用户名: 密码: 验证码:
金属油罐柔性陶瓷基防腐材料基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
腐蚀给各类金属油罐造成不同程度危害,并带来安全隐患。目前,以有机涂层和防锈漆为主的腐蚀防护方法存在着使用寿命短、维护费用高以及重复涂覆施工工作量大等问题。本论文在系统研究金属油罐在自然环境中腐蚀规律的基础上,提出了“终生隔离”防腐理论,开展金属油罐柔性陶瓷基防腐新材料研究,力求实现“一次施工,长效防腐”的目标,对提高金属油罐防腐水平,改善油料保障质量和确保油库运行安全等具有重要的现实意义和经济意义。
     论文系统研究了金属油罐柔性陶瓷基防腐材料的理想空间结构、固化机理与形成过程。其理想结构是:聚合物与无机胶凝材料在水和多种外加剂的共同作用下,形成一种聚合物-无机胶凝材料互联、贯穿的三维网络独特结构,并且两相之间存在化学键合作用,两种网络在很多点形成较强的黏结,充分发挥复合效应。材料兼具无机材料抗老化性能优异、耐水耐油性好和有机聚合物韧性高、黏结强度大、致密性强等优点。进一步优化材料聚灰比,可得到不同柔韧性能的防腐材料,能满足金属油罐不同部位的防腐要求。
     探讨了金属油罐柔性陶瓷基防腐材料的基本组成,分析了各主要组分、外加剂与材料力学性能和微观结构之间的关系。通过对不同聚灰比下由NE-1型特种硅酸盐水泥与P·O52.5硅酸盐水泥制备的样品力学性能实验研究发现,加入聚合物乳液后,材料在粘附性、耐冲击性和柔韧性等方面均有了显著改善。通过扫描电子显微镜(SEM)对样品断面分析显示,当聚灰比R≤0.2时,材料体系内的水泥水化后形成了彼此相连的空间骨架,聚合物只能附着在水泥水化产物表面,或被成团阻隔,不能形成网络;当R=0.3~0.5时,无机凝胶材料和聚合物形成了互相贯通、相互依托的空间网络,实现了微观上的两相相容;当R≥0.6时,水泥相被封闭在由聚合物相组成的包裹体中,水泥仅以填料的形式存在,此时复合材料的性能主要取决于聚合物。通过红外光谱分析发现,无机胶凝材料与聚合物能够在分子层面有机结合,所形成的复合材料兼具水泥与丙烯酸酯聚合物的红外光谱特征。通过分析消泡剂对材料性能的影响发现,磷酸三丁酯能显著降低材料在制备过程中产生的孔洞,并且添加量一般应小于等于0.2%。研究不同减水剂减水效果及减水剂添加量对材料性能影响结果表明,随着减水剂加入量的提高,其减水效果逐渐增强,当加入量为1%时效果最好,并且当掺加量相同时,聚羧酸减水剂的减水效果最好,降低用水量达到42.5%,并且,加入减水剂以后材料力学性能有了明显提高。
     利用扫描电镜(SEM)分析了不同类型孔隙对金属油罐柔性陶瓷基防腐材料致密性的影响规律,通过优化聚灰比和添加高效减水剂等方法提高了材料致密度。压汞法(MIP)分析发现,当材料内不添加聚合物时,材料的总孔容较大,有害孔隙占绝大部分,材料致密性不高;加入聚合物乳液以后,材料中有害孔的数量降至11.7%,总孔容降至0.0752mL/g,材料致密性增强效果更加明显。扫描电子显微镜研究也表明:当材料不含聚合物或聚合物含量较低时,水泥水化产物呈现棒状和拉丝状疏松分布于材料的内部,网状结构中存在较多的毛细孔隙,结构致密性不强;当聚灰比R≥0.3时,材料中的无机相和有机相交叉连接,形成致密的连续空间结构。同时发现,减水剂对材料致密性有显著的改进作用。加入1%的减水剂后,材料孔隙率可降低16.3%,视密度增加28.3%,总孔容降低53.7%。X-射线衍射(XRD)表征显示,聚合物与水泥之间发生了某种定量的物理或化学反应,使得材料的固化过程得到加强,并且,聚羧酸减水剂的添加对水泥水化反应起到促进作用。
     研究了影响金属油罐柔性陶瓷基防腐材料体积稳定性的主要因素,通过CEA复合膨胀剂实现对材料的体积收缩补偿,通过加入聚丙烯纤维提高了材料的抗微裂纹性能,借助膨胀系数测定仪研究了材料与钢材膨胀/收缩同步一致性。通过分析试样体积变化情况发现,材料在加入CEA复合型膨胀剂后的0~7d内持续膨胀,7d时达到最大,之后出现收缩,90d后基本趋于稳定,当掺入量为10%时,基本可抵消材料固化时产生的体积收缩。研究材料与钢材膨胀/收缩同步一致性发现,随着温度的上升,材料的线膨胀系数与钢材的走势基本一致,并且,随着聚合物含量的增加,一致性有所降低。因此,在满足设计要求的提前下,应尽量控制材料聚灰比在0.5以下。通过研究纤维对材料抗裂性能影响发现,当聚丙烯短纤维加入量在0.8‰~1.0‰时,抗裂效果最好,裂缝降低率可达90%以上。
     通过耐盐、耐酸、耐碱以及耐油实验研究了材料的耐腐蚀性能。结果表明,当聚灰比在0.3~0.5范围时,材料具有非常高的耐NaCl溶液浸泡、耐H2SO4、NaOH侵蚀和耐航空喷气燃料油浸泡能力。较之环氧富锌防锈漆,所研制的金属油罐柔性陶瓷基防腐材料具有更优异的耐腐蚀性能。
     分析了金属油罐柔性陶瓷基防腐材料的老化机理,探讨了复合光稳定剂对材料抗老化性能的影响规律,并通过人工加速老化、户外暴露以及冷热交替等方法研究了材料的耐久性。研究不同类型光稳定剂的抗老化效果发现,光稳定剂能显著提升聚合物的抗老化性能,并且,光稳定剂复合使用优于单独使用时的效果,原因是复合体系产生了协同效应,有利于抗老化作用的有效发挥。同时,材料中水泥等无机组分对紫外光具有很强的屏蔽作用,能阻挡紫外线对聚合物的破坏,起到延缓材料老化的作用。整体上,金属油罐柔性陶瓷基防腐材料抗老化能力优异,优于PVDF氟碳涂料。模拟夏冬两季冷热交替过程发现,防腐材料经过720次的冷热循环未出现开裂、粉化或脱落等不良现象,强度几乎没有发生变化,环境适应性好。两年户外暴露试验发现,未涂覆防腐材料的钢板已严重锈蚀,而被双面包裹的样板,则表现出了非常高的耐久性和抗腐蚀性能。
Organic coatings or anti-rust paints are the main anti-corrosion materials. However, whenthey are used as anticorrosion material of metallic oil tanks, some problems can not be resolvedsuch as short service life, high maintenance charge and difficult repainting construction. Basedon the corrosion principle of metallic oil tanks in natural environment, an anti-corrosion theoryof―life-long isolation‖was put forward in this work. A kind of flexile ceramic-likeanti-corrosion material used on the surface of metallic oil tanks (FCAM) was studied to achievethe goal of "Once coating, long-term service".
