用户名: 密码: 验证码:
切圆煤粉锅炉低NO_x燃烧技术的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以煤为主的能源结构在我国相当长一段时期内将长期存在,煤粉锅炉产生的大量氮氧化物是当前亟待解决的环境污染问题。本文针对我国目前煤粉锅炉的主流炉型和氮氧化物排放浓度现状,结合国家和地方日趋严格的排放标准以及发展趋势,分析研究系列化低NOx燃烧技术,以满足不同阶段相应的排放标准,为我国分阶段实施氮氧化物减排提供解决方案。本文以数值模拟、实验研究及化学动力学分析方法为研究手段,对整体空气分级、燃料再燃及高级再燃这一系列低NOx燃烧技术进行全面深入的研究,揭示脱除NOx的基本机理、提出对现有煤粉锅炉实施低NOx燃烧技术改造的设计方法和原则、总结分析先进低NOx燃烧技术的影响因素并对还原NOx所需的反应机理模型进行了探讨。
     本文根据NOx生成机理分析了低NOx煤粉燃烧器的各种影响因素及优化原则,并以具有代表性的煤粉锅炉为例,对整体空气分级低NOx燃烧技术中的关键因素进行深入分析。针对国家和地方新的NOx排放标准,得出整体空气分级低NOx燃烧技术是有效而低成本的改造现有电站煤粉锅炉的先进技术方案,并采用数值模拟进行改造设计和优化运行。
     面对更严格的NOx排放标准,可在整体空气分级基础上,采用燃料再燃低NOx燃烧技术进一步降低NOx排放。本文对以天然气和石油气为再燃燃料的燃料再燃低NOx燃烧技术进行了研究,研究结果表明:对于天然气再燃,HCCO、CH2及CH3自由基是还原NO的主要活性物质,反应温度及OH、H、O基团是生成这些活性物质的关键因素;在相同的条件下石油气再燃还原NO的效果明显优于天然气,主要原因是石油气再燃还原NO过程中大量HCCO自由基及H、OH活性基团参与反应。
     在燃料再燃的基础上,采用高级再燃低NOx燃烧技术可实现与SCR同等级的大幅度降低NOx排放的效果。反应时间、反应温度、再燃区过量空气系数及喷入氨剂量与当地NO化学当量比NSR等是高级再燃还原NO的主要影响因素;为模拟高级再燃条件下NO沿反应器长度的分布规律,尝试采用GRI-SNCR反应机理模型,得到实验验证,并用此反应机理模型对高级再燃进行深入的机理分析;从反应物的生成率分析可以看出,在还原性气氛下,NH2是还原NO的主要活性基团,在氧化性气氛下,NH2大部分氧化为HNO,最终生成NO,所以在高级再燃中NH2自由基与NO的反应是强烈依赖于气氛的竞争反应,既可以将NO还原为N2,也可以自身氧化为NO。
In China, coal-dominated energy structure would exist for a long period of time. Nitrogen oxides produced by coal-fired boilers leads to serious environmental pollution, which have to be solved urgently. In this paper, a serious of low NOx combustion technologies is presented, by taking account of China's main coal-fired boiler furnace and the concentration of nitrogen oxides emission, combined with increasingly stringent emission standards as well as the development trend for both state and local government. These technologies will meet different stages of the corresponding emission standards and provide solutions for China's incremental stages for the implementation of the nitrogen oxide emission reduction. Numerical simulation, laboratory research and chemical kinetics analysis methods are used to conduct a comprehensive in-depth study on a series of low-NOx combustion technology such as the separated over fire air, fuel reburning and advanced reburning. Mechanism of NOx reduction, the design methods and principles for low NOx technologic l upgrading on existed coal-fired boiler are presented. In addition, advanced low-NOx combustion technology and the impact of the factors required for NOx reduction reaction mechanism model are discussed.
     Based on the mechanism of NOx production, a variety of factors and optimization principle are analyzed. A representative coal- fired boiler is set as a case, key factors on separated over fire air low NOx combustion technology is analyzed in deep. According to the new NOx emissions standards for state and local, it is proposed that SOFA is an effective and low-cost transformation of technologic l upgrading on existed coal-fired boiler, hence, numerical simulation method for the design and modification of the optimal operation is provided.
