具有较好的水热稳定性和机械稳定性,孔道的疏水性,以及骨架内含有高浓度的有机官能团;碳纳米材料具有比表面积大,导电性,疏水性,化学和热稳定性和生物相容性等特点;酚醛树脂是最常用的碳前驱体之一具有优异的物理化学性质,如良好的碳产率,易于官能化,疏水性,和热稳定性;氧化锆,氧化钛和它们的二元氧化物已被广泛地用于许多领域,包括催化,光催化,染料敏化太阳能电池,光致发光,毛细管电泳,层析,无机颜料,介电陶瓷,重金属离子和放射性废物封存剂等。这些性能很多都是氧化硅材料所不能比拟的,所以开发合成其他介观结构纳米材料或纳米复合材料的通用方法至关重要。
     1.我们设计并实现了一种合成具有良好分散性高度有序介观结构的有机硅纳米粒子(PMONs)的通用方法。这种方法采用一种简单的阳离子表面活性剂十六烷基三甲基溴化铵(CTAB)和具有有机桥连基团的简单有机硅源通过氨催化的溶胶-凝胶反应生成介孔有机硅纳米粒子。通过改变有机硅源中的桥联基团合成出具有三维六方(P63/mmc),立方(Pm3n),二维六方(p6mm)和蠕虫状介观结构的纳米粒子。通过粉末X-射线衍射分析(XRD)和透射电子显微镜(TEM)证明介观结构的合理性。纳米粒子的粒径可以通过调节反应介质中氨水浓度或共溶剂的含量而进行控制,范围从30nm至500nm。介孔有机硅纳米粒子的骨架中具有高浓度的有机基团,使这类纳米粒子具有良好的热稳定性,在低极性溶剂中具有良好的分散性和对疏水性小分子较高的吸附能力。在细胞实验中,染料功能化的介孔有机硅纳米粒子显示出低的细胞毒性和优良的细胞穿透性,这使这类粒子在医药领域应用潜力巨大。
     2.我们设计并实现一个非常简单的协同自组装包覆方法来合成酚醛树脂和碳的核-壳,空心和蛋黄-蛋壳纳米复合材料。这种方法的特色是在包覆过程中阳离子表面活性剂CTAB提高了反应介质中核粒子的分散性并同时作为介观结构间苯二酚-甲醛树脂形成的软模板,这种方法可以将聚合物和微孔碳外壳均匀的包覆在具有不同表面性质的功能核粒子上。核-壳纳米复合材料的核直径和外壳厚度可以被精确地控制。这种方法具有高度的可重复性并有较大的产量。数克聚合物或碳纳米复合材料可以容易地通过一锅反应制备。以硼氢化钠作为还原剂,具有疏水性外壳的金@碳(Au@C)蛋黄-蛋壳复合材料催化剂在水溶液中还原疏水的硝基苯比亲水的4-硝基酚的速率更快,这使催化剂@碳蛋黄-蛋壳纳米复合材料具有作为疏水分子选择性催化剂的应用前景。
     3.为连续催化反应设计空心的介孔纳米催化剂可以为纳米结构的发展注入新的活力。在这项研究中,我们设计并实现一个通用的协同自组装包覆方法合成空心和蛋黄-蛋壳介孔钛锆氧化物纳米球,这类纳米材料具有可调的组成(ZrO2含量从0到100%可以调节),较高的比表面积(465m2g-1)和均匀的介孔。该包覆过程中,所用的十六胺(HDA)作为软模板与锆和钛的前驱体通过协同自组装包覆在硬模板氧化硅球上形成核-壳纳米结构。通过在氨水溶液中处理并在空气中焙烧,氧化硅@介孔钛锆氧化物纳米球可被转化为均一的空心钛锆氧化物纳米球。使用核-壳氧化硅纳米复合材料代替氧化硅纳米球作为硬模板,通过相同包覆和刻蚀过程,合成方法可以进一步拓展合成蛋黄-蛋壳结构的纳米复合材料。这种方法与通过核粒子,软模板CTAB和氧化硅前驱体自组装合成核-壳介孔氧化硅纳米复合材料相似,并且可以扩展为一种用介孔钛锆氧化物包覆其他常用硬模板(例如,介孔氧化硅球,介孔有机硅球,聚合物球和碳纳米球)的通用方法。钛锆氧化物外壳中介孔孔道的高通透性已被4-硝基苯酚与金@介孔钛锆氧化物蛋黄–蛋壳纳米催化剂的反应所证实。此外,包括酸催化和加氢还原两个步骤合成苯并咪唑衍生物连续催化反应,可以通过使用含有钯核和具有酸性的介孔钛锆氧化物外壳的双功能蛋黄-蛋壳催化剂来实现,这使得空心介孔钛锆氧化物纳米球可能成为实用的催化剂。
     4.可以生物降解的蛋黄-蛋壳介孔氧化锆纳米粒子具有潜在的医学应用前景。我们设计并制备了钛掺杂的氧化锆纳米粒子。维生素C可从氧化锆粒子中去除钛并加速其在模拟人体环境中的降解速率。更重要的是,它表现出了非常特别的“一个接一个”的降解过程。
     本论文在前人工作的基础上,发展出合成高度有序介孔有机硅纳米材料,介观结构酚醛树脂和微孔碳复合材料和介孔钛锆氧化物复合材料的通用性方法,为这些材料在其他领域的应用提供了帮助。
Significant research efforts in recent years have been devoted to the developmentof mesostructured nanocomposites for applications in diverse fields. Their nanoscaledsize, high surface area and large porosity make ordered mesoporous nanoparticlesuseful in adsorption, catalysis, energy storage, controlled drug release, and cellulardelivery. The structure and composition of the nanocomposites are key to theachievable properties. Among mesostructured nanocomposites, mesoporous silicananoparticles have been extensively synthesized by a well-controllable sol–gelprocess due to facile surface modification potential, biocompatibility and low toxicity.Periodic mesoporous organosilica materials have some advantages over periodicmesoporous silica materials, such as excellent hydrothermal and mechanical stability,hydrophobic property within the pore wall, and high concentration of organicfunctional group in the framework; carbon nanomaterials are very attractive due totheir fascinating features such as large surface area, electrical conductivity,hydrophobic property, chemical and thermal stabilities, and biocompatibility;phenol–formaldehyde resin, one of the most popular carbon precursors, is also a goodsolid support due to its excellent physicochemical properties, such as good carbonyield, easy functionalization, hydrophobicity, and thermal stability; zirconia, titaniaand their binary oxides have been widely employed in many fields including catalysis,photocatalysis, dye-sensitized solar cells, photoluminescence, capillaryelectrophoresis, chromatography, inorganic pigments, dielectric ceramics, and heavymetal ion and radioactive waste sequestration. Therefore, it is highly desirable todevelop a simple and reproducible route to prepare other mesostructurednanocomposites.
     A general synthetic procedure for highly ordered and well-dispersed periodic mesoporous organosilica (PMO) nanoparticles is designed and achieved based on asingle cationic surfactant cetyltrimethylammonium bromide (CTAB) and simple silicasources with organic bridging groups via an ammonia-catalyzed sol–gel reaction. Bychanging the bridging group in the silica sources, the pore structures of the as-madeparticles with three-dimensional hexagonal (P63/mmc), cubic (Pm3n),two-dimensional hexagonal (p6mm), and wormlike structure were evidenced bypowder X-ray diffraction analysis (XRD) and transmission electron microscopy(TEM). The size range of the nanoparticles can be adjusted from30nm to500nm byvariation of the ammonia concentration or the co-solvent content of the reactionmedium. The PMO nanoparticles with high concentration of organic groups in theframework offered good thermal stability, good dispersion in low polarity solvent andhigh adsorption of small hydrophobic molecules. Finally, the dye functionalized PMOnanoparticles show low cytotoxicity and excellent cell permeability, which offersgreat potential for biomedical applications.
     A very simple cooperative template-directed coating method is developed for thepreparation of core-shell, hollow, and yolk-shell microporous carbon nanocomposites.Particularly, the cationic surfactant CTAB used in the coating procedure improves thecore dispersion in the reaction media and serves as the soft template formesostructured resorcinol–formaldehyde resin formation, which results in the uniformpolymer and microporous carbon shell coating on most functional cores with differentsurface properties. The core diameter and the shell thickness of the nanocompositescan be precisely tailored. This approach is highly reproducible and scalable. Severalgrams of polymer and carbon nanocomposites can be easily prepared by a facileone-pot reaction. The Au@hydrophobic microporous carbon yolk–shell catalystfavors the reduction of more hydrophobic nitrobenzene than hydrophilic4-nitrophenol by sodium borohydride, which makes this type of catalyst@carbonyolk–shell composites promising nanomaterials as selective catalysts for hydrophobicreactants.