     The ideal space structure, curing mechanism and forming process were studiedsystematically in this work. The ideal structure of FCAM was like as the following description.With the effect of water and other additives, a three-dimensional network structure was formed,where the polymer and inorganic material connected and crossed each other. The chemical bondsexisted in each or between the two phases of polymer and inorganic material. So, material withthe network structure showed excellent adhesive property and good composite effect.
     The basic components in FCAM were studied, and the relations between the mechanicalproperty, microstructure and the basic components and additives were also analyzed. Thephysical properties of NE-1and P·O52.5Portland cement with different polymer-cement ratioswere tested in our work. SEM results indicated that a space skeleton instead of network wasformed, and the polymer either attached to the surface of the cement hydration products, or beblocked out of the skeleton and aggregated. Results from Fourier transformed inferredspectrometer indicated that inorganic material could be well combined with the polymeremulsion, and the formed composite material exhibited both features of cement and acrylatepolymers. Tributylphosphate antifoaming agent could reduce the pore numbers formed duringpreparation of the material. Water-reducing agent was another component of the compositematerial. Three types of water-reducing agent were tested to compare their water-reducing effect.Results demonstrated that the effect was obviously improved with the increasing amount. Amongthe three types of water-reducing agent, polycarboxylic acid water-reducing agent could decreasethe water usage and exhibited the best among the three ones. Furthermore, the mechanicalproperty was obviously improved because of the existence of water-reducing agent.
     The effect of different pores on the compactness and density of FCAM was studied. Thecompactness and density could be improved by optimizing the R values and addition ofwater-reducing agent. The properties of material were compared with the mercury injection test(MIP). When there was not any polymer, the material’s pores were the most part of the totalvolume of the material. When the polymer was added into it, the amount of harmful pores decreased to about11.7%, which enhanced the compactness of the material. Those were alsoconfirmed by scanning electron microscopy (SEM). When the R value was0.3, the compactnessof the material was obviously enhanced, because cement hydrate products were surrounded by afilm formed from solidifying of polymer emulsion, resulting them getting together as a networkwhich made the organic and inorganic phase be linked with each other, to form the continuityspatial structure. Furthermore, the water-reducing agent significantly improved the density of thematerial. X-ray diffraction (XRD) characterization showed that some quantitative physical orchemical reaction took place between the polymer and cement, which made the curing process ofthe material been strengthened. The addition of poly carboxylate reducing agent played asignificant role in promoting the cement hydration process.
     The main factors of volume stability of FCAM were studied in this work. The volumeshrinkage compensation could achieve by using of composite expansive agent. The resistance tomicro-cracking performance of FCAM was improved by adding of polypropylene fibers. Theexpansion and contraction synchronization consistency between the material and steel wasmeasured by an expansion coefficient instrument. The experimental results showed that after theexpanding agent was added, the material began to continually expand within the first0~7d. Itstarted to shrink after7d and reached a platform until90d. The expanding and shrinkagesynchronization test indicated that the coefficient of linear expansion of the material wasenhanced with the rise of temperature, which was consistent with that of steel. Results showedthat the resistance to micro-cracking performance exhibited the best with the cracking ratedecreasing90%, when the amount of polypropylene fibers was0.8‰~1.0‰.
     The corrosion resistance of FCAM was studied by salt, acid, alkali and oil resistance tests.Results showed that when the R values were in the range of0.3-0.5, the material has a very hightolerance to NaCl, H2SO4, NaOH and oil solution. Compared with zinc-rich epoxy rust, thedeveloped FCAM had excellent performance and met the design requirements.
     The mechanism of aging of FCAM was studied and the influence of the composite lightstabilizer on anti-aging properties of the material was also analyzed in this work. By artificiallyaccelerated aging, alternating hot and cold outdoor exposure and other methods, the durability ofthe material was estimated.
引文
[1]赵麦群,雷阿丽.金属的腐蚀与防护[M].北京:国防工业出版社,2002:155-156.
    [2]李荣俊.重防腐涂料与涂装[M].北京:化学工业出版社,2013:1-6.
    [3]罗伯奇,吴荫顺.腐蚀工程手册[M].北京:中国石化出版社,2003:1-13.
    [4]王光雍,王海江,李兴濂,等.自然环境的腐蚀与防护[M],北京:化学工业出版社,1997:20-24.
    [5]黎完模,宋玉苏,邓淑珍.涂装金属的腐蚀[M].长沙:国防科技大学出版社,2003,1-5.
    [6]柯伟.中国腐蚀调查报告[M],北京:化学工业出版社,2005:5-18.
    [7] Hubert G. The importance of corrosion prevention for the safety of chemical plants[J]. Chem. Eng.Technol.,1988,11(1):359–365.
    [8]黄建中,左禹.材料的腐蚀性及腐蚀数据[M].北京:化学工业出版社,2003.
    [9]董刚,张九渊.碳钢和低合金钢在酸性环境中的应力腐蚀破裂[J].浙江化工,2002,33(4):5-7.
    [10]金桂兰.催化裂化再生系统设备应力腐蚀裂纹成因分析及对策探讨[J].腐蚀与防护,2000,21(1):22-24.
    [11]龚宏,金桂兰.应力腐蚀开裂及其对策[J].石油化工腐蚀与防护,1999,16(1):17-22.
    [12]孟继安,高洪贵,张勇.重油催化裂化再生器应力腐蚀开裂的修复[J].石油化工设备技术,1999,30(3):39-43.
    [13]程光旭,朱继刚,朱文胜,等.催化裂化再生设备应力腐蚀特征分析[J].2002,31(1):20-23.
    [14]徐滨士,马世宁,刘世参,等.军事装备腐蚀现状及对策[J],涂料工业,2004,34(9):9-12.
    [15]潘连生.抓住时机发展防腐蚀业为节约资源做出新的贡献[J].全面腐蚀控制,2004,18(3):1-2.
    [16]韩文礼.储油罐腐蚀及其防护措施[J].石油工程建设,2010,36(5):41-46.