     Facing to the more stringent NOx emissions standards, use low-NOx reburning fuel combustion technology on overall classification on the basis of the air will further reduce NOx emissions. Different fuels for reburning are studied such as natural gas, petroleum gas and biomass gasification gas with tar. Results show that: For natural gas reburning, HCCO, CH2 and CH3 radical is the main active substance on NO reduction. Reaction temperature and OH, H, O are key factors for a group of active substances production; Under the same conditions, NO restore by petroleum gas reburning are better than natural gas reburning. This is because a large number of free radicals HCCO and H, OH active groups involved in the reaction during petroleum gas reburning for NOx reduction.
     On the basis of fuel reburning, advanced reburning can achieve the same level of a significant reduction as SCR does in NOx emissions. Reaction time, reaction temperature, excess air ratio in reburning zone and NSR, are the main factors for NO reduction; In order to simulate the NO distribution discipline along the length of reactor, GRI-SNCR reaction mechanism model is been tried and proved by experiment. Then, this reaction mechanism can be used to carry out in-depth analysis of advanced reburning; It can be seen from reactant generation rate analysis: Under rich fuel condition, NH2 is the main activity radical for NO reduction. Under oxidizing atmosphere, most NH2 are oxidized to HNO, and finally to NO. Therefore, during advanced reburning, reaction between NH2 radical and NO is competitive reaction strongly dependent on the atmosphere, NH2 can reduced NO to N2, and also be oxidized to NO.
引文
[1] 2007年国民经济和社会发展统计公报,国家统计局,2007
    [2]周风起,中国中长期能源战略,北京:中国计划出版社,1999
    [3]能源、资源与海洋发展科技问题研究专题组,能源、资源与海洋发展科技问题研究专题报告[R],北京,2004
    [4]王志轩,中国电力工业的发展及火电厂氮氧化物排放控制现状及对策[R],中电联环保与资源节约部,北京,2005.7
    [5]钟一俊,孙可,周浩.火力发电厂排污收费新体系的探讨.技术经济综述. 2007
    [6] Miller J.A.; Bowman C.T., Mechanism and Modeling of Nitrogen Chemistry in Combustion, Prog. Energy Combust. Sci., 15:287-338, 1989 (142)
    [7] Zeldovich J.B., The Oxidation of Nitrogen in Combustion and Explosions, Acta Physicochimica URSS, 21(4):577-628,1946
    [8] Glassman I., Combustion, Academic Press, San Diego CA, 3rd edn., 1996
    [9] Fenimore C.P., Formation of Nitric Oxide in Premixed Hydrocarbon flames, Proceedings of the Combustion Institute, 13: 373-378,1970
    [10] Haynes D.S.; Iverach D.; Kirov N.Y. , The Behavior of Nitrogen Species in Fuel Rich Hydrocarbon Flames, Proceedings of the Combustion Institute, 15: 1103-1112,1974
    [11] Eberius K.H.; Just T., Atmospheric Pollution by Jet Engines, AGARD Conf. Proc. AGARD-CP-125, pp.16-19, 1973
    [12] Hayhurst A.N.; Vince I.M., Nitric Oxide Formation from N2 in Flames: The importance of Prompt NO, Prog. Energy Combust. Sci., 6: 35, 1980
    [13] Axworthy A.E.; Schneider G.R.; Shuman M.D.; Dayan V.H., Chemistry of Fuel Nitrogen Conversion to Nitrogen Oxides in Combustion, in Report EPA 600/2-76-034, 1976
    [14] Bowman C.T., Chemistry of Gaseous Pollutant Formation and Destruction in: Fossil Fuel Combustion, edited by Bartok W.; Sarofim A.F., pp. 215-260,John Wiley & Sons, 1991
    [15] Houser T.J.; Hull M.; Always R.M.; Biftu T., Kinetics of Formation of HCN during Pyridine Pyrolysis, Int. J. Chem. Kinet ., 12:569,1980
    [16] Bowman C.T.; Hanson R.K.; Davison D.F.; Gardiner W.C.J.; Lissinsky V.; Smith G.P.; Golden D.M.; Frenklach M.; Goldenberg M., GRI-Mech, http://www.me.berkeley.edu/gri_mech,2000
    [17] Glarborg P.; Alzueta M.U.; K. D.J.; A. M.J., Kinetic Modeling of Hydrocarbon/Nitric Oxide Interactions in a Flow Reactor, Combustion and flame, 115(1):1-27, 1998
