用户名: 密码: 验证码:
厌氧条件下氨氧化、反硫化及其相互作用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在生物法利用硝化-反硝化处理含NH_4~+-N废水工艺中,如硝化在前需回流,如硝化在后需外加电子供体。而生物处理高浓度SO_4~(2-)废水,硫酸盐还原菌(SRB)占有较大生态位,会导致产甲烷效率下降,且SO_4~(2-)的还原产物H_2S和S~(2-)会增加后续工艺的负担并腐蚀处理构筑物和管道。同步脱氮除硫厌氧氨氧化过程的发生,可以避免上述问题。本研究利用ASBR系统和厌氧生物转盘,在厌氧环境以及相同的水力条件下,进行动态试验。并结合不同电子受体的静态试验,研究各种因素对厌氧氨氧化发生和作用效果的影响。试验表明:
     1.启动阶段进水COD 1000mg/L,SO_4~(2-) 200 mg/L,即COD/SO_4~(2-)为5时,ASBR由淘洗后的厌氧颗粒污泥启动,经过60天的时间SO_4~(2-)的去除率达到90%以上,启动成功;经好氧预挂膜的厌氧生物转盘由未经淘洗的厌氧活性污泥启动,50天的时间SO_4~(2-)的去除率就稳定在90%以上。试验证明,好氧预挂膜有利于厌氧生物膜反应器的启动,缩短了启动时间。
     2.系列试验表明:①厌氧系统中,硫酸盐还原作用与COD/SO_4~(2-)比值有关,在碳源缺乏的情况下,反硫化受到一定程度的抑制;②厌氧生物转盘中,可以发生同步脱氮与自养菌作用的硫酸盐还原的厌氧氨氧化现象,影响厌氧氨氧化现象的因素有COD浓度、SO_4~(2-)浓度、NH_4~+-N浓度和反应器类型;③厌氧氨氧化的发生,使由异养菌作用导致SO_4~(2-)还原为-2价硫的反硫化过程受到了完全的抑制,却促使了产甲烷过程的进行。
     3.厌氧系统中,NO_2~--N和NO_3~--N的投加能抑制微生物的反硫化作用。在COD500mg/L,SO_4~(2-)750mg/L的系统中分别投加100mg/L NO_2~--N和100m/L NO_3~--N,SO_4~(2-)去除率由74.9%分别降至15.3%和8.5%,说明NO_2~--N或NO_3~--N的投加对微生物反硫化作用有抑制。
     4.在分别以SO_4~(2-)、NO_2~-、NO_3~-为电子受体的厌氧氨氧化静态效果试验中,各系统中NH_4~--N浓度曲线均体现出较为明显的三个阶段,各阶段对应的主导生物作用为同化、内源代谢和厌氧氨氧化。动力学分析表明:三个系统内衰减系数分别为b_1=0.0006
    
    西安建筑科技大学硕士学位论文
    h一,,b,一0.00088h一,,b3一0.00082h一,。在以NO石为电子受体的2#系统中,NH奋氧
    化量和NO三还原量与NO互生成量的比例系数为0.68:l.犯:0.27。三个系统内基质
    浓度的变化和动力学分析说明,有理由认为三个系统内发生了厌氧氨氧化现象。
In biological wastewater treatment, nitrification-denitrification process is used to removal ammonium. If nitrification was ahead of denitrification, additional electron donor was required. Otherwise wastewater should reflux. In biological treatment of sulfate-rich wastewater, sulfate reduction bacteria are dominant, which can inhibit methanogenic bacteria. The sulphide, production of reducing sulfate, can increase the sequencing process load. The new anaerobic ammonium oxidation(Anammox) process for simultaneous removal of nitrogen and sulphur can avoid these problems. In experiments we operated two kinds of reactors: anaerobic sequencing batch reactor (ASBR) and anaerobic rotating biological contactor(ARBC). The two systems are carried out under anaerobic conditions and the same hydraulic retain time, whose influents are continuous. Combining with static experiments, we study on the factors which affect Anammox. Through these experiments, we found:
    1. In startup period, influent COD 1 000mg/L, SO42- 200mg/L, ASBR start-up was completed in 60 days. The anaerobic rotating biological contactor start-up was completed in 50 days, which had been operated under aerobic conditions. Aerobic pretreatment accelerated start-up of anaerobic biofilm reactor.
    2. Serial experiments indicated: (1)sulfate reduction is relevant to COD/ SO2', at the absence of carbon,desulfidation was inhibited; (2)In anaerobic rotating biological contactor, simultaneous removal of nitrogen and sulphur occurred. The factors which affect the Anammox for simultaneous removal of nitrogen and sulphur are COD, sulfate concentration,ammonium concentration, reactor type and so on; (3)The phenomena' advent inhibited sulfate reduction completely, but accelerated methanogenesis.
    3. In anaerobic systems, NO2-- N or NO3-- N could inhibit sulfate reduction respectively. When raw water COD 500mg/L, SO42- 750mg/L, the efficiency of sulfate removal reduced
    