    [17] Emerson D, Weiss J V, Megonigal J P. Iron-oxidizing bacteria are associated with ferric hydroxideprecipitates (Fe-plaque) on the roots of wetland plants[J]. Appl. Environ. Microbiol.,1999,65(6):2758-2761.
    [18] Christman T K. Relationships between pitting stress and stress corrosion cracking of line pipe steel[J].Corros.,1990,46(6):450-455.
    [19] Prakash T L, Malik A U. Studies on the stress corrosion cracking behavior of some alloys used indesalination plants[J]. Desalination,1999,123(2):215-221.
    [20] Chen Y Y, Liou Y M, Shih H C. Stress corrosion cracking of type321stainless steels in simulatedpetrochemical process environments containing hydrogen sulfide and chloride[J]. Mater. Sci. Eng. A,2005,407(1-2):114-126.
    [21] Tsay L W, Chi M Y, Chen H R, et al. Investigation of hydrogen sulfide stress corrosion cracking of PH13-8Mo stainless steel[J]. Mater. Sci. Eng. A,2006,416(1-2):155-160.
    [22] Uh C K, Kyung M K, Eun H L. Effects of chemical compounds on the stress corrosion cracking of steamgenerator tubing materials in a caustic solution[J]. J. Nucl. Mater.,2005,341(2-3):169-174.
    [23] Shabalovskaya S, Rondelli G, Anderegg J, et al. Effect of chemical etching and aging in boiling water onthe corrosion resistance of nitinol wires with black oxide resulting from manufacturing process[J]. J.Biomed. Mater. Res.,2003,66(1):331-340.
    [24] Hadley R F. The Influence of Sporovibrio desulfuricans on the current and potential behavior of corrodingiron[J]. Nature,1952,169:928-929.
    [25] Ghassem H, Adibi N. Bacterial corrosion of reformer heater tubes[J]. Mater. Perform.,1997,34(3):47-48.
    [26] Flemming H C. Microbiological Influenced Corrosion of Materials[M]. Berlin/Heidelberg: Springer-Verlag,1996:31-38.
    [27] Diósi G, Telegdi J, Farkas G, et al. Corrosion influenced by biofilms during wet nuclear waste storage[J].Int. Biodeterior. Biodegrad.,2003,51(2):151-156.
    [28] Chamritski I G, Burns G R, Webster B J. Effect of iron-oxidizing bacteria on pitting of stainless steel[J].Corros.2004,60(7):658-669.
    [29] Hakkarainen T J. Microbiologically influenced corrosion of stainless steels-What is required for pitting[J].Mater. Corros.,2003,54:503-509.
    [30] Mele M F L, Moreno D A, Ibars J R, et al. Effect of inorganic and biogenic sulfide on localized corrosionof heat-treated type304stainless steel[J]. Corros.1991,47(1):24-30.
    [31] Ismail K H, Jayaraman A, Wood T K, et al. The influence of bacteria on the passive film stability of304stainless steel [J]. Electrochim. Acta,1999,44(26):4685-4692.
    [32] Scott P J B, Davies M. Survey of field kits for sulfate-reducing bacteria[J]. Mater. Perform.,1992,31(1):64-68.
    [33] David S, Robert A, Josef Y, et al. Pitting corrosion of carbon steel caused byiron bacteria[J]. Int.Biodeterior. Biodegrad.,2001,47(2):79-87.
    [34] Werner S E, Johnson C A, Laycoc K N J, et al. Pitting of type304stainless steel in the presence of abiofilm containing sulphate reducing bacteria[J]. Corros. Sci.,1998,40(2-3):465-480.
    [35] Romero M, Duque Z, Rodríguez L, et al. A Study of Microbiologically Induced Corrosion bySulfate-Reducing Bacteria on carbon steel using hydrogen permeation[J]. Corros.,2005,61(1):68-75.
    [36] Romero M F, Duque Z. Microbiological corrosion: hydrogen permeation and sulfate-reducing bacteria[J].Corros.2002,58(5):429-435.
    [37] Little B, Wagner P, Gerchakov S M, et al. The involvement of a thermophilic bacterium in corrosionprocesses[J]. Corros.1986,42(7):533-536.
    [38] Pitonzo B J, Castro P, Amy P S, et al. Microbiologically influenced corrosion capability of bacteriaisolated from Yucca Mountain[J]. Corros.2004,60(1):64-74.
    [39] Dinh H T, Kuever J, Mubmann M, et al. Iron corrosion by novel anaerobic microorganisms[J]. Nature,2004,427:829-832.
    [40] Felder C M, Stein A A. Microbiologically influenced corrosion of stainless steel weld and base metal fouryear field test results[M]. TX: NACE, Corrosion,1994:275.
    [41] Xu C M, Zhang Y H, Cheng G X, et al. Localized corrosion behavior of316L stainless steel in thepresence of sulfate-reducing and iron-oxidizing bacteria[J]. Mater. Sci. Eng. A,2007,443(1-2):235-241.
    [42] Walsh D, Pope D, Danford M, et al. The effect of microstructure on microbiological influencedcorrosion[J]. J. Miner. Met. Mater. Soc.,1993,45(9):22-30.
    [43] Gece G, Bilgi S. Quantum chemical studies of some amino acids on the corrosion of cobalt in sulfuricacid solution[J]. Mater. Corros.,2010,61(2):141–146.
    [44] Starosvetsky, Armon J O, Groysman R A. Fouling of carbon steel heat exchanger caused by ironbacteria[J]. Mater. Perform.,1999,38(1):55-61.
    [45]李铁藩.金属高温氧化和热腐蚀[M],北京:化学工业出版社,2002:5-13.
    [46] Sieradzki K, Friederisdoof F J. Notes on the surface mobility mechanism of stress corrosion cracking[J].Corros. Sci.,1994,36(4):669-675.
    [47] MacDonald D D, McKubre M C H, Urquidi M M. Theoretical assessment of ac impedance spectroscopyfor detecting corrosion of rebar in reinforced concrete[J]. Corros.1988,44(1):2-7.
    [48] Parkins R N, Belhimer E, Blanchard W K. Stress corrosion cracking characteristics of a range of pipelinesteels in carbonate-bicarbonate solution[J]. Corros.1993,49(12):951-96.
    [49] Magnin T, Chieragtti R, Dtra R. Mechanism of brittle fracture in a ductile316alloy during stresscorrosion[J]. Acta Metallurgica et Materialia,1990,38(7):1313-1319.
    [50] Hudgins C M, Glasson R L. Mendizadeh et al. Hydrogen sulfide cracking of carbon steels and alloy steelcorrosion[J]. Corros.1966,22(8):238-251.