    [18] Warnatz J,; Maas U.; Dibble R.W., Combustion, Springer Verlag, 3rd edn., 2001
    [19]毛健雄,毛健全,赵树民编著,煤的清洁燃烧,科学出版社,1998;
    [20] Johnson G.M.; Smith M.Y., Emission of Nitrogen Dioxide from a large Gas Turbine Power Station. Combustion Science and Technology,19:67,1978
    [21] Merryman E.L.; Levy A., Nitrogen Oxide Formation in Flames: The Roles of NO2 and Fuel Nitrogen, Proceeding of the Combustion Institute, 15:1073-1083, 1974
    [22] Bowman C.T., Control of combustion-Generated Nitrogen Oxide Emissions: Technology Driven by Regulation, Proceeding of the Combustion Institute, 24: 859-878,1992
    [23] Chen J.C.; Niksa S.; Castagnoli C., Coal Devolatilization During Rapid Transient Heating,Energy and Fuels, 6:264-271,1992
    [24] Bassilakis R.; Zhao Y.; Solomon P.R.; Serio M.A., Sulfur and Nitrogen Evolution in the Argonne Coals- Experiment and Modeling, Energy and Fuels, 7:710-720,1993
    [25] Beck N.C.; N. H.A., The Early Stage of the Combustion of Pulverized Coal at High Temperatures II: Measurements of the Particle Size and Composition of the Resulting Char, Combustion and Flame, 80:170-182,1992
    [26] Solomom P.R.; Colket M.B., Evolution of Fuel Nitrogen in Coal Devolatilisation, Fuel, 57:749-755, 1978
    [27] Baxter L.L; Mitchell R.E.; Fletcher T.H.; Hurt R.H.; Nitrogen Release during Coal Combustion, combustion and flame, 90:174-184, 1992
    [28] Pershing D.W.; Wendt J.O.L., Pulverizered Coal Combustion: The Influence of Flame Temperature and Coal Composition on Thermal and Fuel NOx. Proceedings of the Combustion Institute, 16:389-399,1976
    [29] Pohl J.H.; Sarofim A.F., Devolatilization and Oxidation of Coal Nitrogen, Proceedings of the Combustion Institute, 16:491-501,1976
    [30] Wendt J.O.L., Fundamental Coal Combustion Mechanisms and Pollutant Formation in Furnaces, Prog. Energy Combustion Science, 6:201-222, 1980
    [31] Coda B.; Kluger F.; Spelithoff H.; Hein K., Coal-Nitrogen Release and NOx Evolution in Air-Staged Combustion, Energy and Fuels, 12:1322-1327, 1998
    [32] De Soete G.G.; Heterogeneous N2O and NO Formation from Bound Nitrogen Atoms During Coal Char Combustion, Fuel, 23:1257-1264,1990
    [33] Visona S.P.; Stanmore B.R.; Modeling NOx Release from a Single Coal Particle. II. Formation of NO from Char Nitrogen, Combustion and flame, 105(1):92-103, 1996
    [34] Glarborg P.; Kristensen P.G.; Dam-Johansen K.; Alzueta M.U.; Millera A.; Nitric Oxide Reduction by Non-Hydrocarbon Fuels. Implications for Reburning with Gasification Gases, Energy and Fuels, 14(4):828-838, 2000
    [35] Miller J.A.; Branch M.C.; Kee R.J., A Chemical Kinetic Model for the Selective Reduction of NO by NH3, Combustion and Flame, 43:81,1981
    [36] Chen S.L.; Lyon R.K.; Seeker W.R., Environ. Prog., 10:182-185
    [37] Alzueta, M. U.; R?jel H.; Kristensen P. G.; Glarborg P.; Dam-Johansen K., Laboratory Study of the CO/NH3/NO/O2 System: Implications for Hybrid Reburn/SNCR Strategies, Energy and Fuels, 11(3): 716-723, 1997
    [38] Levy M.R.; Chan L.K.; Sarofim A.F.; Beer J.M., NO/Char Reaction at Pulverzed Coal Flame Conditions, Proceedings of the Combustion Institute, 18:111-120,1980
    [39] Chen S L; Core J A; Heap M P; Kramlich J C; McCarthy J M;Pershing D W. , 1988 22nd Int. Symp. on Combustion (Pittsburgh, PA, 1988) pp 1135
    [40] Zamansky; V.M. Ho; L. Maly; P. M.; Seeker, W. R., 1997. Reburning promoted by nitrogen and sodium-containing compounds. In: 26th Symposium (International) on Combustion. The Combustion Insitute, Pittsburgh, PA, pp. 2075–2082.