     The design of hollow mesoporous nanostructures for cascade catalytic reactionscan inject new vitality into the development of nanostructures. In this study, we design and achieve a versatile cooperative template-directed coating method for thesynthesis of hollow and yolk–shell mesoporous zirconium titanium oxide nanosphereswith varying compositions (ZrO2content from0to100%), high surface areas (465m2·g–1) and uniform mesopores. In particular, the hexadecylamine (HDA) used in thecoating procedure serves as a soft template for silica@mesostructured metal oxidecore–shell nanosphere formation. By a facile solvothermal treatment route with anammonia solution and calcination in air, the silica@mesostructured zirconiumtitanium oxide spheres can be converted into highly uniform hollow zirconiumtitanium oxide spheres. By simply replacing hard template silica nanospheres withcore–shell silica nanocomposites, the synthesis approach can be further used toprepare yolk–shell mesoporous structures through the coating and etching process.The approach is similar to the preparation of mesoporous silica nanocomposites fromthe self-assembly of the core, the soft template cetyltrimethylammonium bromide(CTAB) and a silica precursor and can be extended as a general method to coatmesoporous zirconium titanium oxide on other commonly used hard templates (e.g.,mesoporous silica spheres, mesoporous organosilica ellipsoids, polymer spheres, andcarbon nanospheres). The presence of highly permeable mesoporous channels in thezirconium titanium oxide shells has been demonstrated by the reduction of4-nitrophenol with yolk–shell Au@mesoporous zirconium titanium oxide as thecatalyst. Moreover, a cascade catalytic reaction including an acid catalyzed step and acatalytic hydrogenation to afford benzimidazole derivatives can be carried out veryeffectively by using the accessible acidity of the yolk–shell structured mesoporouszirconium titanium oxide spheres containing a Pd core as a bifunctional catalyst,which makes the hollow zirconium titanium oxide spheres a practicable candidate foradvanced catalytic systems.
     Biodegradable yolk-shell mesoporous zirconia nanoparticles with potentialmedical applications have been designed and prepared by doping Ti into the shells ofnanoparticles. Vitamin C can remove the Ti from the zirconia particle shells andaccelerate their degradation in a simulated human body environment. Moreimportantly, it showed a very distinctive “one by one” degradation process.
     In summary, we develop three general methods for the preparation of highlyorder mesoporous organosilica nanoparticles,, mesostructured phenol-formaldehyderesin and microporous carbon core-shell nanocomposites, and mesoporous zirconiumtitanium oxide core-shell nanocomposites, which offers great potential forapplications in various fields.
引文
[1] CAI Q, LUO Z S, PANG W Q, et al. Dilute solution routes to various controllable morphologiesof MCM-41silica with a basic medium [J]. Chemistry of Materials,2001,13(2):258-63.
    [2] FOWLER C E, KHUSHALANI D, LEBEAU B, et al. Nanoscale Materials with MesostructuredInteriors [J]. Advanced Materials,2001,13(9):649-52.
    [3] NOONEY R I, THIRUNAVUKKARASU D, CHEN Y, et al. Synthesis of Nanoscale MesoporousSilica Spheres with Controlled Particle Size [J]. Chemistry of Materials,2002,14(11):4721-8.
    [4] ST BER W, FINK A, BOHN E. Controlled growth of monodisperse silica spheres in the micronsize range [J]. Journal of Colloid and Interface Science,1968,26(1):62-9.
    [5] GR N M, LAUER I, UNGER K K. The synthesis of micrometer‐and submicrometer‐sizespheres of ordered mesoporous oxide MCM‐41[J]. Advanced Materials,1997,9(3):254-7.
    [6] YANO K, FUKUSHIMA Y. Synthesis of mono-dispersed mesoporous silica spheres with highlyordered hexagonal regularity using conventional alkyltrimethylammonium halide as a surfactant [J].Journal of Materials Chemistry,2004,14(10):1579-84.
    [7] NAKAMURA T, MIZUTANI M, NOZAKI H, et al. Formation Mechanism for MonodispersedMesoporous Silica Spheres and Its Application to the Synthesis of Core/Shell Particles [J]. The Journalof Physical Chemistry C,2006,111(3):1093-100.
    [8] LU F, WU S-H, HUNG Y, et al. Size Effect on Cell Uptake in Well-Suspended, UniformMesoporous Silica Nanoparticles [J]. Small,2009,5(12):1408-13.
    [9] LIN Y-S, TSAI C-P, HUANG H-Y, et al. Well-Ordered Mesoporous Silica Nanoparticles as CellMarkers [J]. Chemistry of Materials,2005,17(18):4570-3.
    [10] QIAO Z-A, ZHANG L, GUO M, et al. Synthesis of Mesoporous Silica Nanoparticles viaControlled Hydrolysis and Condensation of Silicon Alkoxide [J]. Chemistry of Materials,2009,21(16):3823-9.
    [11] CHIANG Y-D, LIAN H-Y, LEO S-Y, et al. Controlling Particle Size and Structural Properties ofMesoporous Silica Nanoparticles Using the Taguchi Method [J]. The Journal of Physical Chemistry C,2011,115(27):13158-65.
    [12] SUZUKI K, IKARI K, IMAI H. Synthesis of Silica Nanoparticles Having a Well-OrderedMesostructure Using a Double Surfactant System [J]. Journal of the American Chemical Society,2003,126(2):462-3.
    [13] LI Y, LI B, YAN Z, et al. Preparation of Chiral Mesoporous Silica Nanotubes and NanoribbonsUsing a Dual-Templating Approach [J]. Chemistry of Materials,2013,25(3):307-12.
    [14] NIU D, MA Z, LI Y, et al. Synthesis of Core-shell Structured Dual-Mesoporous Silica Sphereswith Tunable Pore Size and Controllable Shell Thickness [J]. Journal of the American ChemicalSociety,2010,132(43):15144-7.
    [15] M LLER K, KOBLER J, BEIN T. Colloidal Suspensions of Nanometer-Sized Mesoporous Silica[J]. Advanced Functional Materials,2007,17(4):605-12.
    [16] URATA C, AOYAMA Y, TONEGAWA A, et al. Dialysis process for the removal of surfactantsto form colloidal mesoporous silica nanoparticles [J]. Chemical Communications,2009,34):5094-6.
    [17] PAN L, HE Q, LIU J, et al. Nuclear-Targeted Drug Delivery of TAT Peptide-ConjugatedMonodisperse Mesoporous Silica Nanoparticles [J]. Journal of the American Chemical Society,2012,134(13):5722-5.
    [18] MA K, SAI H, WIESNER U. Ultrasmall Sub-10nm Near-Infrared Fluorescent Mesoporous SilicaNanoparticles [J]. Journal of the American Chemical Society,2012,134(32):13180-3.
    [19] PARK S-E, KIM D S, CHANG J-S, et al. Synthesis of MCM-41using microwave heating withethylene glycol [J]. Catalysis Today,1998,44(1–4):301-8.
    [20] RATHOUSKY J, ZUKALOVA M, KOOYMAN P J, et al. Synthesis and characterization ofcolloidal MCM-41[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2004,241(1–3):81-6.
    [21] BURNS A, OW H, WIESNER U. Fluorescent core-shell silica nanoparticles: towards "Lab on aParticle" architectures for nanobiotechnology [J]. Chemical Society Reviews,2006,35(11):1028-42.
    [22] VALLET-REG M, BALAS F, ARCOS D. Mesoporous Materials for Drug Delivery [J].Angewandte Chemie International Edition,2007,46(40):7548-58.
    [23] FAN J, YU C, GAO F, et al. Cubic Mesoporous Silica with Large Controllable Entrance Sizesand Advanced Adsorption Properties [J]. Angewandte Chemie International Edition,2003,42(27):3146-50.
    [24] HAN Y, ZHANG D, CHNG L L, et al. A tri-continuous mesoporous material with a silica porewall following a hexagonal minimal surface [J]. Nat Chem,2009,1(2):123-7.
    [25] HAN Y, ZHANG D. Ordered mesoporous silica materials with complicated structures [J]. CurrentOpinion in Chemical Engineering,2012,1(2):129-37.
    [26] HAN Y, YING J Y. Generalized Fluorocarbon-Surfactant-Mediated Synthesis of Nanoparticleswith Various Mesoporous Structures [J]. Angewandte Chemie International Edition,2005,44(2):288-92.
    [27] KIM T-W, CHUNG P-W, LIN V S Y. Facile Synthesis of Monodisperse Spherical MCM-48Mesoporous Silica Nanoparticles with Controlled Particle Size [J]. Chemistry of Materials,2010,22(17):5093-104.
    [28] SUTEEWONG T, SAI H, COHEN R, et al. Highly Aminated Mesoporous Silica Nanoparticleswith Cubic Pore Structure [J]. Journal of the American Chemical Society,2010,133(2):172-5.
    [29] SUTEEWONG T, SAI H, HOVDEN R, et al. Multicompartment Mesoporous SilicaNanoparticles with Branched Shapes: An Epitaxial Growth Mechanism [J]. Science,2013,340(6130):337-41.
    [30] INAGAKI S, GUAN S, FUKUSHIMA Y, et al. Novel Mesoporous Materials with a UniformDistribution of Organic Groups and Inorganic Oxide in Their Frameworks [J]. Journal of the AmericanChemical Society,1999,121(41):9611-4.
    [31] MELDE B J, HOLLAND B T, BLANFORD C F, et al. Mesoporous Sieves with Unified HybridInorganic/Organic Frameworks [J]. Chemistry of Materials,1999,11(11):3302-8.
    [32] ASEFA T, MACLACHLAN M J, COOMBS N, et al. Periodic mesoporous organosilicas withorganic groups inside the channel walls [J]. Nature,1999,402(6764):867-71.
    [33] HOFFMANN F, CORNELIUS M, MORELL J, et al. Silica-Based MesoporousOrganic–Inorganic Hybrid Materials [J]. Angewandte Chemie International Edition,2006,45(20):3216-51.