    [51] Tsay L W, Chen Y C, Chan S L I. Sulfide stress corrosion cracking and fatigue crack growth of weldedTMCP API5L X65pipe-line steel[J]. Int. J. Fatigue,2001,23(2):103-113.
    [52] Panter J, Viguier B, ClouéJ M, et al. Influence of oxide films on primary water stress corrosion crackinginitiation of alloy600[J]. J. Nucl. Mater.,2006,348(1-2):213-221.
    [53] Qiao G. Influence of heat treatment on stress corrosion resistance in H2S medium of Fv520(B) steel[J].Iron and Steel,1999,34(11):48-50.
    [54]朱日彰.金属腐蚀学[M].北京:冶金工业出版社,1989:1-5.
    [55] Chernov V Y, Makarenko V D, Shlapak L S. Role of hydrogen in the sulfide stress corrosion cracking ofpipeline steels[J]. Materials Science,2003,39(1):144-147.
    [56] Suleiman M, Ragault I, Nevman R. The pitting of stainless steel under a rust membrane at very lowpotentials[J]. Corros. Sci.,1994,36(3):479-486.
    [57]徐永祥,严川伟,高延敏,等.大气环境中涂层下金属的腐蚀和涂层的失效[J],中国腐蚀与防护学报,2002,22(4):249-256.
    [58] Gece G. Theoretical evaluation of the inhibition properties of two thiophene derivatives on corrosion ofcarbon steel in acidic media[J]. Mater. Corros.,2013,64(10):940–944.
    [59] Might J, Duquette D J. Stress corrosion cracking of High-Purity carbon steel in carbonate solution[J].Corros.,1996,52(6):428-43.
    [60] Asahi H, Kushida T, Kimura M, et al. Role of microstructures on stress corrosion cracking of pipelinesteels in carbonate-bicarbonate solution[J]. Corros.,1999,55(7):644-65.
    [61] Tsay L W, Chi M Y, Chen H R. Investigation of hydrogen sulfide stress corrosion cracking of PH13-8Mostainless steel[J]. Mater. Sci. Eng. A,2006,416(1-2):155-160.
    [62] Qiao L J, Luo J L, Mao X. Hydrogen evolution and enrichment around stress corrosion crack tips ofpipeline steels in dilute bicarbonate solution[J]. Corros.1998,54(2):115-12.
    [63] Rao T S, Sariram T N, Viswanathan B, et al. Carbon steel corrosion by iron oxidizing and sulphatereducing bacteria in a fresh water cooling system[J]. Corros. Sci.,2000,42(8):1417-1431.
    [64]卢志明.型压力容器用钢在湿硫化氢环境中的应力腐蚀开裂研究[D].杭州:浙江大学,2003.
    [65] Gu B, Luo J, Mao X. Hydrogen facilitated anodic dissolution type stress corrosion cracking of pipelinesteels in near-neutral pH solution[J]. Corros.1999,55(1):96-10.
    [66] Sato N. Some concepts of corrosion fundamentals[J]. Corros. Sci.,1987,27(5):421-433.
    [67]楚南.腐蚀电化学[M].北京:化学工业出版社,1995:10-11.
    [68]李金桂著.防腐蚀表面工程技术[M].北京:化学工业出版社,2002:465-483.
    [69] Kiyoshi K, Hiroshi H, Yuzuru N. Detecting weld line of steel material through anticorrosion paint by anelectromagnetic induction probe[J]. Electrical Engineering in Japan,2005,153(1):9–16.
    [70] Svetlana S, Gianni R, James A, et al. Comparative corrosion performance of black oxide, sandblasted, andfine-drawn nitinol wires in potentiodynamic and potentiostatic tests: Effects of chemical etching andelectropolishing[J]. J. Biomed. Mater. Res.,2004,69(2):223–231.
    [71]王凤平,张学元,杜元龙,大气腐蚀研究动态与进展[J],腐蚀科学与防护技术,2000,12(2):104-104.
    [72] Nishikata A, Yamashita Y, Katayama H, et al. An electrochemical impedance study on atmosphericcorrosion of steels in a cyclic wet-dry condition[J]. Corros. Sci.,1995,37(12):2095-2069.
    [73]王振尧,于国才,韩薇,3种有色金属在沈阳地区的大气腐蚀规律[J].中国有色金属学报,2003,13(2):367-372.
    [74]曹楚南.腐蚀电化学[M].北京:化学工业出版社,1995:10-11.
    [75]刘恕人,仁晓娟.石油工业材料的腐蚀与防护[M].西安:西北大学出版社,2000:179-193.
    [76] Revie R W. Uhlig’s Corrosion Handbook[M]. Second Edition. New York: John Wiley&Sons Inc.,2000:915-927.
    [77] Feliu S, Morcillo M, Feliu S J. The prediction of atmospheric corrosion from meteorological and pollutionparameters-Ⅰ. annual corrosion[J]. Corrosion Science,1993,34(3):403-414.
    [78] Feliu S, Morcillo M, Feliu S J. The prediction of atomspheric corrosion from meterorological andpollution parameters-II. long-term force34(3):415-422.
    [79] Arroyave C, Lopez F A, Morcillo M. The early atmospheric corrosion stages of carbon steel in acidicfogs[J]. Corrosion Science,1995,37(11):1751-1761.
    [80] Blengino J M, Keddam M, Labbe J P, Robbiola L. ChemInform Abstract: Physico-ChemicalCharacterization of Corrosion Layers Formed on Iron in a Sodium Carbonate-Bicarbonate ContainingEnvironment.[J]. ChemInform.,1995,26(8):103-105.
    [81]熊信勇,许川壁.低合金钢在海水中腐蚀电化学行为的研究[J],海洋科学,1991,5(3):55-58.
    [82] Yokobori A T, Chinda Y, Nemoto T, et al. The characteristics of hydrogen diffusion and concentrationaround a crack tip concerned with hydrogen embrittlement[J]. Corros. Sci.,2002,44(3):407-424.
    [83] Masahito M. Control of welding residual stress for ensuring integrity against fatigue and stress–corrosioncracking[J]. Nucl. Eng. Des.,2007,237(2):107-123.
    [84]陶永忠,陈铤,顾国芳. Ⅰ型水性环氧树脂涂料的研制[J].胶体与聚合物,2001,19(2):19-22.
    [85] Nima M, Zurina M, Nor L F, et al. Anticorrosion epoxy coating enriched with hybrid nanozinc dust andhalloysite nanotubes [J]. J. Appl. Polym. Sci..,2013,130(2):955-960.