    [41]聂其红,吴少华,孙绍增,秦裕琨,国内外煤粉燃烧低NOx控制技术的研究现状,哈尔滨工业大学学报Vol. 34, No.6 2002.12
    [42]韩才元等,煤粉燃烧.北京:科学出版社,2001. 649~652;
    [43]曾汉才朱全力,大型煤粉锅炉煤粉稳燃技术对NOx生成影响的研究,湖北电力,2002.6,Vol.26(3)
    [44] Okigami.; etal,. Three Stage Pulverized Coal Combustion System for In-furnace NOx Reduction, 1985 Joint EPRI/EPA Symposium on Stationary Combustion NOx Control, Boston MA,1985
    [45] S. Miyamae; H. Ikebe; K. Makino; K. Suruki; J. Mogi; Evaluation of In-Furnace NOxx Reduction , 1985 Joint EPRI/EPA Symposium on Stationary Combustion NOx Control, Boston MA,1985
    [46] Takahashi Y. et al., Development of“MACT”IN-Furnace NOx Removal Process for Steam Generators, 1982 Joint EPRI/EPA Symposium on Stationary Combustion NOx Control, Dallas, Texas, November 1-4, 1982
    [47] Joseph G. De Angelo, An Evaluation of Micronized Coal Reburning for Nitrogen Oxide Emissions Reduction in Pulverized Coal-Fired Electric Utility Boilers, Ph.D Thesis, State University of New York, 2001.4
    [48]黄少鹗,意大利治理火电厂氮氧化物排放的技术措施,能源技术,Vol.23, No.6, 2002.12
    [49] Bruce W. Lani; Thomas J. Feeley; Charles E. Miller; Barbara A. Carney; James T. Murphy, DOE/NETL’s Advanced NOx Emissions Control Technology R&D Program, Power Engineering 2006.11
    [50] Bruce W. Lani; Thomas J. Feeley; James T. Murphy; Lindsay Green, A review of DOE/NETL’s Advanced NOx Control Technology R&D Program for Coal-Fired Power Plants, DOE/NETL NOx R&D Program Review,2005.3
    [1]毛健雄等.煤的清洁燃烧.北京:科学出版社,1998. 209~286;
    [2] Mereb, J.B.; Wendt, J.O.L. Fuel 73, No.9: pp 1020-1026(1994)
    [3] Ulrich Greul; Helmut Rudiger,et al. NOx Controlled Combustion in a bench scale test facility, 21st Int. Techn. Conf. on Coal Utilization & Fuel Systems, March 18-21 1996, Clearwater, Florida, USA
    [4] Chen S.L.;Heap M.P. et al. Bench Scale NO-Emission Testing of World Coals: Influence of Partical Size and Temperature, Joint Symp. On Stationary Combustion NOx Control, Palo Alto 1982
    [5] H. Maier; H. Spliethoff; A. Kicherer; A. Fingerle; K.R.G. Hein,Effect of coal blending and particle size on NOx emission and burnout. Fuel, Volume 73, Issue 9, September 1994, Pages 1447-1452
    [6] De Soete G. G. Heterogeneous N2O and NO formation from bound nitrogen atoms during coal char combustion. In: Proceedings of 23rd Symposium (International) on Combustion. Pittsburgh:The Combustion Institute, 1990, 1257
    [7] Edelman R B. Harsha P T. Laminar , turbulent gas-dynamics in combustors - current status. Progress in Energy and Combustion Science 1978, 4(1): 1~62
    [8] Bowman C T. Kinetics of nitric oxide formation in combustion processes. In: Proceedings of the Fourteenth Symposium (International) on Combustion. Pittsburgh: The Combustion Institute, PA,1973, p. 270
    [9] Harding N S. Hedman P O Nitrigen pollutant formation in a pulverized coal combustion /AIChHJ, 1982,28,573
    [10]钟北京,徐旭常燃烧过程中NOx形成的数值模拟,燃料科学与技术,Vol 1.1995 NO.2
    [11] Bassilakis R. Zhao Y.; Solomon P.R.; Serio M.A. Sulfur and Nitrogen Evolution in the Argonne Coals- Experiment and Modeling, Energy and Fuels, 7:710-720, 1993
    [12] Beck N. C. N.H.A. The early stages of the combustion of pulverized coal at high temperatures II: Measurements of the particle size and composition of the resulting char, combustion and flame, 80: 170-182,1990