    
    from 74.9% to 15.3% and 8.5%.
    4. In three systems of Anammox static expriments, they used sulphate, nitrite and nitrate as electron acceptor respectively. Every system ammonium concentration figure has three phases, the corresponding microbial action are assimilation, endogenous respiration and Anammox. The decay constant b1=0.0006 h-1, b 2 =0.00088 h-1, b 3 =0.00082 h-1. In the second system which used nitrite as electron acceptor,the ratio for conversion of ammonium and nitrite to the production of nitrate was 0.68:1.32:0.27. The substrate concentration changes and kinetics analysis indiacted the Anammox occurred in these systems.
引文
1.郑兴灿等,污水除磷脱氮技术.中国建筑工业出版社,1998.
    2.张希衡等,水污染控制工程.冶金工业出版社,1993.
    3.赵宗升等.高浓度氨氮废水的高效生物脱氮途径.中国给水排水,2001,5:24—28.
    4.袁林江等.短程硝化—反硝化生物脱氮.中国给水排水,2000,2:29—31.
    5. Van Dongen U,et al. The SHARON-Anammox process for treatment of ammonium rich wastewater[J]. Wat Sci Tech,2001,44:153-160.
    6. Sen Priyali,Dentel Steven K.Simultaneous Nitrification-denitrification in a Fluidized Bed Reactor[J].Wat Sci Tech, 1998,38(1):247-254.
    7. Rogalla F,et al. Upscaling a Compact Nitrification Removal Process[J]. Wat Sci Tech,1992,26:1067-1076.
    8. Watanable W, et al. Simultaneous Nitrification and Denitrification in Micro-aerobic Biofilm[J].Wat Sci Tech, 1992,26:511-522.
    9. Wartchow D. Nitrification and Denitrification in Combined Activated Systems[J].Wat Sci Tech, 1990,22(7/9): 199-206.
    10.Daigger G T,Littleton H X.Orbal氧化沟同时硝化/反硝化及生物除磷的机理研究。中国给水排水,1999,15(3):1—7.
    11. Jetten Mike S M,et al.Microbiology and application of the anaerobic ammonium oxidation(anammox) process[J].Biotechnology 2001,12:283-288.
    12. Van de Graaf A A,et al. Anaerobic oxidation of ammonium is a biologically mediated process[J].Appl. Environ. Microbiol., 1995,61 (4): 1246~1251.
    13. Jetten Mike S M,et al. The anaerobic oxidation of ammonium[J].FEMS Microbiology Reviews, 1999,22(6):421~437.
    14. Siegrist H,Reithaar S,Koch G, et al.Nitrifiction Loss in Nitrifying Rotating Contactor Treating Ammonium-Rich Wastewater Without Organic Carbon[J]. Wat. Sic. Tech.,1998, 38(8~9):241~248.
    15. Sliekers A O,et al. Completely autotrophic nitrogen removal over nitrite in one single reactor[J]. Wat Res,2002,35:2475-2482.
    16. Schmidt I,et al. Aerobic and anaerobic ammonia oxidizing bacteria competitors or natural partners?[J].FEMS Microbiology Ecology,2002,39:175-181.
    
    
    17.胡纪萃等,废水厌氧生物处理理论与技术.中国建筑工业出版社,2003.
    18.左剑恶等.高浓度硫酸盐有机废水的厌氧生物处理.环境科学,12(3):61~64,1991.
    19.杨景亮,左剑恶等.两相厌氧工艺处理高浓度硫酸盐有机废水的研究.环境科学,16(6):8~11,1995.
    20.郑平等.厌氧氨氧化菌好氧代谢特性的研究.浙江大学学报,26(5):521~526,2000.
    21. Mulder A.Van de Graaf A A.Robertson L A.et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor[J].FEMS Microbiology Ecology.1995, 16:177~184.
    22. Sung S,Dague R R.Laboratory studies on the anaerobic sequencing batch reactor[J].Water Environment Research, 1995,67(3):294~301.
    23. Wirtz R A,Dague R R.Enhancement of granulation and start-up in the anaerobic sequencing batch reactor[J].Water Enviroment Research, 1996,68(5):883~892.
    24.李亚新,田扬捷.高负荷厌氧新工艺——厌氧序批式反应器.中国给水排水,2000,9:24~26.
    25.张希衡等。废水厌氧生物处理工程.中国环境科学出版社,1996.
    26.国家环保局,《水和废水监测分析方法》编委会.水和废水监测分析方法.中国环境科学出版社,1989.
    27. Christian Fux, Marc Boethler, Philipp Huber, Irene Brunner, Hansruedi Siegrist. Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant[J].Biotechnology, 2002 (99):295~306.
    28.袁怡等.厌氧氨氧化过程的研究进展.工业水处理,2003,2:1—5.
    29.何强,龙腾锐等.预挂膜加速厌氧生物膜反应器启动的试验研究.给水排水,2001,5:27—29.
    30.贺延龄,废水的厌氧生物处理.中国环境科学出版社,1998.
    31. Polanco F F, Polanco M F, Fernandez N, Uruena M A, Garcia P A, Villaverde S,Simultaneous organic nitrogen and sulfate removal in an anaerobic GAC fluidized bed reactor[J]. Wat Sci Technol,2001,44(4): 15~22.
    32. Polanco F F, Polanco M F, Fernandez N, Uruena M A, Garcia P A, Villaverde S,New process for simultaneous removal of nitrogen and sulphur under anaerobic
    
    conditions[J].Wat Res,2001,35(4):1111-1114.
    33.[美]R.E.斯皮斯,工业废水的厌氧生物技术.中国建筑工业出版社,2001.
    34. Polanco F F, Polanco M F, Fernandez N, Uruena M A, Garcia P A, Villaverde S,Combining the biological nitrogen and sulfur cycles in anaerobic conditions[J]. Wat Sci Technol,2001,44(8):77~84.
    35.[美]C.P.Leslie Grady Jr.,Glen T.Daigger,Henry C.Lin,废水生物处理,第二版改编和扩充.化学工业出版社,2003.
    36. Marc Strous,Eric Van Gerven,et al. Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation (anammox) process in different reactor configurations[J].Wat Res, 1997,31 (8): 1955~1962.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700