    [86] Dexter S C, Duquette D J, Siebert O W, et al. The inhibition of corrosion of S30403stainless steel by anaturally occurring catecholic polymer[J]. Corros.,1991,47(4):30.
    [87] Nima M, Zurina M, Nor L I F, et al. Anticorrosion epoxy coating enriched with hybrid nanozinc dust andhalloysite nanotubes[J]. J. Appl. Polym. Sci.,2013,130(2):955–960.
    [88]傅晓平,龙兰,李岩等.环氧富锌聚苯胺杂化金属重防腐水性涂料的研制[J].表面技术,2009-4,38(2):80-84.
    [89]刘海波,肖瑞厚.提高环氧重防腐涂料耐腐蚀性能的配方设计[J].现代涂料与涂装,2009-10,12(10):17-18.
    [90] Hung W I, Weng C J, Lin Y H, et al. Enhanced anticorrosion coatings prepared from incorporation ofwell-dispersed silica nanoparticles into fluorinated polyimide matrix[J]. Polym. Compos.,2010,31(12):2025–2034.
    [91] Yu Y H, Yeh J M, Liou S J, et al. Preparation and properties of polyimide–clay nanocomposite materialsfor anticorrosion application[J]. J. Appl. Polym. Sci..,2004,92(6):3573–3582.
    [92] Baldissera A F, Freitas D B, Ferreira C A. Electrochemical impedance spectroscopy investigation ofchlorinated rubber-based coatings containing polyaniline as anticorrosion agent[J]. Mater. Corros.,2010,61(9):790–801.
    [93]毛晨峰,王新灵.羟基丙稀酸聚氨酯/金红石型纳米TiO2改性复合材料研究[J].化学建材,2007,23(2):30-32.
    [94]周小勇,樊君凤.高弹性环氧-聚氨酯防腐蚀涂料的研制[J].现代涂料与涂装,2005,(5):11-13.
    [95]李翠景,李茹.环氧聚氨酯耐热重防腐涂料的研制[J].涂料工业,2006,36(11):42-53.
    [96]杜建伟,何鱼游,孙强.抗光老化环氧聚氨酯防腐蚀涂料的研制[J].防腐涂料与涂装特刊,2008,11(3):8-1.
    [97]杨德,郝智平,冯俊忠等.新型环氧改性聚氨酯重防腐涂料的研制和应用[J].现代涂料与涂装,2002(1):11.
    [98]施明德,娄润和,黄克银. HCPE带锈防腐涂料研制及应用[J].防腐蚀,2003(7):26-28.
    [99]王兴智,张小琴.改性氯醚防腐涂料的研究[J].现代涂料与涂装,2009,12(10):4-6.
    [100] Khalifa M A, Batouti M E, Mahgoub F, et al. Corrosion inhibition of steel in crude oil storage tanks[J].Mater. Corros.,2003,54(4):251–258.
    [101] Delanty B, O'Beirne J. Major field study compares pipeline SCC with coatings[J]. Oil&Gas Journal,1992,90(24):39-4.
    [102]张彦军,张丽萍,解蓓蓓,等.氟橡胶防腐蚀涂料的研究[J].涂料工业,2005,35(10):56-57.
    [103]钟鑫,牛潼凤,胡文峰.重防腐用氟碳涂料的研究[J].上海涂料,2008,46(12):9-11.
    [104]王军.钢结构重防腐氟碳涂料配套体系的研究[D].大连:大连海事大学,2009.
    [105]陈中华,石亚军.水性环氧玻璃鳞片重防腐涂料的研制[J].涂料工业,2009,39(6):14-18.
    [106]蓝席建,张连军,冯伟东,等.环氧沥青玻璃鳞片重防腐涂料的研制[J].宁波化工,2009(2):27-30.
    [107]彭金花.环氧玻璃鳞片涂料在重防腐领域中的应用[J].全面腐蚀控制,2009,23(3):32-34.
    [108]李金梅,周朝晖,严文庆.浅谈如何提高玻璃鳞片重防腐涂料的使用效果[J].防腐保温技术,2005,13(4):38-39.
    [109]刘宗晨.银粉漆表面病态及控制[J].上海涂料,2007,45(12):41-43.
    [110]姜英涛.涂料工艺(增订本)第五分册[M].北京:化学工业出版社,1992:68-69.
    [111]上海化学工学院.煤化学和煤焦油化学[M].上海:上海人民出版社,1976:225-231.
    [112]彭志强.高固体分环氧煤焦沥青砂浆涂料的研究与应用[J].探索与研究,2004(1):6-7.
    [113]谌贵宇,杨鼎文.聚氨酯环氧煤焦油沥青漆在埋地金属储罐外防腐中的应用研究[J].天然气工业,2000,(2):62-64.
    [114]胡文阁,彭冰.带锈涂料的应用及发展前景[J].涂料工业,2001,(8):34-37.
    [115]谭臻意.带油带水带锈涂料[J].材料保护,1997,30(12):44-45.
    [116]吴晓芳.国内外带锈涂料的发展概况[J].上海涂料,2000,(1):28-30.
    [117]战凤昌,李悦良.专用涂料[M].北京:化学工业出版社,1994:508-52.
    [118]王树立.稳定型水性带锈涂料的研究[J].黑龙江交通科技,2006(8):5-7.
    [119]苏姣莲,肖鑫,邓继勇.带水带锈涂料的研制[J].涂料与应用,2006,36(2):25-29.
    [120] Rhodes P R. Environment-assisted cracking of corrosion-resistant alloys in oil and gas productionenvironments: A review[J]. Corros.2001,57(11):923-966.
    [121]孙世安,校云鹏,费逸伟等.聚合物水泥基复合材料的防腐性能研究[J].表面技术,2012,41(5):60-63.
    [122]吴人洁.复合材料[M]天津:天津大学出版社,2000:2-3.
    [123] Van G D. Synergies between polymers and cement concrete providing opportunities for sustainableconstruction[J]. Adv. Mater. Res.,2013,687:12-20.
    [124] Ohama Y, Demure K, Satoh M, et al. Pore size distribution and oxygen diffusion resistance ofpolymer-modified mortar[J]. Cem. Concr. Res.,1991,94(21):309-315.
    [125]周昌盛.新型聚合物改性水泥基复合材料的性能与应用[J].建筑技术开发,2000,27(6):32-35.
    [126] Kyung N K,; Jin H K, Dae Y S, et al. Properties of cement paste using mine tailing and polymermaterials[J]. Materials Science Forum,2009,620:623-626.
    [127] Bae K S, Choi S M, Sang G O. Development of Continuous-Type Mixer for Improvement ofWorkability and Quality of Polymer Cement Mortar[J]. Adv. Mater. Res.,2013,687:384-390.