    [13] Solomn P.R.; Colket M.B. Evolution of fuel nitrogen in coal devolatilisation, Fuel, 57:749-755,1978
    [14]曾汉才朱全力,大型煤粉锅炉煤粉稳燃技术对NOx生成影响的研究,湖北电力,2002.6,Vol.26(3)
    [15]韩才元等,煤粉燃烧.北京:科学出版社,2001. 649~652;
    [16]安恩科徐通模,水平浓淡煤粉燃烧器的研究,热能动力工程,1999.1,Vol.14(79)
    [17]聂其红,吴少华等,国内外煤粉燃烧低NOx控制技术的研究现状,哈尔滨工业大学学报,2002,12, Vol.34 (6)
    [18] J.O.L Wendt ,Mechanisms governing the formation and destruction of NOx and other nitrogenous species in low NOx coal combustion systems, Combut. Sci. and Tech.,1995, Vol.108, pp. 323-344
    [19] M.Tayyeb Javed; Naseem Irfan; B.M. Gibbs, Control of combustion-generated nitrogen oxides by selective non-catalytic reduction, Journal of environmental management 83(2007) 251-289
    [20] Pillippe Dagaut; Peter Glarborg; Maria U. Alzueta, The oxidation of hydrogen cyanide and related chemistry, Process in energy and combustion science,
    [21] Rafael Bilbao; Maria U. Alzueta; Angela Millera, Experimental Study of the Influence of the Operating Variables on Natural Gas Reburning Efficiency. Indusry Engineering Chemical Research. 1995,34, 4531-4539
    [22]高歌,宁晃.沙丘驻涡火焰稳定性的理论及试验研究.工程热物理学报,1982. 3(1)
    [23]宁晃.燃烧室气动力学基础.北京:科学出版社, 1980. 246~257
    [24]许晋源,徐通模燃烧学,北京:机械工业出版社,1979
    [25]韩才元,张德超,周炳莲信丰电厂65t/h锅炉钝体燃烧器试验研究电力技术, 1983.2:40~54
    [26] Hartmut Spliethoff; Ulrich Greul; Helmut Rudiger; Klaus R. G. Hein , Basic effects on NOx emissions in air staging and reburning at a bench-scale test facility, Fuel Vol. 75, No. 5, pp. 560-564, 1996
    [27] B. Coda, F. Kluger; D. Fortsch, H. Spliethoff; K.R.G Hein, Coal-nitrogen release and NOx evolution in air-staged combustion, Energy & fuels, 1998,12. 1322-1327
    [28]齐宏,姚洪,范耀国,袁建伟高浓度煤粉燃烧过程中氮氧化物生成的研究,热能动力工程,1997.9 Vol.12(5)
    [29] Arun C. Bose; Karin M Dannecker; J.O.L.Wendt, Coal composition effects on mechanisms governing the destruction of NO and other nitrogenous species during fuel-rich combustion, energy & fuels 1988,2,301-308
    [30] Jamal B. Mereb; J.O.L. Wendt, Air staging and reburning mechanisms for NOx abatement in a laboratory coal combustor, Fuel 1994 Vol.73(7)
    [31] P. Glarborg; P. G. Kristensen; K. Dam-Johansen, Nitric oxide reduction by non-hydrocarbon fuels implications for reburning with gasification gases, Energy & Fuels 2000, 14, 828-838
    [32]中国动力工程学会主编,火力发电设备技术手册(第一卷:锅炉),北京,机械工业出版社,2000.3
    [33]路继根,邱建荣等用热重法研究我国四种煤显微组分的燃烧特性,燃料化学学报, 1996.8 Vol.24(4)
    [1] Party M. ; Engel G., Formation of HCN by the action of nitric oxide on methane at atmospheric pressure. 1. General conditions of formation. Compt. Rend., 1950, 231, 1302-1304.
    [2] Drummond I. J., Shock induced reactions of methane with nitrous and nitric oxides. Bull. Chem. Soc. Japan, 1969, 42, 285.
    [3] Wendt J O L; Sternling C V ; Matavich M A. 1973 Int. Symp. On Combustion (Pittsburgh, PA, 1973) pp 897-904.
    [4] Takahashi Y.; Sakai M.; Kunimoto T.; Ohme S.; Haneda H.; Kawamura T. ; Kaneko S.; in Proceedings of the 1982 Joint Symposium on Stationary NOx Control. EPRI Report No. CS-3182,1,July(1983).
    [5] Babcock & Wilcox Company, Demonstration of coal reburning for cyclone boiler NOx control. Comprehensive Report to Congress Clean Coal Technology Program, DOE/FE-0157, February(1990).