    [34] FUJITA S, INAGAKI S. Self-Organization of Organosilica Solids with Molecular-Scale andMesoscale Periodicities [J]. Chemistry of Materials,2008,20(3):891-908.
    [35] GOTO Y, INAGAKI S. Synthesis of large-pore phenylene-bridged mesoporous organosilicausing triblock copolymer surfactant [J]. Chemical Communications,2002,20):2410-1.
    [36] CHO E-B, KIM D, GORKA J, et al. Three-dimensional cubic (Im3m) periodic mesoporousorganosilicas with benzene-and thiophene-bridging groups [J]. Journal of Materials Chemistry,2009,19(14):2076-81.
    [37] GUO W, KIM I, HA C-S. Highly ordered three-dimensional large-pore periodic mesoporousorganosilica with Im3m symmetry [J]. Chemical Communications,2003,21):2692-3.
    [38] GUO W, PARK J-Y, OH M-O, et al. Triblock Copolymer Synthesis of Highly OrderedLarge-Pore Periodic Mesoporous Organosilicas with the Aid of Inorganic Salts [J]. Chemistry ofMaterials,2003,15(12):2295-8.
    [39] YOSHINA-ISHII C, ASEFA T, COOMBS N, et al. Periodic mesoporous organosilicas, PMOs:fusion of organic and inorganic chemistry 'inside' the channel walls of hexagonal mesoporous silica [J].Chemical Communications,1999,24):2539-40.
    [40] ANGELOS S, JOHANSSON E, STODDART J F, et al. Mesostructured Silica Supports forFunctional Materials and Molecular Machines [J]. Advanced Functional Materials,2007,17(14):2261-71.
    [41] LIONG M, ANGELOS S, CHOI E, et al. Mesostructured multifunctional nanoparticles forimaging and drug delivery [J]. Journal of Materials Chemistry,2009,19(35):6251-7.
    [42] SERRA E, DEZ E, DAZ I, et al. A comparative study of periodic mesoporous organosilica anddifferent hydrophobic mesoporous silicas for lipase immobilization [J]. Microporous and MesoporousMaterials,2010,132(3):487-93.
    [43] REBBIN V, SCHMIDT R, FR BA M. Spherical Particles of Phenylene-Bridged PeriodicMesoporous Organosilica for High-Performance Liquid Chromatography [J]. Angewandte ChemieInternational Edition,2006,45(31):5210-4.
    [44] ALVARO M, BENITEZ M, DAS D, et al. Reversible Porosity Changes in PhotoresponsiveAzobenzene-Containing Periodic Mesoporous Silicas [J]. Chemistry of Materials,2005,17(20):4958-64.
    [45] WANG X, LU D, AUSTIN R, et al. Protein Refolding Assisted by Periodic MesoporousOrganosilicas [J]. Langmuir,2007,23(10):5735-9.
    [46] LI C, LIU J, SHI X, et al. Periodic mesoporous organosilicas with1,4-diethylenebenzene in themesoporous wall: synthesis, characterization, and bioadsorption properties [J]. The Journal of PhysicalChemistry C,2007,111(29):10948-54.
    [47] YANG Q, LIU J, YANG J, et al. Synthesis, characterization, and catalytic activity of sulfonicacid-functionalized periodic mesoporous organosilicas [J]. Journal of Catalysis,2004,228(2):265-72.
    [48] YANG Q, LIU J, ZHANG L, et al. Functionalized periodic mesoporous organosilicas for catalysis[J]. Journal of Materials Chemistry,2009,19(14):1945-55.
    [49] INAGAKI S, GUAN S, OHSUNA T, et al. An ordered mesoporous organosilica hybrid materialwith a crystal-like wall structure [J]. Nature,2002,416(6878):304-7.
    [50] NAKAJIMA K, TOMITA I, HARA M, et al. A Stable and Highly Active Hybrid MesoporousSolid Acid Catalyst [J]. Advanced Materials,2005,17(15):1839-42.
    [51] OHASHI M, KAPOOR M P, INAGAKI S. Chemical modification of crystal-like mesoporousphenylene-silica with amino group [J]. Chemical Communications,2008,7):841-3.
    [52] KAMEGAWA T, SAKAI T, MATSUOKA M, et al. Preparation and Characterization of UniqueInorganic organic Hybrid Mesoporous Materials Incorporating Arenetricarbonyl Complexes
    [6H4M(CO)3(M=Cr, Mo)[J]. Journal of the American Chemical Society,2005,127(48):16784-5.
    [53] TAKEDA H, GOTO Y, MAEGAWA Y, et al. Visible-light-harvesting periodic mesoporousorganosilica [J]. Chemical Communications,2009,40):6032-4.
    [54] INAGAKI S, OHTANI O, GOTO Y, et al. Light Harvesting by a Periodic MesoporousOrganosilica Chromophore [J]. Angewandte Chemie International Edition,2009,48(22):4042-6.
    [55] MIZOSHITA N, GOTO Y, TANI T, et al. Efficient Visible-Light Emission from Dye-DopedMesostructured Organosilica [J]. Advanced Materials,2009,21(47):4798-801.
    [56] MIZOSHITA N, GOTO Y, MAEGAWA Y, et al. Tetraphenylpyrene-Bridged PeriodicMesostructured Organosilica Films with Efficient Visible-Light Emission [J]. Chemistry of Materials,2010,22(8):2548-54.
    [57] MINOOFAR P N, DUNN B S, ZINK J I. Multiply Doped Nanostructured Silicate Sol鈭扜elThin Films:鈥?Spatial Segregation of Dopants, Energy Transfer, and Distance Measurements [J].Journal of the American Chemical Society,2005,127(8):2656-65.
    [58] PENG C, ZHANG H, YU J, et al. Synthesis, characterization, and luminescence properties of theternary europium complex covalently bonded to mesoporous SBA-15[J]. The Journal of PhysicalChemistry B,2005,109(32):15278-87.
    [59] OHASHI M, AOKI M, YAMANAKA K-I, et al. A Periodic Mesoporous Organosilica-BasedDonor–Acceptor System for Photocatalytic Hydrogen Evolution [J]. Chemistry–A European Journal,2009,15(47):13041-6.
    [60] TAKEDA H, OHASHI M, TANI T, et al. Enhanced Photocatalysis of Rhenium(I) Complex byLight-Harvesting Periodic Mesoporous Organosilica [J]. Inorganic Chemistry,2010,49(10):4554-9.
    [61] ALVARO M, FERRER B, FORNES V, et al. A periodic mesoporous organosilica containingelectron acceptor viologen units [J]. Chemical Communications,2001,24):2546-7.
    [62] WHITNALL W, CADEMARTIRI L, OZIN G A. C60鈭扨MO: Periodic MesoporousBuckyballsilica [J]. Journal of the American Chemical Society,2007,129(50):15644-9.
    [63] MIZOSHITA N, IKAI M, TANI T, et al. Hole-Transporting Periodic MesostructuredOrganosilica [J]. Journal of the American Chemical Society,2009,131(40):14225-7.
    [64] URATA C, YAMADA H, WAKABAYASHI R, et al. Aqueous Colloidal MesoporousNanoparticles with Ethenylene-Bridged Silsesquioxane Frameworks [J]. Journal of the AmericanChemical Society,2011,133(21):8102-5.
    [65] CHO E-B, KIM D, JARONIEC M. Preparation of mesoporous benzene–silica nanoparticles [J].Microporous and Mesoporous Materials,2009,120(3):252-6.
    [66] DU H, HAMILTON P D, REILLY M A, et al. A facile synthesis of highly water-soluble,core–shell organo-silica nanoparticles with controllable size via sol–gel process [J]. Journal of Colloidand Interface Science,2009,340(2):202-8.
    [67] EL HASKOURI J, ORTIZ DE Z RATE D, GUILLEM C, et al. Hierarchical Porous NanosizedOrganosilicas [J]. Chemistry of Materials,2002,14(11):4502-4.
    [68] GRAF C, DEMBSKI S, HOFMANN A, et al. A General Method for the Controlled Embeddingof Nanoparticles in Silica Colloids [J]. Langmuir,2006,22(13):5604-10.
    [69] COZZOLI P D, PELLEGRINO T, MANNA L. Synthesis, properties and perspectives of hybridnanocrystal structures [J]. Chemical Society Reviews,2006,35(11):1195-208.
    [70] BURDA C, CHEN X, NARAYANAN R, et al. Chemistry and Properties of Nanocrystals ofDifferent Shapes [J]. Chemical Reviews,2005,105(4):1025-102.
    [71] CUSHING B L, KOLESNICHENKO V L, O'CONNOR C J. Recent Advances in theLiquid-Phase Syntheses of Inorganic Nanoparticles [J]. Chemical Reviews,2004,104(9):3893-946.
    [72] DANIEL M-C, ASTRUC D. Gold Nanoparticles: Assembly, Supramolecular Chemistry,Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology[J]. Chemical Reviews,2003,104(1):293-346.
    [73] YIN Y, ALIVISATOS A P. Colloidal nanocrystal synthesis and the organic-inorganic interface[J]. Nature,2005,437(7059):664-70.
    [74] PASTORIZA-SANTOS I, P REZ-JUSTE J, LIZ-MARZ N L M. Silica-Coating andHydrophobation of CTAB-Stabilized Gold Nanorods [J]. Chemistry of Materials,2006,18(10):2465-7.