    [128] Kamseu E, Bignozzi M C.; Melo U C., et al. Design of inorganic polymer cements: effects of matrixstrengthening on microstructure[J]. Construction and Building Materials,2013,38:1135-1145.
    [129] Wang R, Shi X X, Wang P M. Recent research on polymer-modified cement mortar in China[J]. Adv.Mater. Res.,2013,687:57-67.
    [130]徐雅君,李秀错,翁亭翼,等.苯-丙型共聚乳液-水泥砂浆共混体系的研究:共混体系的改性机理及微观结构形态[J].北京化工大学学报,1998,25(4):29-32.
    [131] Wang Y S, Xian X P, Xing F, et al. The Study on Preparation of Kaolin-acrylic Super Absorbent Polymerand Its Internal Curing Effect in the Hydration Procedure of Cement Materials[J]. Adv. Mater. Res.,2013,622:276-279.
    [132]买淑芳.混凝土聚合物复合材料及其应用[M].北京:科学技术文献出版社,1996,23.
    [133] Crépy L, Petit J Y,Wirquin E, et al. Synthesis and evaluation of starch-based polymers as potentialdispersants in cement pastes and self leveling compounds[J]. Cem. Concr. Compos.,2014,45:29-38.
    [134] Joachim S. Influence of water-cement ratio and cement content on the properties of polymer-modifiedmortars[J]. Cem. Concr. Res.,1999,29:909-915.
    [135] Maranh o F L, Loh K, John V M. The influence of moisture on the deformability of cement-polymeradhesive mortar[J]. Construction and Building Materials,2011,25(6):2948-2954.
    [136]徐峰,刘林军.聚合物水泥基建材与应用[M],北京:中国建筑工业出版社,2010:36-37.
    [137] Wu K R, Zhang D, Song J M. Properties of polymer-modified cement mortar using pre-envelopingmethod[J]. Cem. Concr. Res.,2002,(32):425-429.
    [138] Brien J V, Mahboub K C, Influence of polymer type on adhesion performance of a blended cementmortar[J]. Int. J. Adhes. Adhes.,2013,43:7-13.
    [139] Brien J V, Mahboub K C. Influence of polymer type on adhesion performance of a blended cementmortar[J]. Int. J. Adhes. Adhes.,2013,43:7-13.
    [140] Feiteira J, Ribeiro M S. TPolymer action on alkali-silica reaction in cement mortar[J]. Cem. Concr. Res.,2013,44:97-105.
    [141] Hojczyk M, Weichold O. Melt-rheological behavior of high-solid cement-in-polymer dispersions[J]. J.Appl. Polym. Sci.,211,191(1):565-71.
    [142] Su Z, Bijien J M, Larbi J A. Influence of polymer modification on the hydration of Portland cement[J].Cem. Concr. Res.,1991,21:535-544.
    [143] Thamboo J A, Dhanasekar M, Yan C. Flexural and shear bond characteristics of thin layer polymercement mortared concrete masonry[J]. Construction and Building Materials,2013,46:104-113.
    [144]李祝龙,梁乃兴.丁苯类聚合物乳液对水泥水化硬化的影响[J].建筑材料学报,1999,(1):6-10.
    [145] Ramli M, Tabassi A A. Effects of polymer modification on the permeability of cement mortars underdifferent curing conditions: a correlational study that includes pore distributions, water absorption andcompressive strength[J]. Construction&Building Materials,2012,28(1):561-570.
    [146]徐雅君.苯-丙型共聚乳液-水泥砂浆共混体系的研究(III)改性剂对水泥砂浆强度的影响[J].北京化工大学学报,1999,26(4):44-46.
    [147]宋俊美,谈慕华,吴科如.聚合物裹砂改性水泥砂浆的性能研究[J].建筑材料学报,1999,4(2):308-313.
    [148] Etsuo Sakai, Jun Sugita. Composite Mechanism of Polymer Modified Cement [J]. Cement and ConcreteResearch,1995,25(1):127-135.
    [149] Ohama Y, Demure K, Satoh M, et al. Marikina. Pore Size Distribution and Oxygen Diffusion Resistanceof Polymer-modified Mortar [J]. Cement and Concrete Research,1991,94(21):309-315.
    [150]李谷云,丁苏华,邓超.聚合物水泥防水涂料标准的制定[J].中国建筑防水,2001,(4):6-9.
    [151]周虎.高性能聚合物水泥基防水涂料的研究[D].武汉:武汉理工大学,2004.
    [152]白木,子荫.我国建筑防水材料发展纵览[J].现代涂料与涂装,2002,(6):13-16.
    [153]董峰亮,葛树高,杨荣俊,等.聚灰比对聚合物水泥防水涂料性能的影响[J].云南大学学报(自然科学版),2002,24(1A):129-132.
    [154]陈立军,陈焕钦.聚合物水泥防水涂料的应用及其乳液的选择[J].防水材料与施工,2004,(10):32-34.
    [155] Fu W, Wang L, Huang J Z. Polymer Cement Waterproof Coating and Its Properties(I)-Flexibility at lowtemperature[J]. Adv. Mater. Res.,2011,263:2418-2421.
    [156]郑高锋.聚合物水泥防水涂料的研制[D].西安:西北工业大学,2006.
    [157]张欣.聚合物水泥类防水涂料综述[J].中国建筑防水,2001,(4):32-35.
    [158]余剑英,董连宝,孔宪明.我国建筑防水涂料的现状与发展[J].防水涂料与施工,2004,(10):28-32.
    [159]夏冬.柔性聚合物水泥防水卷材[J].新型建筑材料,2002,(2):39-42.
    [160]芬兰芳.聚合物水泥防水涂料性能及施工[J].安徽省建筑科学研究院,2011,(3):63-64.
    [161] Kawakami M, Kyu S Y, Yong S K, et al. Rehabilitation of deteriorated agricultural waterways due topolymer cement mortar[J]. Adv. Mater. Res.,2013,687:378-383.
    [162] Lech C, Julia S J. Optimization of polymer-cement coating composition using material model[J]. KeyEngineering Materials,2011,466:191-199.
    [163] Zhao Y L, Xiao Y P, Fei Y W. The application of SEM in the contrast of different polymer-modifiedcement compounds for water-proofing membranes[C].9th International Symposium on test andMeasurement.2011,606-609.
    [164] Wang R, Ma D X, Wang P M. Waterproof performance of polymer-modified cement mortar[J]. Adv.Mater. Res.,2013,687:213-218.
    [165] Mikhail R S, Shater M E, Akkad T M. Studies on Premix Water Soluble Polymer-Cement Pastes-I [J].Cement and Concrete Research,1983,13:207-215.