    [6] Joseph G. De Angelo, An Evalution of Micronized Coal Reburning for Nitrogen Oxide Emissions Reduction in Pulverized Coal-Fired Electric Utility Boilers, Ph.D Thesis, State University of New York, 2001.4
    [7] Bilbao R; Millera A, Alzueta M U. Influence of the Temperature and Oxygen Concentration on NOx reduction in the Natural Gas Reburning Process. Industrial and Enginnering Chemistry Research. 1994, 33, 2846-2852
    [8] Wendt, J. O. L., Mechanisms governing the formation and destruction of NO and other nitrogenous species in low NO coal combustion systems. Combust. Sci. Tech., 1995,108, 323-344.
    [9] Maly, P. M.; Zamansky V. M.; Ho L. ; Payne R., Alternative fuel reburning.). Fuel, 1999, 78(3): 327-334.
    [10] Alzueta M U; Glarborg P; Kim D J. Low Temperature Interactions between Hydrocarbons and Nitric Oxide: an Experimental Study. Combustion and Flame 1997, 109, 25-36
    [11] Bilbao R; Alzueta M U; Millera A et al. Simplified Kinetic Model of the Chemistry in the Reburning Zone Using Natural Gas. Industrial and Engineering Chemistry Research, 1995,34,4540-4548
    [12] Hartmut Spliethoff; Ulrich Greul; Helmut Rudiger ; Klaus R. G. Hein , Basic effects on NOx emissions in air staging and reburning at a bench-scale test facility, Fuel Vol. 75, No. 5, pp. 560-564, 1996
    [13] P. G. Kristensen; P. Glarborg; K. Dam-Johansen, Nitrogen Chemistry During Burnout in Fuel-Staged Combustion. Combustion And Flame 107:211-222 (1996)
    [14] R. Bilbao; M. U. Alzueta; A. Millera ; Valentin Cantin, Experimental study and modeling of the burnout zone in the natural gas reburning process, Chemical Engineering Science, Vol. 50, No. 16, pp. 2579-2587, 1995
    [15] Dagaut P.; Cathonnet M.; Rouan, J. P.; Foulatier R.; Quilgars A.; Boettner J. C.; Gaillard F.; James A., J Phys E: Instrum 1985;19:207.
    [16] U. Greul; H. Spliethoff; H.-C. Magela; U. Schnell et al. Impact of temperature and fuel-nitrogen content on fuel-staged combustion with coal pyrolysis gas, Symposium (International) on Combustion Volume 26, Issue 2, 1996, Pages 2231-2239
    [17] H. Rüdiger; U. Greul; H. Spliethoff and K.R.G. Hein, Pyrolysis gas of biomass and coal as a NOx-reductive in a coal fired test facility, Combust. Sci. Tech., 1996, 21:299-315
    [18] Zarnescu V. and Pisupai S. V., Effect of mixing model and mixing characteristics on NOx reduction during reburning, Energy&Fuels, 2001, 15:363-371
    [19] Smith G P;Golden D M; Frenklach M; Moriarty N W; Eiteneer B; Goldenberg M; Bowman T; Hanson R K; Song S; Gardiner W C; Lissianski V V; Qin Z W. http://www.me.berkeley.edu/gri_mech/
    [20] P. Kilpinen;P. Glarborg; M. Hupa, Reburning chemistry: a kinetic modeling study. Ind. Eng. Chem. Res.; 1992; 31(6); 1477-1490
    [21] J. A. Miller; C. T. Bowman, Mechanism and modeling of nitrogen chemistry in combustion. Progress in energy and combustion science, 1989,15 :287-337
    [22] P. Glarborg; M. U. Alzueta; K. Dam-Johansen; J. A. Miller, Kinetic Modeling of Hydrocarbon/Nitric Oxide Interactions in a Flow Reactor. Combustion And Flame 115:1–27 (1998)
    [23] Dagaut E; Lecomte E; Chevailler S et al, Experimental and detailed kinetic modeling of nitric oxide reduction by natural gas blend in simulated reburning conditions [J]. Combustion science and technology,1998,139(1):329-363
    [24] http://www.chem.leeds.ac.uk/combustion/combustion.html[EB/OL]
    [25] http://homepages.vub.ac.be/`akonnov/science/mechanism/main.html[EB/OL]
    [26] http://www.abo.fi/fak/tfk/cmc/research/r_schemes.html[EB/OL]
    [27]王海峰,陈义良,陈华蕾等. CH4/O2/N2层流扩散火焰瞬态响应特性数值模拟.计算物理,2006,32,193-198