    [75] HARDIKAR V V, MATIJEVI E. Coating of Nanosize Silver Particles with Silica [J]. Journal ofColloid and Interface Science,2000,221(1):133-6.
    [76] LU Y, YIN Y, LI Z-Y, et al. Synthesis and Self-Assembly of Au@SiO2Core Shell Colloids [J].Nano Letters,2002,2(7):785-8.
    [77] YIN Y, LU Y, SUN Y, et al. Silver Nanowires Can Be Directly Coated with Amorphous Silica ToGenerate Well-Controlled Coaxial Nanocables of Silver/Silica [J]. Nano Letters,2002,2(4):427-30.
    [78] LIZ-MARZ N L M, GIERSIG M, MULVANEY P. Synthesis of Nanosized Gold SilicaCore Shell Particles [J]. Langmuir,1996,12(18):4329-35.
    [79] OBARE S O, JANA N R, MURPHY C J. Preparation of Polystyrene-and Silica-Coated GoldNanorods and Their Use as Templates for the Synthesis of Hollow Nanotubes [J]. Nano Letters,2001,1(11):601-3.
    [80] YU Y, DU F-P, YU J C, et al. One-dimensional shape-controlled preparation of porous Cu2Onano-whiskers by using CTAB as a template [J]. Journal of Solid State Chemistry,2004,177(12):4640-7.
    [81] LU Y, YIN Y, MAYERS B T, et al. Modifying the Surface Properties of Superparamagnetic IronOxide Nanoparticles through A Sol Gel Approach [J]. Nano Letters,2002,2(3):183-6.
    [82] KIM J, LEE J E, LEE J, et al. Magnetic Fluorescent Delivery Vehicle Using Uniform MesoporousSilica Spheres Embedded with Monodisperse Magnetic and Semiconductor Nanocrystals [J]. Journal ofthe American Chemical Society,2005,128(3):688-9.
    [83] BRUCHEZ M, MORONNE M, GIN P, et al. Semiconductor Nanocrystals as FluorescentBiological Labels [J]. Science,1998,281(5385):2013-6.
    [84] KOBAYASHI Y, KATAKAMI H, MINE E, et al. Silica coating of silver nanoparticles using amodified St ber method [J]. Journal of Colloid and Interface Science,2005,283(2):392-6.
    [85] KRESGE C T, LEONOWICZ M E, ROTH W J, et al. Ordered mesoporous molecular sievessynthesized by a liquid-crystal template mechanism [J]. Nature,1992,359(6397):710-2.
    [86] LIN K J, CHEN L J, PRASAD M R, et al. Core–Shell Synthesis of a Novel, Spherical,Mesoporous Silica/Platinum Nanocomposite: Pt/PVP@MCM-41[J]. Advanced Materials,2004,16(20):1845-9.
    [87] NOONEY R I, DHANASEKARAN T, CHEN Y, et al. Self-Assembled Highly Ordered SphericalMesoporous Silica/Gold Nanocomposites [J]. Advanced Materials,2002,14(7):529-32.
    [88] NOONEY R I, THIRUNAVUKKARASU D, CHEN Y, et al. Self-Assembly of MesoporousNanoscale Silica/Gold Composites [J]. Langmuir,2003,19(18):7628-37.
    [89] YOON S B, KIM J-Y, KIM J H, et al. Synthesis of monodisperse spherical silica particles withsolid core and mesoporous shell: mesopore channels perpendicular to the surface [J]. Journal ofMaterials Chemistry,2007,17(18):1758-61.
    [90] NIKOOBAKHT B, EL-SAYED M A. Preparation and Growth Mechanism of Gold Nanorods(NRs) Using Seed-Mediated Growth Method [J]. Chemistry of Materials,2003,15(10):1957-62.
    [91] FAN H, LEVE E W, SCULLIN C, et al. Surfactant-Assisted Synthesis of Water-Soluble andBiocompatible Semiconductor Quantum Dot Micelles [J]. Nano Letters,2005,5(4):645-8.
    [92] CROISSANT J, ZINK J I. Nanovalve-Controlled Cargo Release Activated by Plasmonic Heating[J]. Journal of the American Chemical Society,2012,134(18):7628-31.
    [93] KIM J, KIM H S, LEE N, et al. Multifunctional Uniform Nanoparticles Composed of a MagnetiteNanocrystal Core and a Mesoporous Silica Shell for Magnetic Resonance and Fluorescence Imagingand for Drug Delivery [J]. Angewandte Chemie International Edition,2008,47(44):8438-41.
    [94] LIU J, BU W, ZHANG S, et al. Controlled Synthesis of Uniform and MonodisperseUpconversion Core/Mesoporous Silica Shell Nanocomposites for Bimodal Imaging [J]. Chemistry-aEuropean Journal,2012,18(8):2335-41.
    [95] JOO S H, PARK J Y, TSUNG C-K, et al. Thermally stable Pt/mesoporous silica core-shellnanocatalysts for high-temperature reactions [J]. Nat Mater,2009,8(2):126-31.
    [96] QIAN X, DU J, LI B, et al. Controllable fabrication of uniform core-shell structuredzeolite@SBA-15composites [J]. Chemical Science,2011,2(10):2006-16.
    [97] YANG Y, LIU X, LI X, et al. A Yolk–Shell Nanoreactor with a Basic Core and an Acidic Shellfor Cascade Reactions [J]. Angewandte Chemie International Edition,2012,51(36):9164-8.
    [98] FANG X, LIU Z, HSIEH M-F, et al. Hollow Mesoporous Aluminosilica Spheres withPerpendicular Pore Channels as Catalytic Nanoreactors [J]. ACS Nano,2012,6(5):4434-44.
    [99] ARIGA K, VINU A, MIYAHARA M, et al. One-Pot Separation of Tea Components throughSelective Adsorption on Pore-Engineered Nanocarbon, Carbon Nanocage [J]. Journal of the AmericanChemical Society,2007,129(36):11022-3.
    [100] LU Z, YE M, LI N, et al. Self-Assembled TiO2Nanocrystal Clusters for SelectiveEnrichment of Intact Phosphorylated Proteins [J]. Angewandte Chemie International Edition,2010,49(10):1862-6.
    [101] TIAN R, ZHANG H, YE M, et al. Selective Extraction of Peptides from Human Plasma byHighly Ordered Mesoporous Silica Particles for Peptidome Analysis [J]. Angewandte ChemieInternational Edition,2007,46(6):962-5.
    [102] LI C. Chiral synthesis on catalysts immobilized in microporous and mesoporous materials[J]. Catalysis Reviews-Science and Engineering,2004,46(3-4):419-92.
    [103] LIU H-J, CUI W-J, JIN L-H, et al. Preparation of three-dimensional ordered mesoporouscarbon sphere arrays by a two-step templating route and their application for supercapacitors [J].Journal of Materials Chemistry,2009,19(22):3661-7.
    [104] LI W, CHEN D, LI Z, et al. Nitrogen enriched mesoporous carbon spheres obtained by afacile method and its application for electrochemical capacitor [J]. Electrochemistry Communications,2007,9(4):569-73.
    [105] CHANG H, JOO S H, PAK C. Synthesis and characterization of mesoporous carbon for fuelcell applications [J]. Journal of Materials Chemistry,2007,17(30):3078-88.
    [106] YUAN Z-Y, SU B-L. Insights into hierarchically meso-macroporous structured materials [J].Journal of Materials Chemistry,2006,16(7):663-77.
    [107] SU F, ZENG J, BAO X, et al. Preparation and Characterization of Highly Ordered GraphiticMesoporous Carbon as a Pt Catalyst Support for Direct Methanol Fuel Cells [J]. Chemistry ofMaterials,2005,17(15):3960-7.
    [108] GUO Y-G, HU Y-S, MAIER J. Synthesis of hierarchically mesoporous anatase spheres andtheir application in lithium batteries [J]. Chemical Communications,2006,26):2783-5.
    [109] LIU R, ZHANG Y, ZHAO X, et al. pH-Responsive Nanogated Ensemble Based onGold-Capped Mesoporous Silica through an Acid-Labile Acetal Linker [J]. Journal of the AmericanChemical Society,2010,132(5):1500-1.
    [110] LEE J E, LEE N, KIM H, et al. Uniform Mesoporous Dye-Doped Silica NanoparticlesDecorated with Multiple Magnetite Nanocrystals for Simultaneous Enhanced Magnetic ResonanceImaging, Fluorescence Imaging, and Drug Delivery [J]. Journal of the American Chemical Society,2009,132(2):552-7.
    [111] GAI S, YANG P, LI C, et al. Synthesis of Magnetic, Up-Conversion Luminescent, andMesoporous Core–Shell-Structured Nanocomposites as Drug Carriers [J]. Advanced FunctionalMaterials,2010,20(7):1166-72.
    [112] ZHAO Y, TREWYN B G, SLOWING I I, et al. Mesoporous Silica Nanoparticle-BasedDouble Drug Delivery System for Glucose-Responsive Controlled Release of Insulin and Cyclic AMP[J]. Journal of the American Chemical Society,2009,131(24):8398-400.
    [113] SLOWING I I, VIVERO-ESCOTO J L, WU C-W, et al. Mesoporous silica nanoparticles ascontrolled release drug delivery and gene transfection carriers [J]. Advanced Drug Delivery Reviews,2008,60(11):1278-88.