    [166]严芬英,赵春英.聚合物防水涂料的机理及应用进展[J].沈阳理工大学,2012,(9):25-28.
    [167] Weichold O, Hojczyk M, Adams A, et al. Microstructural analysis during the hydration ofcement-in-polymer coatings[J]. Key Engineering Materials,2011,466:159-166.
    [168]邓超.自闭型聚合物水泥防水涂料[J].新型建筑材料,2006,(8):39-40.
    [169]程玉光.氨基磺酸系高效减水剂的合成复配及工程应用研究[D].重庆:重庆大学,2006.
    [170]熊大玉,王小虹.混凝土外加剂[M].北京:化学工业出版社,2002:3-9.
    [171]周广德,郝明,崔忠诚.聚羧酸系高效AE减水剂与高性能混凝土[J].混凝土,2000,(3):46~50.
    [172]覃维祖.高效减水剂的作用与发展[J].混凝土,1994,135(5):5~8.
    [173] Morita Hiroshi. et al. Additive for Cement Mortar and lord Concrete [P]. JP315994,1991.
    [174] Take 'Takao. et al. Cement Admixture and Hydraulic Cement Composition [P]. JP7048259,1995.
    [175]陈剑雄.高效减水剂[J].化学建材,1994,(1):25-32.
    [176]田娜.不同类型高效减水剂的性能研究[D].北京:北京工业大学,2006.
    [177]张晓梅,邓成刚,等.萘系高效减水剂添加剂的合成及作用机理研究[J].安徽理工大学学报,2004,(1):18-19.
    [178]程玉光.氨基磺酸系高效减水剂的合成复配及工程应用研究[D].重庆:重庆大学,2006.
    [179]李强,赵明哲,李杂智.氨基磺酸系高性能减水剂的合成与性能分析[J].混凝土,2001,(11):25-28.
    [180]李崇智,师海霞,章银洋.氨基磺酸系减水剂的试验研究[J].混凝土,1994,(4):34-38.
    [181]徐兆付.聚羧酸系减水剂的合成及性能研究[D].苏州:江南大学,2008.
    [182]隋同波,王晶.混凝土高效减水剂作用机理新进展[J].中国建材科技,1998,4.
    [183] Kreppelt F, Weibel M, Zampini D. Influence of solution chemistry on the hydration of polished clinkersurfaces-a study of different types of poly carboxylic acid-based admixtures[J]. Cem. Concr. Res.,2002,32(2):187-198.
    [184] Ping G. Investigation of the retarding effect of super plasticizers on cement hydration by impedancespectroscopy and other methods[J]. Cem. Concr. Res.,1994,(24):33-442.
    [185] Hess L F, Vrij A. On the theory of the stabilization of dispersions by adsorbed macromolecules II:Interaction between two flat particles[J]. J. Phys. Chem.,1971,74(14):2094-3103.
    [186]程玉光.氨基磺酸系高效减水剂的合成复配及工程应用研究[D].重庆:重庆大学,2006.
    [187] Evans R, Nipper D H. Steris stabilization II, A generalization of Fisher' s solvency theory [J]. Colloid-Z.u. Z. Polymer,1973,(251):329~336.
    [188]何廷树,詹美洲,宋学峰.从混凝土减水剂作用机理看高效减水剂的合成与复合方法[J].混凝土,2002,(11):24-28.
    [189] Misname T, Izumi T, Kinaki S, et al. Properties of high range Water-reducing concrete with new highrange water-reducing agent [J]. Pro. Japan. Concur. Inst,1992,(14):337~342.
    [190]何廷树,詹美洲,宋学峰.从混凝土减水剂作用机理看高效减水剂的合成与复合方法[J].混凝土,2002,(11):24-28.
    [191] Han S, Cheng X., Ma S, RenT. Light stability improvement of hydrotreated naphthenic rubber oil[J].Energy Sources, Part A: Recovery, Utilization and Environmental Effects,2010,32(14):1326-1333.
    [192]孙世安,彭宇,费逸伟,等.伪装涂料抗老化技术研究.环境装备工程,2005,2(3):36-40.
    [193] Bauer D R. Predicting in-service weather ability of automotive coatings[J]. J. Coating Tech.,2001,69(864):85-91.
    [194] Ranby B, Rabek J F. Photo degradation, photo-oxidation and photo-stabilization of Polymers[M].London:John Wiley and Sons,2000:33-57.
    [195]孙世安,费逸伟,王协旗,等.涂料抗老化技术研究[J].表面技术,2005,34(5):56-58.
    [196] Santos R M, Pimenta A, Botelho G, et al. Influence of the testing conditions on the efficiency anddurability of stabilizers against ABS photo-oxidation[J]. Polymer Testing,2013,32(1):78-85.
    [197] Yang Y C, Sung Y S, Chein C H, et al. Light stabilisers for environmentally friendly coatings[J]. PPCJPolymers Paint Colour J.,2012,202(4):16-18.
    [198] Hodgson J L, Coote M L, Siebert O W, et al. Clarifying the mechanism of the denisov cycle: How dohindered amine light stabilizers protect polymer coatings from photo-oxidative degradation?[J].Macromolecules,2010,43(10):4573-4583.
    [199] Butola B S, Joshi M. Photostability of HDPE filaments stabilized with UV absorbers (UVA) and lightstabilizers (HALS)[J]. J.Engineered Fibers and Fabrics,2013,8(1):61-68.
    [200] Zhang Y T, Xiaoxuan Liu X X, Dong ZX, et al. Study on photostabilization in situ of reactive hinderedamine light stabilizers applied to UV-curable coatings[J]. J. Coat. Technol. Res.,2012,9(4):459-66.
    [201] Liu Z Y, Chen S J, Zhang J. Effect of UV absorbers and hindered amine light stabilizers on thephotodegradation of ethylene-octene copolymer[J]. J. Appl. Polym. Sci.,2013,127(2):35-47.
    [202] Schaller C. Hindered amine light stabilizers in pigmented coatings[J]. J. Coat. Technol. Res.,2009,6(1):81-88.
    [203] Chai R D, Chen, S J, Zhang, J. Combined effect of hindered amine light stabilizer and antioxidants onphotodegradation of poly (vinyl chloride)[J]. Journal of Thermoplastic Composite Materials,2012,25(7):879-894.
    [204] Jin J H, Li G, Yang S L, et al. Effects of light stabilizer on the ultraviolet stability ofpoly-p-phenylenebenzobisoxazole (PBO) fibers[J]. Iranian Polymer Journal (English Edition),2012,21(10):739-745.