    [28]杨锐,王应时.燃气轮机燃烧室效率模化试验中压力指数的研究.中国工程科学,2003,5,83-87
    [29] Guo H S; Liu F S; Smallwood G J. A Numerical Study on NOx formation in Laminar Counter flow CH4/Air Triple flames. Combustion and Flame, 2005, 143(3), 282-298
    [30] Barlow R S; Karpetis A N; Frank J H et al. Scalar Profiles and NO formation in Laminar Opposed-flow Partially Premixed Methane/Air Flames. Combustion and Flame, 2001, 127(3), 2102-2118
    [31] Kilpinen P; Hupa M; Aho M; H?m?l?inen J. In Proceedings of the 7th International Workshop on Nitrous Oxide Emissions, Apr 21–23, 1997; Wieser, P., Ed.; Bergische Universit?t Gesamthochschule Wuppertal: Cologne, Germany, April 21–23, 1997
    [32] Li J; Zhao Z; Kazakov A; Dryer F L. Comprehensive kinetic mechanisms for C1 species combustion. Proc. Combust. Inst., 2004, 30
    [33] Okigami.,etal,. Three Stage Pulverized Coal Combustion System for In-furnace NOx Reduction, 1985 Joint EPRI/EPA Symposium on Stationary Combustion NOx Control, Boston MA,1985
    [34] S. Miyamae; H. Ikebe; K. Makino; K. Suruki; J. Mogi, Evalution of In-Furnace NOx Reduction , 1985 Joint EPRI/EPA Symposium on Stationary Combustion NOx Control, Boston MA,1985
    [35] Takahashi Y. et al., Development of“MACT”IN-Furnace NOx Removal Process for Steam Generators, 1982 Joint EPRI/EPA Symposium on Stationary Combustion NOx Control, Dallas, Texas, November 1-4, 1982
    [36]李玉江;吴涛,德国燃煤电厂氮氧化物的控制技术,环境科学研究, Vol. 13 ,No. 4 ,2000
    [37]黄少鹗,意大利治理火电厂氮氧化物排放的技术措施,能源技术,Vol.23, No.6, 2002.12
    [38]文军;齐春松;王月明等,细煤粉再燃技术在我国燃煤锅炉上的首次工程应用,热力发电. 2004(08)
    [39] Kee R J, Rupley F M, Miller J A, et al. Chemkin Collection, Release 3.7.1, Reaction Design, Inc., San Diego, CA(2003)
    [40] J.O.L Wendt,Mechanisms governing the formation and destruction of NOx and other nitrogenous species in low NOx coal combustion systems, Combut. Sci. and Tech.,1995, Vol. 108, pp. 323-344
    [41] Frassoldati A.; Faravelli T.; Ranz E.i, Kinetic Modeling of the Interaction between NO and Hydrocarbons at High Temperature. Combustion and Flame, 2003, 135, 97-112
    [42] Rokstad O. A.; Olsvik O.; Holmen A., Thermal coupling of methane. In natural gas conversion; Holmen, A., Jens K. J.
    [43] Gerry J. H., Optimization of combustion by fuel testing in a NO x reduction test facility[J]. Fuel 1997,Vol. 76(13), pp. 1269-1275
    [44] Glarborg P; Alzueta M U; Kim D J., Nitric Oxide Reduction by Non-hydrocarbon Fuels. Implications for Reburning with Gasification Gases. Energy & Fuels 2000,14, 828-838
    [1] Chen S L; Core J A; Heap M P; Kramlich J C; McCarthy J M and Pershing D W. 1988 22nd Int. Symp. on Combustion (Pittsburgh, PA, 1988) pp 1135
    [2] M. T. Javeda; Naseem Irfana; B.M. Gibbs, Control of combustion-generated nitrogen oxides by selective non-catalytic reduction, Journal of Environmental Management 83 (2007) 251–289
    [3] Zamansky V M; Maly P M; Ho L et al. Second generation advanced reburning for high efficiency NOx control Phase I Final Report [R]. 1997 July 31, DOE Contract No. DE-AC22-95PC95251
    [4] E. Hampartsoumian; O.O. Folayan; W. Nimmo; B.M. Gibbs. Optimization of NOx reduction in advanced coal reburning systems and the effect of coal type, Fuel 82 (2003) 373–384
    [5] Tree D. R.; Clark A. W., Advanced reburning measurements of temperature and species in a pulverized coal flame, Fuel, 2000, 79: 1687-1695.
    [6] Alzueta M.U.; Rojel H.; Kristensen P. G.; Glarborg, P. and Kim Dam-Johansen., Laboratory study of the CO/NH3/NO/O2 system: Implications for hybrid reburn/SNCR strategies, Energy & Fuels, 1997,11:716-723.