    [114] PARK C, OH K, LEE S C, et al. Controlled Release of Guest Molecules from MesoporousSilica Particles Based on a pH-Responsive Polypseudorotaxane Motif [J]. Angewandte ChemieInternational Edition,2007,46(9):1455-7.
    [115] LIN Y-S, HAYNES C L. Impacts of Mesoporous Silica Nanoparticle Size, Pore Ordering,and Pore Integrity on Hemolytic Activity [J]. Journal of the American Chemical Society,2010,132(13):4834-42.
    [116] KAM N W S, LIU Z, DAI H. Carbon Nanotubes as Intracellular Transporters for Proteinsand DNA: An Investigation of the Uptake Mechanism and Pathway [J]. Angewandte ChemieInternational Edition,2006,45(4):577-81.
    [117] KIM T-W, CHUNG P-W, SLOWING I I, et al. Structurally Ordered Mesoporous CarbonNanoparticles as Transmembrane Delivery Vehicle in Human Cancer Cells [J]. Nano Letters,2008,8(11):3724-7.
    [118] YAN A, LAU B W, WEISSMAN B S, et al. Biocompatible, Hydrophilic, SupramolecularCarbon Nanoparticles for Cell Delivery [J]. Advanced Materials,2006,18(18):2373-8.
    [119] ZHAO X, HILLIARD L R, MECHERY S J, et al. A rapid bioassay for single bacterial cellquantitation using bioconjugated nanoparticles [J]. Proceedings of the National Academy of Sciencesof the United States of America,2004,101(42):15027-32.
    [120] PIAO Y, BURNS A, KIM J, et al. Designed Fabrication of Silica-Based NanostructuredParticle Systems for Nanomedicine Applications [J]. Advanced Functional Materials,2008,18(23):3745-58.
    [121] OW H, LARSON D R, SRIVASTAVA M, et al. Bright and Stable Core Shell FluorescentSilica Nanoparticles [J]. Nano Letters,2004,5(1):113-7.
    [122] KIM S, OHULCHANSKYY T Y, PUDAVAR H E, et al. Organically Modified SilicaNanoparticles Co-encapsulating Photosensitizing Drug and Aggregation-Enhanced Two-PhotonAbsorbing Fluorescent Dye Aggregates for Two-Photon Photodynamic Therapy [J]. Journal of theAmerican Chemical Society,2007,129(9):2669-75.
    [123] ZHAO L, ZHAO Y, HAN Y. Pore Fabrication in Various Silica-Based Nanoparticles byControlled Etching [J]. Langmuir,2010,26(14):11784-9.
    [124] ASEFA T, MACLACHLAN M J, GRONDEY H, et al. Metamorphic Channels in PeriodicMesoporous Methylenesilica [J]. Angewandte Chemie International Edition,2000,39(10):1808-11.
    [125] HOLLAND B T, BLANFORD C F, DO T, et al. Synthesis of Highly Ordered,Three-Dimensional, Macroporous Structures of Amorphous or Crystalline Inorganic Oxides,Phosphates, and Hybrid Composites [J]. Chemistry of Materials,1999,11(3):795-805.
    [126] MIZOSHITA N, TANI T, INAGAKI S. Syntheses, properties and applications of periodicmesoporous organosilicas prepared from bridged organosilane precursors [J]. Chemical SocietyReviews,2011,40(2):789-800.
    [127] WANG W, LOFGREEN J E, OZIN G A. Why PMO? Towards Functionality and Utility ofPeriodic Mesoporous Organosilicas [J]. Small,2010,6(23):2634-42.
    [128] MELERO J A, IGLESIAS J, ARSUAGA J M, et al. Synthesis and catalytic activity oforganic-inorganic hybrid Ti-SBA-15materials [J]. Journal of Materials Chemistry,2007,17(4):377-85.
    [129] LIN C X, QIAO S Z, YU C Z, et al. Periodic mesoporous silica and organosilica withcontrolled morphologies as carriers for drug release [J]. Microporous and Mesoporous Materials,2009,117(1–2):213-9.
    [130] ZHOU Z, TAYLOR R N K, KULLMANN S, et al. Mesoporous Organosilicas With LargeCage-Like Pores for High Efficiency Immobilization of Enzymes [J]. Advanced Materials,2011,23(22-23):2627-32.
    [131] DJOJOPUTRO H, ZHOU X F, QIAO S Z, et al. Periodic Mesoporous Organosilica HollowSpheres with Tunable Wall Thickness [J]. Journal of the American Chemical Society,2006,128(19):6320-1.
    [132] LI J, WEI Y, DENG Y, et al. An unusual example of morphology controlled periodicmesoporous organosilica single crystals [J]. Journal of Materials Chemistry,2010,20(31):6460-3.
    [133] KRESGE C T, LEONOWICZ M E, ROTH W J, et al. Ordered mesoporous molecular sievessynthesized by a liquid-crystal template mechanism [J]. Nature,1992,359(710-2.
    [134] SONWANE C G, BHATIA S K. Characterization of Pore Size Distributions of MesoporousMaterials from Adsorption Isotherms [J]. The Journal of Physical Chemistry B,2000,104(39):9099-110.
    [135] TANEV P T, PINNAVAIA T J. Mesoporous Silica Molecular Sieves Prepared by Ionic andNeutral Surfactant Templating: A Comparison of Physical Properties [J]. Chemistry of Materials,1996,8(8):2068-79.
    [136] PAULY T R, LIU Y, PINNAVAIA T J, et al. Textural Mesoporosity and the CatalyticActivity of Mesoporous Molecular Sieves with Wormhole Framework Structures [J]. Journal of theAmerican Chemical Society,1999,121(38):8835-42.
    [137] KRUK M, JARONIEC M. Argon Adsorption at77K as a Useful Tool for the Elucidation ofPore Connectivity in Ordered Materials with Large Cagelike Mesopores [J]. Chemistry of Materials,2003,15(15):2942-9.
    [138] WAN Y, ZHAO. On the Controllable Soft-Templating Approach to Mesoporous Silicates [J].Chemical Reviews,2007,107(7):2821-60.
    [139] KAO H-M, CHENG C-C, TING C-C, et al. Phase control of cubic SBA-1mesostructuresvia alcohol-assisted synthesis [J]. Journal of Materials Chemistry,2005,15(29):2989-92.
    [140] SCHUMACHER K, GR N M, UNGER K K. Novel synthesis of spherical MCM-48[J].Microporous and Mesoporous Materials,1999,27(2–3):201-6.
    [141] BERNARDOS A, MONDRAG N L, AZNAR E, et al. Enzyme-Responsive IntracellularControlled Release Using Nanometric Silica Mesoporous Supports Capped with “Saccharides”[J].ACS Nano,2010,4(11):6353-68.
    [142] TANG J, HUO Z, BRITTMAN S, et al. Solution-processed core-shell nanowires forefficient photovoltaic cells [J]. Nat Nano,2011,6(9):568-72.
    [143] GHOSH CHAUDHURI R, PARIA S. Core/Shell Nanoparticles: Classes, Properties,Synthesis Mechanisms, Characterization, and Applications [J]. Chemical Reviews,2011,112(4):2373-433.
    [144] YANG P, QUAN Z, HOU Z, et al. A magnetic, luminescent and mesoporous core–shellstructured composite material as drug carrier [J]. Biomaterials,2009,30(27):4786-95.
    [145] LI W, DENG Y, WU Z, et al. Hydrothermal Etching Assisted Crystallization: A FacileRoute to Functional Yolk-Shell Titanate Microspheres with Ultrathin Nanosheets-Assembled DoubleShells [J]. Journal of the American Chemical Society,2011,133(40):15830-3.
    [146] XIONG Z, ZHAO X S. Nitrogen-Doped Titanate-Anatase Core–Shell Nanobelts withExposed {101} Anatase Facets and Enhanced Visible Light Photocatalytic Activity [J]. Journal of theAmerican Chemical Society,2012,134(13):5754-7.
    [147] GE J, YIN Y. Magnetically Tunable Colloidal Photonic Structures in Alkanol Solutions [J].Advanced Materials,2008,20(18):3485-91.
    [148] FENG Y, HE J, WANG H, et al. An Unconventional Role of Ligand in Continuously Tuningof Metal–Metal Interfacial Strain [J]. Journal of the American Chemical Society,2012,134(4):2004-7.
    [149] YU M, LIN J, FANG J. Silica Spheres Coated with YVO4:Eu3+Layers via Sol GelProcess: A Simple Method To Obtain Spherical Core Shell Phosphors [J]. Chemistry of Materials,2005,17(7):1783-91.
    [150] XU Z, MA P A, LI C, et al. Monodisperse core–shell structured up-conversionYb(OH)CO3@YbPO4:Er3+hollow spheres as drug carriers [J]. Biomaterials,2011,32(17):4161-73.
    [151] WANG Z L, QUAN Z W, JIA P Y, et al. A Facile Synthesis and PhotoluminescentProperties of Redispersible CeF3, CeF3:Tb3+, and CeF3:Tb3+/LaF3(Core/Shell) Nanoparticles [J].Chemistry of Materials,2006,18(8):2030-7.
    [152] KANG X, CHENG Z, YANG D, et al. Design and Synthesis of Multifunctional DrugCarriers Based on Luminescent Rattle-Type Mesoporous Silica Microspheres with a ThermosensitiveHydrogel as a Controlled Switch [J]. Advanced Functional Materials,2012,22(7):1470-81.