    [205] Schaller C, Rogez D Braig A. Organic vs inorganic light stabilizers for waterborne clear coats: A faircomparison[J]. J. Coat. Technol. Res.,2012,9(4):433-441.
    [206] Yamashita H, Banno K; Ohkatsu Y. Active species in hydroperoxide decomposition by hindered aminelight stabilizers and its reactivity with phenol[J]. J. Appl. Polym. Sci.,2006,102(2):1310-1317.
    [207] Simeonov N, Todorova S. Possibility for the light stabilization of polycaproamide for fiber production[J].J. Appl. Polym. Sci.,2006,100(6):4921-4924.
    [208] Diepens M, Gijsman P. Photodegradation of bisphenol A polycarbonate with different types ofstabilizers[J]. Polymer Degradation and Stability,2010,95(5):811-817.
    [209]夏炎.高分子科学简明教程[M].北京:科学出版社,1998:7-23.
    [210]龙军,俞珂,李国鼎.聚合物与水泥水化物间的相互作用[J].混凝土,1995,(3):35-37.
    [211]胡曙光.先进水泥基复合材料[M],北京:科学出版社,2009:45-60.
    [212]沈春林.聚合物水泥防水涂料[M].北京:化学工业出版社,2003:58-59.
    [213]王晶,文寨军,隋同波,等.高贝利特水泥的性能及其水化机理的研究[J].建材发展导向,2004,(1):45-49.
    [214]张亚苗.对硅酸盐水泥技术指标的几点分析[J].山西建筑,2009,12(35):169-170.
    [215]李连生,郭芳芳.硅酸盐水泥的主要性能和应用[J].应用能源技术,2007,(4):10-11.
    [216] Hanna K M, Hemaly S A. Degree of hydration of portland cement pastes with low water/cement ratiosas influenced by curing conditions[J]. J. Appl. Chem.,1970,20(4):117–120.
    [217] Renhe Y, John H S. Hydration Characteristics of Portland Cement after Heat Curing: II, Evolution ofCrystalline Aluminate-Bearing Hydrates[J]. J. Am. Ceram. Soc.,2001,84(5):1113–1119.
    [218]胡曙光.特种水泥[M],武汉:武汉理工大学出版社,2010:10-37.
    [219] Saeed A, Masoud P, Mohammed J E, et al. A Comparative Study Of White Mineral Trioxide AggregateAnd White Portland Cements Using X-ray Microanalysis[J]. Aust. Endod. J.,2004,30(3):89–92.
    [220] Sally A R, Geoffrey W G. Electron Microscopy Study of Ordinary Portland Cement and OrdinaryPortland Cement–Pulverized Fuel Ash Blended Pastes[J]. J. Am. Ceram. Soc.,1989,71(6):1037–1039.
    [221] Dale P B. Three-Dimensional Computer Simulation of Portland Cement Hydration and MicrostructureDevelopment[J]. J. Am. Ceram. Soc.,1997,80(1):3–21.
    [222]王复生.现代水泥生产基本知识[M].北京:中国建材工业出版社,1997:285-347.
    [223]余彰清,李伯耿,潘祖仁.涂料可用交联聚丙烯酸酯乳液的研究进展[J].高分子通报,1999,(2):22-30.
    [224]曹同玉,刘庆普,胡金生.聚合物乳液合成原理性能及应用[M].北京:化学工业出版社,1997:285-347.
    [225]张琦,周国伟.丙烯酸及其酯类乳液聚合条件的研究[J].山东师大学报(自然科学版),2001,16(2):150-153.
    [226] Kurata S, Umemoto K. Characteristics of acrylic acid-modified temperature-responsive polymers andapplication as cement liquid[J]. Dental Materials Journal,2011,30(1):115-120.
    [227]陈瑞.乳液最低成膜温度与聚合物玻璃化转变温度[J].丙烯酸化工与应用,2007,20(1):19-20.
    [228] Chen Y, Zhang C, Wang Y, et al. Study of self-cross linking acryl ate latex containing fluorine[J]. J. Appl.Polym. Sci.,2003,90(13):3609-3616.
    [229]梁治齐,陈博.氟表面活性剂[M].北京:中国轻工业出版社,1998:28-47.
    [230] Lura P, Terrasi P. Reduction of fire spalling in high-performance concrete by means of superabsorbentpolymers and polypropylene fibers: Small scale fire tests of carbon fiber reinforced plastic-prestressedself-compacting concrete[J]. Cem. Concr. Compos.,2014,49:36-42.
    [231] Jin Y J. The Effects of Cement Volume for the Mechanics Performance of Fiber Modified Polymer ResinConcrete[J]. Applied Mechanics and Materials,213,253:478-481.
    [232]马南湘.聚丙烯纤维混凝土抗裂防渗性能研究与施工工法[M],北京:中国建筑工业出版社,2011.
    [233] Paolo J B T, Durao M, Santiago G L, JoséA, et al. Comparison of regional bond strength in root thirdsamong fiber-reinforced posts luted with different cements[J]. J. Biomed. Mater. Res.,2004,83(2):364–372.
    [234] Chakraborty Sumit, Kundu S P, Roy A, et al. Polymer modified jute fibre as reinforcing agent controllingthe physical and mechanical characteristics of cement mortar[J]. Construction and Building Materials,2013,49:214-222.
    [235] Chen W D, Zhong S Y. Influences of Processing and Testing Conditions on Flexural Behavior ofFiber-reinforced Polymer-modified Cement Mortar[J]. Adv. Mater. Res.,2013,687:502-507.
    [236]高耕宇,黄春晓,孙成,酸雨对大气腐蚀临界相对湿度的影响[J].中国腐蚀与防护学报,1990,10(2):183-186.
    [237] Khattab M M, Abdel-Rahman, H A, Younes M M. Durability of gamma irradiated polymer-impregnatedblended cement pastes[J]. Construction&Building Materials,2011,25(2):651-657.
    [238] Chai R D, Chen S J, Zhang J. Synergistic effect of hindered amine light stabilizers/ultraviolet absorberson the plasticized PVC during photo-irradiation[J]. J. Appl. Polym. Sci.,2012,125(5):76-84.
    [239] Shenoy M A, Marathe Y D. Studies on synergistic effect of UV absorbers and hindered amine lightstabilisers[J]. Pigment and Resin Technology,2007,36(2):83-89.
    [240] Luengo C, Allen N S, Wilkinson A, et al. Synergistic profiles of chain-breaking antioxidants withphosphites and hindered amine light stabilizers in Styrene-Ethylene-Butadiene-Styrene (SEBS) blockcopolymer[J]. J. Vinyl and Additive Technol.,2006,12(1):8-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700