    [7] Alzueta, M. U.; Glarborg, P. and Kim Dam-Johansen, Low temperature interactions between hydrocarbons and nitric oxide: An experimental study. Combustion and Flame, 1997, 109(1-2): 25-36.
    [8] Alzueta M. U.; Bilbao R.; Millera A.; Oliva M. and Ibanez J. C., Interactions between Nitric oxide and urea under flow reactor conditions. Energy & Fuels, 1998,12:1001-1007.
    [9] Alzueta M. U.; Bilbao R. and Finestra M., Methanol oxidation and its interaction with nitric oxide. Energy & Fuels, 2001,15:724-729.
    [10] Alzueta M. U.; and Hernandez, J. M., Ethanol oxidation and its interaction with nitric oxide. Energy & Fuels, 2002,16:166-171
    [11] Alzueta M. U.; Borruey M.; Callejas A.; Millera A. and Bilbao R., An experimental and modeling study of the oxidation of acetylene in a flow reactor, Combust. Flame(2007), doi: 10.1016/j.combustflame.2007.10.011.
    [12] Shen B. X.; Yao Q. and Xu X. C., Kinetic model for natural gas reburning. Fuel Processing Technology, 2004, 85(11): 1301-1315.
    [13]沈伯雄,孙幸福.水蒸汽对先进再燃区脱硝效率的影响研究[J].电站系统工程, 2006,22(1):41-43.
    [14]沈伯雄,孙幸福.炉内再燃区自由基变化及其化学机理的模拟[J].计算机与应用化学,2005,22(1):43-46.
    [15]沈伯雄.天然气先进再燃区脱硝效率影响因素的实验与模拟研究[J].中国电机工程学报,2005,25(5):146-149,163.
    [16]沈伯雄,孙幸福.影响先进再燃区脱硝效率的因素分析[J].煤炭转化,2004,27(4):47-50.
    [17]沈伯雄,姚强.再燃脱硝的动力学模拟和组分影响分析[J].环境科学学报, 2002, 22(5) : 677-682.
    [18]路春美,韩奎华,甄天雷,丁立新,高攀.天然气/液化气先进再燃脱硝特性研究,煤炭学报,2007,32(11)
    [19]高攀,路春美,赵改菊,赵建立,先进再燃技术原理及其影响因素分析.锅炉技术, Vol.38, No.1, 2007.1
    [20] Hartmut Spliethoff; Ulrich Greul; Helmut R0diger and Klaus R. G. Hein., Basic effects on NOx emissions in air staging and reburning at a bench-scale test facility, Fuel Vol. 75, No. 5, pp. 560-564, 1996
    [21] Maly P M; Zamansky V M; Ho L; Payne R., Alternative fuel reburning, Fuel 78 (1999) 327
    [22] Zamansky V.M.; Ho, L.; Maly P. M.; Seeker W. R., 1997. Reburning promoted by nitrogen and sodium-containing compounds. In: 26th Symposium (International) on Combustion. The Combustion Institute , Pittsburgh, PA, pp. 2075–2082.
    [23] P. Glarborg; M. U. Alzueta; K. Dam-Johansen; J. A. Miller, Kinetic Modeling of Hydrocarbon/Nitric Oxide Interactions in a Flow Reactor. Combustion And Flame 115:1–27 (1998)
    [24] T. Faravelliyx; A. Antichiy; C. Callierottiy; E. Ranziy; D. Benedettoz , A kinetic study of an advanced reburning process, Combust. Theory Modeling 1 (1997) 377–393.
    [25] D. HAN ; M. G. MUNGAL; V. M. ZAMANSKY ; T. J. TYSON , Prediction of NOx Control by Basic and Advanced Gas Reburning Using the Two-Stage Lagrangian Model, Combustion And Flame 119:483–493 (1999)
    [26] X.H. Han; X.l. Wei; U. Schnell; K. R.G. Hein, Detailed modeling of hybrid reburn/SNCR processes for NOx reduction in coal-fired furnaces. Combustion and Flame 132 (2003) 374–386
    [27] H. Xu; L. D. Smoot; D. R. Tree; S. C. Hill , Prediction of Nitric Oxide Destruction by Advanced Reburning . Energy & Fuels 2001, 15, 541-551
    [28] C.T.Bowman;F.L. Dryer; R.F. Sawyer, In Physical and Chemical Aspects of Combustion: A Tribute to Irvine Glassman (1996)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700