    [153] LIU J, YANG H Q, KLEITZ F, et al. Yolk–Shell Hybrid Materials with a PeriodicMesoporous Organosilica Shell: Ideal Nanoreactors for Selective Alcohol Oxidation [J]. AdvancedFunctional Materials,2012,22(3):591-9.
    [154] LEI J, WANG L, ZHANG J. Superbright Multifluorescent Core Shell MesoporousNanospheres as Trackable Transport Carrier for Drug [J]. ACS Nano,2011,5(5):3447-55.
    [155] CAUDA V, SCHLOSSBAUER A, KECHT J, et al. Multiple Core Shell FunctionalizedColloidal Mesoporous Silica Nanoparticles [J]. Journal of the American Chemical Society,2009,131(32):11361-70.
    [156] HAN Y, PITUKMANOROM P, ZHAO L, et al. Generalized Synthesis of MesoporousShells on Zeolite Crystals [J]. Small,2011,7(3):326-32.
    [157] GUAN B, CUI Y, REN Z, et al. Highly ordered periodic mesoporous organosilicananoparticles with controllable pore structures [J]. Nanoscale,2012,4(20):6588-96.
    [158] HAN Y, ZHAO L, YING J Y. Entropy-Driven Helical Mesostructure Formation withAchiral Cationic Surfactant Templates [J]. Advanced Materials,2007,19(18):2454-9.
    [159] ZHANG L, QIAO S Z, JIN Y G, et al. Magnetic Hollow Spheres of Periodic MesoporousOrganosilica and Fe3O4Nanocrystals: Fabrication and Structure Control [J]. Advanced Materials,2008,20(4):805-9.
    [160] LEE K T, JUNG Y S, OH S M. Synthesis of Tin-Encapsulated Spherical Hollow Carbon forAnode Material in Lithium Secondary Batteries [J]. Journal of the American Chemical Society,2003,125(19):5652-3.
    [161] YANG S, FENG X, ZHI L, et al. Nanographene-Constructed Hollow Carbon Spheres andTheir Favorable Electroactivity with Respect to Lithium Storage [J]. Advanced Materials,2010,22(7):838-42.
    [162] ZHANG W-M, HU J-S, GUO Y-G, et al. Tin-Nanoparticles Encapsulated in Elastic HollowCarbon Spheres for High-Performance Anode Material in Lithium-Ion Batteries [J]. AdvancedMaterials,2008,20(6):1160-5.
    [163] WEN Z, CI S, ZHANG F, et al. Nitrogen-Enriched Core-Shell Structured Fe/Fe3C-CNanorods as Advanced Electrocatalysts for Oxygen Reduction Reaction [J]. Advanced Materials,2012,24(11):1399-404.
    [164] WEN Z, LIU J, LI J. Core/Shell Pt/C Nanoparticles Embedded in Mesoporous Carbon as aMethanol-Tolerant Cathode Catalyst in Direct Methanol Fuel Cells [J]. Advanced Materials,2008,20(4):743-7.
    [165] IKEDA S, ISHINO S, HARADA T, et al. Ligand-Free Platinum Nanoparticles Encapsulatedin a Hollow Porous Carbon Shell as a Highly Active Heterogeneous Hydrogenation Catalyst [J].Angewandte Chemie International Edition,2006,45(42):7063-6.
    [166] HARADA T, IKEDA S, NG Y H, et al. Rhodium Nanoparticle Encapsulated in a PorousCarbon Shell as an Active Heterogeneous Catalyst for Aromatic Hydrogenation [J]. AdvancedFunctional Materials,2008,18(15):2190-6.
    [167] FANG Y, GU D, ZOU Y, et al. A Low-Concentration Hydrothermal Synthesis ofBiocompatible Ordered Mesoporous Carbon Nanospheres with Tunable and Uniform Size [J].Angewandte Chemie International Edition,2010,49(43):7987-91.
    [168] GU J, SU S, LI Y, et al. Hydrophilic mesoporous carbon nanoparticles as carriers forsustained release of hydrophobic anti-cancer drugs [J]. Chemical Communications,2011,47(7):2101-3.
    [169] MUYLAERT I, VERBERCKMOES A, DE DECKER J, et al. Ordered mesoporous phenolicresins: Highly versatile and ultra stable support materials [J]. Advances in Colloid and InterfaceScience,2012,175(0):39-51.
    [170] XING R, LIU N, LIU Y, et al. Novel Solid Acid Catalysts: Sulfonic AcidGroup-Functionalized Mesostructured Polymers [J]. Advanced Functional Materials,2007,17(14):2455-61.
    [171] ZHANG F, MENG Y, GU D, et al. A Facile Aqueous Route to Synthesize Highly OrderedMesoporous Polymers and Carbon Frameworks with Ia3d Bicontinuous Cubic Structure [J]. Journal ofthe American Chemical Society,2005,127(39):13508-9.
    [172] KAMATA K, LU Y, XIA Y. Synthesis and Characterization of Monodispersed Core ShellSpherical Colloids with Movable Cores [J]. Journal of the American Chemical Society,2003,125(9):2384-5.
    [173] SINDORO M, FENG Y, XING S, et al. Triple-Layer (Au@Perylene)@PolyanilineNanocomposite: Unconventional Growth of Faceted Organic Nanocrystals on Polycrystalline Au [J].Angewandte Chemie International Edition,2011,50(42):9898-902.
    [174] YOON S B, SOHN K, KIM J Y, et al. Fabrication of Carbon Capsules with HollowMacroporous Core/Mesoporous Shell Structures [J]. Advanced Materials,2002,14(1):19-21.
    [175] LOU X W, DENG D, LEE J Y, et al. Preparation of SnO2/Carbon Composite HollowSpheres and Their Lithium Storage Properties [J]. Chemistry of Materials,2008,20(20):6562-6.
    [176] XIA Y D, MOKAYA R. Ordered Mesoporous Carbon Hollow Spheres Nanocast UsingMesoporous Silica via Chemical Vapor Deposition [J]. Advanced Materials,2004,16(11):886-91.
    [177] LI X, DHANABALAN A, GU L, et al. Three-Dimensional Porous Core-Shell Sn@CarbonComposite Anodes for High-Performance Lithium-Ion Battery Applications [J]. Advanced EnergyMaterials,2012,2(2):238-44.
    [178] TANG C, BOMBALSKI L, KRUK M, et al. Nanoporous Carbon Films from “Hairy”Polyacrylonitrile-Grafted Colloidal Silica Nanoparticles [J]. Advanced Materials,2008,20(8):1516-22.
    [179] KRUK M, DUFOUR B, CELER E B, et al. Synthesis of Mesoporous Carbons UsingOrdered and Disordered Mesoporous Silica Templates and Polyacrylonitrile as Carbon Precursor [J].The Journal of Physical Chemistry B,2005,109(19):9216-25.
    [180] WHITE R J, TAUER K, ANTONIETTI M, et al. Functional Hollow Carbon Nanospheres byLatex Templating [J]. Journal of the American Chemical Society,2010,132(49):17360-3.
    [181] LIU R, MAHURIN S M, LI C, et al. Dopamine as a Carbon Source: The ControlledSynthesis of Hollow Carbon Spheres and Yolk-Structured Carbon Nanocomposites [J]. AngewandteChemie International Edition,2011,50(30):6799-802.
    [182] LU A-H, SUN T, LI W-C, et al. Synthesis of Discrete and Dispersible Hollow CarbonNanospheres with High Uniformity by Using Confined Nanospace Pyrolysis [J]. Angewandte ChemieInternational Edition,2011,50(49):11765-8.
    [183] FUERTES A B, VALLE-VIGON P, SEVILLA M. One-step synthesis ofsilica@resorcinol-formaldehyde spheres and their application for the fabrication of polymer and carboncapsules [J]. Chemical Communications,2012,48(49):6124-6.
    [184] SHI F, WANG J, ZHANG D, et al. Greatly enhanced size-tunable ultraviolet upconversionluminescence of monodisperse [small beta]-NaYF4:Yb,Tm nanocrystals [J]. Journal of MaterialsChemistry,2011,21(35):13413-21.
    [185] XU X, DENG C, GAO M, et al. Synthesis of Magnetic Microspheres with ImmobilizedMetal Ions for Enrichment and Direct Determination of Phosphopeptides by Matrix-Assisted LaserDesorption Ionization Mass Spectrometry [J]. Advanced Materials,2006,18(24):3289-93.
    [186] ARNAL P M, COMOTTI M, SCH TH F. High-Temperature-Stable Catalysts by HollowSphere Encapsulation [J]. Angewandte Chemie International Edition,2006,45(48):8224-7.
    [187] LOU X W, ARCHER L A, YANG Z. Hollow Micro-/Nanostructures: Synthesis andApplications [J]. Advanced Materials,2008,20(21):3987-4019.
    [188] AN K, HYEON T. Synthesis and biomedical applications of hollow nanostructures [J]. NanoToday,2009,4(4):359-73.
    [189] SUN Y, MAYERS B, XIA Y. Metal Nanostructures with Hollow Interiors [J]. AdvancedMaterials,2003,15(7-8):641-6.
    [190] GOLDBERGER J, HE R, ZHANG Y, et al. Single-crystal gallium nitride nanotubes [J].Nature,2003,422(6932):599-602.
    [191] TANG S, HUANG X, CHEN X, et al. Hollow mesoporous zirconia nanocapsules for drugdelivery [J]. Advanced Functional Materials,2010,20(15):2442-7.
    [192] KIM S-W, KIM M, LEE W Y, et al. Fabrication of Hollow Palladium Spheres and TheirSuccessful Application to the Recyclable Heterogeneous Catalyst for Suzuki Coupling Reactions [J].Journal of the American Chemical Society,2002,124(26):7642-3.
    [193] YAO Y, MCDOWELL M T, RYU I, et al. Interconnected Silicon Hollow Nanospheres forLithium-Ion Battery Anodes with Long Cycle Life [J]. Nano Letters,2011,11(7):2949-54.
    [194] GAO C, ZHANG Q, LU Z, et al. Templated Synthesis of Metal Nanorods in SilicaNanotubes [J]. Journal of the American Chemical Society,2011,133(49):19706-9.
    [195] YANG P, QUAN Z, HOU Z, et al. A magnetic, luminescent and mesoporous core-shellstructured composite material as drug carrier [J]. Biomaterials,2009,30(27):4786-95.
    [196] ZHAO Y, JIANG L. Hollow Micro/Nanomaterials with Multilevel Interior Structures [J].Advanced Materials,2009,21(36):3621-38.
    [197] LIU J, QIAO S Z, CHEN J S, et al. Yolk/shell nanoparticles: new platforms for nanoreactors,drug delivery and lithium-ion batteries [J]. Chemical Communications,2011,47(47):12578-91.
    [198] LEE J, PARK J C, SONG H. A Nanoreactor Framework of a Au@SiO2Yolk/ShellStructure for Catalytic Reduction of p-Nitrophenol [J]. Advanced Materials,2008,20(8):1523-8.
    [199] HUANG X, GUO C, ZUO J, et al. An Assembly Route to Inorganic Catalytic NanoreactorsContaining Sub-10-nm Gold Nanoparticles with Anti-Aggregation Properties [J]. Small,2009,5(3):361-5.
    [200] PARK J, SONG H. Metal@Silica yolk-shell nanostructures as versatile bifunctionalnanocatalysts [J]. Nano Research,2011,4(1):33-49.
    [201] YEO K M, CHOI S, ANISUR R M, et al. Surfactant-Free Platinum-on-Gold Nanodendriteswith Enhanced Catalytic Performance for Oxygen Reduction [J]. Angewandte Chemie InternationalEdition,2011,50(3):745-8.
    [202] LOU X W, YUAN C, ARCHER L A. Double-Walled SnO2Nano-Cocoons with MovableMagnetic Cores [J]. Advanced Materials,2007,19(20):3328-32.
    [203] LIU J, QIAO S Z, BUDI HARTONO S, et al. Monodisperse Yolk–Shell Nanoparticles witha Hierarchical Porous Structure for Delivery Vehicles and Nanoreactors [J]. Angewandte ChemieInternational Edition,2010,49(29):4981-5.
    [204] KIM J, PIAO Y, LEE N, et al. Magnetic Nanocomposite Spheres Decorated with NiONanoparticles for a Magnetically Recyclable Protein Separation System [J]. Advanced Materials,2009,22(1):57-60.
    [205] ZHU Y, IKOMA T, HANAGATA N, et al. Rattle-Type Fe3O4@SiO2Hollow MesoporousSpheres as Carriers for Drug Delivery [J]. Small,2010,6(3):471-8.
    [206] TAN L, CHEN D, LIU H, et al. A silica nanorattle with a mesoporous shell: An idealnanoreactor for the preparation of tunable gold cores [J]. Advanced Materials,2010,22(43):4885-9.
    [207] QIAO S Z, LIN C X, JIN Y, et al. Surface-Functionalized Periodic Mesoporous OrganosilicaHollow Spheres [J]. The Journal of Physical Chemistry C,2009,113(20):8673-82.
    [208] WU X-J, XU D. Soft Template Synthesis of Yolk/Silica Shell particles [J]. AdvancedMaterials,2010,22(13):1516-20.
    [209] GUAN B, WANG X, XIAO Y, et al. A versatile cooperative template-directed coatingmethod to construct uniform microporous carbon shells for multifunctional core-shell nanocomposites[J]. Nanoscale,2013,5(6):2469-75.
    [210] CHEN Y, CHEN H, GUO L, et al. Hollow/Rattle-Type Mesoporous Nanostructures by aStructural Difference-Based Selective Etching Strategy [J]. ACS Nano,2010,4(1):529-39.
    [211] YU M, LIN J, FANG J. Silica Spheres Coated with YVO4:Eu3+Layers via Sol-gel Process:A Simple Method To Obtain Spherical Core-shell Phosphors [J]. Chemistry of Materials,2005,17(7):1783-91.
    [212] YIN Y, RIOUX R M, ERDONMEZ C K, et al. Formation of Hollow Nanocrystals Throughthe Nanoscale Kirkendall Effect [J]. Science,2004,304(5671):711-4.
    [213] LI J, ZENG H C. Hollowing Sn-Doped TiO2Nanospheres via Ostwald Ripening [J]. Journalof the American Chemical Society,2007,129(51):15839-47.
    [214] DING S, CHEN J S, QI G, et al. Formation of SnO2Hollow Nanospheres insideMesoporous Silica Nanoreactors [J]. Journal of the American Chemical Society,2011,133(1):21-3.
    [215] ZHANG Q, LEE I, GE J, et al. Surface-Protected Etching of Mesoporous Oxide Shells forthe Stabilization of Metal Nanocatalysts [J]. Advanced Functional Materials,2010,20(14):2201-14.
    [216] FANG X, CHEN C, LIU Z, et al. A cationic surfactant assisted selective etching strategy tohollow mesoporous silica spheres [J]. Nanoscale,2011,3(4):1632-9.
    [217] WONG Y J, ZHU L, TEO W S, et al. Revisiting the St枚ber Method: Inhomogeneity inSilica Shells [J]. Journal of the American Chemical Society,2011,133(30):11422-5.
    [218] CARUSO F, CARUSO R A, M HWALD H. Nanoengineering of inorganic and hybridhollow spheres by colloidal templating [J]. Science,1998,282(5391):1111-4.
    [219] LEI J, WANG L, ZHANG J. Superbright Multifluorescent Core-shell MesoporousNanospheres as Trackable Transport Carrier for Drug [J]. ACS Nano,2011,5(5):3447-55.
    [220] LIU J, BU W, ZHANG S, et al. Controlled Synthesis of Uniform and MonodisperseUpconversion Core/Mesoporous Silica Shell Nanocomposites for Bimodal Imaging [J]. Chemistry–AEuropean Journal,2012,18(8):2335-41.
    [221] CHEN X, MAO S S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications,and Applications [J]. Chemical Reviews,2007,107(7):2891-959.
    [222] RAPPSILBER J, MANN M, ISHIHAMA Y. Protocol for micro-purification, enrichment,pre-fractionation and storage of peptides for proteomics using StageTips [J]. Nat Protocols,2007,2(8):1896-906.
    [223] GRATZEL M. Photoelectrochemical cells [J]. Nature,2001,414(6861):338-44.
    [224] CHEN D, HUANG F, CHENG Y-B, et al. Mesoporous Anatase TiO2Beads with HighSurface Areas and Controllable Pore Sizes: A Superior Candidate for High-PerformanceDye-Sensitized Solar Cells [J]. Advanced Materials,2009,21(21):2206-10.
    [225] LI L, TSUNG C K, YANG Z, et al. Rare-Earth-Doped Nanocrystalline Titania MicrospheresEmitting Luminescence via Energy Transfer [J]. Advanced Materials,2008,20(5):903-8.
    [226] SAUVAGE F, CHEN D, COMTE P, et al. Dye-Sensitized Solar Cells Employing a SingleFilm of Mesoporous TiO2Beads Achieve Power Conversion Efficiencies Over10%[J]. ACS Nano,2010,4(8):4420-5.
    [227] HUANG F, CHEN D, ZHANG X L, et al. Dual-Function Scattering Layer ofSubmicrometer-Sized Mesoporous TiO2Beads for High-Efficiency Dye-Sensitized Solar Cells [J].Advanced Functional Materials,2010,20(8):1301-5.
    [228] YANG D J, ZHENG Z F, ZHU H Y, et al. Titanate Nanofibers as Intelligent Absorbents forthe Removal of Radioactive Ions from Water [J]. Advanced Materials,2008,20(14):2777-81.
    [229] DONDI M, MATTEUCCI F, CRUCIANI G. Zirconium titanate ceramic pigments: Crystalstructure, optical spectroscopy and technological properties [J]. Journal of Solid State Chemistry,2006,179(1):233-46.
    [230] ZOU H, LIN Y S. Structural and surface chemical properties of sol-gel derived TiO2鈥揨rO2oxides [J]. Applied Catalysis A: General,2004,265(1):35-42.
    [231] MANRIQUEZ M E, PICQUART M, BOKHIMI X, et al. X-Ray Diffraction, and RamanScattering Study of Nanostructured ZrO2-TiO2Oxides Prepared by Sol-Gel [J]. Journal ofNanoscience and Nanotechnology,2008,8(12):6623-9.
    [232] PANDEY A D, GUETTEL R, LEONI M, et al. Influence of the Microstructure ofGold-Zirconia Yolk-Shell Catalysts on the CO Oxidation Activity [J]. Journal of Physical Chemistry C,114(45):19386-94.
    [233] BUSCA G. Acid catalysts in industrial hydrocarbon chemistry [J]. Chemical Reviews,2007,107(11):5366-410.
    [234] CORMA A. From microporous to mesoporous molecular sieve materials and their use incatalysis [J]. Chemical reviews,1997,97(6):2373-420.
    [235] BA J, POLLEUX J, ANTONIETTI M, et al. Non-aqueous Synthesis of Tin OxideNanocrystals and Their Assembly into Ordered Porous Mesostructures [J]. Advanced Materials,2005,17(20):2509-12.
    [236] YUAN Q, LIU Q, SONG W-G, et al. Ordered Mesoporous Ce1-xZrxO2Solid Solutionswith Crystalline Walls [J]. Journal of the American Chemical Society,2007,129(21):6698-9.
    [237] LUCA V, BERTRAM W K, WIDJAJA J, et al. Synthesis of mesoporous zirconium titanatesusing alkycarboxylate surfactants and their transformation to dense ceramics [J]. Microporous andMesoporous Materials,2007,103(1):123-33.
    [238] CORMA A, GARCIA H. Lewis acids: From conventional homogeneous to greenhomogeneous and heterogeneous catalysis [J]. Chemical Reviews,2003,103(11):4307-65.
    [239] BARTHOS R, L NYI F, ONYESTY K G, et al. An IR, FR, and TPD Study on the Acidity ofH-ZSM-5, Sulfated Zirconia, and Sulfated Zirconia Titania Using Ammonia as the Probe Molecule [J].The Journal of Physical Chemistry B,2000,104(31):7311-9.
    [240] SONG X, SAYARI A. Sulfated Zirconia-Based Strong Solid-Acid Catalysts: RecentProgress [J]. Catalysis Reviews,1996,38(3):329-412.
    [241] SOHN J R, KIM H W. Catalytic and surface properties of ZrO2modified with sulfurcompounds [J]. Journal of Molecular Catalysis,1989,52(3):361-74.
    [242] BABOU F, COUDURIER G, VEDRINE J C. Acidic Properties of Sulfated Zirconia: AnInfrared Spectroscopic Study [J]. Journal of Catalysis,1995,152(2):341-9.
    [243] HUANG Y, XU S, LIN V S Y. Bifunctionalized Mesoporous Materials with Site-SeparatedBr nsted Acids and Bases: Catalyst for a Two-Step Reaction Sequence [J]. Angewandte ChemieInternational Edition,2011,50(3):661-4.
    [244] ZEIDAN R K, HWANG S-J, DAVIS M E. Multifunctional Heterogeneous Catalysts:SBA-15-Containing Primary Amines and Sulfonic Acids [J]. Angewandte Chemie InternationalEdition,2006,45(38):6332-5.
    [245] SHYLESH S, SCH NEMANN V, THIEL W R. Magnetically Separable Nanocatalysts:Bridges between Homogeneous and Heterogeneous Catalysis [J]. Angewandte Chemie InternationalEdition,2010,49(20):3428-59.
    [246] SHIJU N R, ALBERTS A H, KHALID S, et al. Mesoporous Silica with Site-Isolated Amineand Phosphotungstic Acid Groups: A Solid Catalyst with Tunable Antagonistic Functions for One-PotTandem Reactions [J]. Angewandte Chemie International Edition,2011,50(41):9615-9.
    [247] PAN W, MIAO H-Q, XU Y-J, et al.1-[4-(1H-Benzoimidazol-2-yl)-phenyl]-3-[4-(1H-benzoimidazol-2-yl)-phenyl]-urea derivatives assmall molecule heparanase inhibitors [J]. Bioorganic&Medicinal Chemistry Letters,2006,16(2):409-12.
    [248] BELLINA F, CALANDRI C, CAUTERUCCIO S, et al. Efficient and highly regioselectivedirect C-2arylation of azoles, including free (NH)-imidazole,-benzimidazole and-indole, with arylhalides [J]. Tetrahedron,2007,63(9):1970-80.
    [249] AYHAN-K LC GIL G, ALTANLAR N. Synthesis and antimicrobial activities of some newbenzimidazole derivatives [J]. Il Farmaco,2003,58(12):1345-50.
    [250] WU S-H, MOU C-Y, LIN H-P. Synthesis of mesoporous silica nanoparticles [J]. ChemicalSociety Reviews,2013,42(9):3862-75.
    [251] KOBLER J, M LLER K, BEIN T. Colloidal Suspensions of Functionalized MesoporousSilica Nanoparticles [J]. ACS Nano,2008,2(4):791-9.
    [252] CAUDA V, SCHLOSSBAUER A, KECHT J, et al. Multiple Core-Shell FunctionalizedColloidal Mesoporous Silica Nanoparticles [J]. Journal of the American Chemical Society,2009,131(32):11361-70.
    [253] LI Z, BARNES J C, BOSOY A, et al. Mesoporous silica nanoparticles in biomedicalapplications [J]. Chemical Society Reviews,2012,41(7):2590-605.
    [254] YANG P, GAI S, LIN J. Functionalized mesoporous silica materials for controlled drugdelivery [J]. Chemical Society Reviews,2012,41(9):3679-98.
    [255] ZHANG L, QIAO S, JIN Y, et al. Hydrophobic Functional Group Initiated HelicalMesostructured Silica for Controlled Drug Release [J]. Advanced Functional Materials,2008,18(23):3834-42.
    [256] CHEN Y, CHEN H, SHI J. In Vivo Bio-Safety Evaluations and Diagnostic/TherapeuticApplications of Chemically Designed Mesoporous Silica Nanoparticles [J]. Advanced Materials,2013,25(23):3144-76.
    [257] TANG F, LI L, CHEN D. Mesoporous Silica Nanoparticles: Synthesis, Biocompatibility andDrug Delivery [J]. Advanced Materials,2012,24(12):1504-34.
    [258] TRECCANI L, YVONNE KLEIN T, MEDER F, et al. Functionalized ceramics forbiomedical, biotechnological and environmental applications [J]. Acta Biomaterialia,2013,9(7):7115-50.
    [259] ZHANG H, DUNPHY D R, JIANG X, et al. Processing Pathway Dependence ofAmorphous Silica Nanoparticle Toxicity: Colloidal vs Pyrolytic [J]. Journal of the American ChemicalSociety,2012,134(38):15790-804.
    [260] SOURIS J S, LEE C-H, CHENG S-H, et al. Surface charge-mediated rapid hepatobiliaryexcretion of mesoporous silica nanoparticles [J]. Biomaterials,2010,31(21):5564-74.
    [261] KAEHR B, TOWNSON J L, KALINICH R M, et al. Cellular complexity captured indurable silica biocomposites [J]. Proceedings of the National Academy of Sciences,2012,109(43):17336-41.
    [262] TARN D, ASHLEY C E, XUE M, et al. Mesoporous Silica Nanoparticle Nanocarriers:Biofunctionality and Biocompatibility [J]. Accounts of Chemical Research,2013,46(3):792-801.
    [263] CHEN H, HU T, ZHANG X, et al. One-Step Synthesis of Monodisperse and HierarchicallyMesostructured Silica Particles with a Thin Shell [J]. Langmuir,2010,26(16):13556-63.
    [264] YAMADA H, URATA C, AOYAMA Y, et al. Preparation of Colloidal Mesoporous SilicaNanoparticles with Different Diameters and Their Unique Degradation Behavior in Static AqueousSystems [J]. Chemistry of Materials,2012,24(8):1462-71.
    [265] LIU T, LI L, TENG X, et al. Single and repeated dose toxicity of mesoporous hollow silicananoparticles in intravenously exposed mice [J]. Biomaterials,2011,32(6):1657-68.
    [266] SHEN D, YANG J, LI X, et al. Biphase Stratification Approach to Three-DimensionalDendritic Biodegradable Mesoporous Silica Nanospheres [J]. Nano Letters,2014,14(2):923-32.
    [267] LI X, ZHANG L, DONG X, et al. Preparation of mesoporous calcium doped silica sphereswith narrow size dispersion and their drug loading and degradation behavior [J]. Microporous andMesoporous Materials,2007,102(1):151-8.
    [268] POHAKU MITCHELL K K, LIBERMAN A, KUMMEL A C, et al. Iron(III)-Doped, SilicaNanoshells: A Biodegradable Form of Silica [J]. Journal of the American Chemical Society,134(34):13997-4003.
    [269] BUETTNER K M, VALENTINE A M. Bioinorganic Chemistry of Titanium [J]. ChemicalReviews,2012,112(3):1863-81.
    [270] BUETTNER K M, VALENTINE A M. Bioinorganic Chemistry of Titanium [J]. ChemicalReviews,2011,112(3):1863-81.
    [271] CHEN D H, CAO L, HANLEY T L, et al. Facile Synthesis of Monodisperse MesoporousZirconium Titanium Oxide Microspheres with Varying Compositions and High Surface Areas forHeavy Metal Ion Sequestration [J]. Advanced Functional Materials,2012,22(9):1966-71.
    [272] GUAN B, WANG T, ZENG S, et al. A versatile cooperative template-directed coatingmethod to synthesize hollow and yolk-shell mesoporous zirconium titanium oxide nanospheres ascatalytic reactors [J]. Nano Research,2014,7(2):246-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700