用户名: 密码: 验证码:
双功能钴基催化剂的合成与催化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Co基催化剂是一种被大量研究的非贵金属催化剂,在F-T合成及CH4-CO2重整反应中均具有较好的催化活性。以不同形式的钴源作为前驱体制备催化剂,对催化剂的各种性质具有直接影响。由于钴羰基簇合物中的金属钴以零价态形式存在,以该簇合物为前驱体制备的催化剂具有良好的分散性和较高的催化反应活性。研究证明,助剂的添加能够有效改善钴基催化剂的反应活性、稳定性和选择性。稀土元素因其具有一定的碱性和给电子性能而成为催化反应中良好的助剂。本文通过钴羰基簇合物与稀土桥联将稀土助剂有效得引入催化剂,通过有机配体骨架使活性中心Co与稀土原子均匀分布,有利于在载体表面形成高分散的Ln-Co分布,稀土的存在降低了载体的酸性,促进了CO的解离,从而进一步提高了催化剂的反应活性。具体成果如下:
     1.合成了一系列不同核数(二核、三核、四核)的钴羰基簇合物,其中三核钴羰基簇合物为首次合成,并对其进行了结构表征和性质研究。
     2.通过配位取代法设计并合成了可控结构的三核钴簇与稀土(Ln=La、Ce、Sm、Eu)有机配体桥联配合物,并对合成的配合物进行了结构表征和性质研究。四种配位物均未见文献报道。
     3.以合成不同核数的钻羰基簇合物前驱体,以γ-Al2O3为载体制备一系列催化剂,对其进行性能表征,评价F-T反应催化活性及CH4-CO2重整催化活性。考察钴羰基簇合物在载体上的分布特征、表面性质及与载体之间的相互作用,分析了这些因素对F-T合成及CH4-CO2重整的影响。F-T反应评价结果表明,羰基簇合物为前驱体制备的催化剂与传统的硝酸钻为前驱体制备的催化剂相比,具有较高的催化反应活性,不同催化剂的CO转化率及C5+选择性顺序一致:Co3/γ-Al2O3>Co2/γ-Al2O3>Co4/γ-Al2O3>Co(N)/γ-Al2O3;CH4-CO2重整催化结果表明,以不同核数钴羰基簇为前驱体制备的催化剂具有不同的催化性能,其中10%Co
     (3)/γ-A1203具有优良的抗积炭性能。
     4.以合成的钴簇-稀土桥联配合物Ln-Co3(Ln=La、Ce、Sm、Eu)为前驱体,以γ-Al2O3为载体制备一系列催化剂,并评价其F-T反应催化活性及CH4-CO2重整催化活性。考察具有高度规则空间排布的钻簇-稀土桥联配合物在载体上的分布特征、表面性质及与载体之间的相互作用,分析了这些因素对F-T合成及CH4-CO2重整的影响。不同前驱体制备的催化剂F-T反应C5+选择性顺序为:Co-Ce/γ-Al2O3>Co-Eu/γ-Al2O3>Co-Sm/γ-Al2O3>Co-La/γ-Al2O3>Co+Ce/γ-Al2O3>Co(N)/γ-AlO3;对以四种钻簇-稀土桥联配合物为前驱体的催化剂进行CH4-CO2重整评价,发现在结构相似的情况下,原子序数相邻的稀土配合物催化剂活性差距不大,说明原子序数相邻的稀土具有相似的助剂效应。
     5.对以钴羰基簇合物为前驱体制备的催化剂及和以钴簇-稀土桥联配合物为前驱体制备的催化剂进行催化性能比较,结果如下:(1)F-T合成反应中,以钻簇-稀土桥联配合物为前驱体制备的催化剂CO转化率及C5+选择性均优于以钴羰基簇合物为前驱体制备的催化剂。(2) CH4-CO2重整反应中,以钴簇-稀土为前驱体制备的催化剂的催化活性高于以钴羰基簇合物为前驱体制备的催化剂,但其抗积炭能力要低于钴羰基簇合物为前驱体制备的催化剂。
Supported cobalt is the preferred catalyst for the F-T synthesis and the CH4-CO2reforming, because of their high activity for catalytic reaction. The nature of the cobalt precursor has a large influence on various properties of the catalyst. The catalysts derived from cobalt carbonyl cluster with good dispersion and higher catalytic activities due to cobalt carbonyl clusters have provided zero valent metal particles. There is currently a consensus in the literature that promoter can improve the cobalt-based catalyst reactivity, stability and selectivity. Lanthanide is an excellent promoter for cobalt-based catalyst as a result of its unique properties.
     In this paper, catalysts were prepared by introduced lanthanide promoter into cobalt carbonyl clusters as precursors. The cobalt atoms and lanthanide, therefore, can be arranged in orderly rows on the supports by linked organic-ligand skeleton, leading to higher dispersion of cobalt-Ln on catalysts. Rare earth can reduce the acidity of the supports, promote the dissociation of CO and improve the activity of catalytic. Specific results are as follows:
     1. A series of cobalt carbonyl clusters with different cobalt atoms has been synthesized. The organometallic carboxylic cluster (CO)9Co3CCH2COOH was first synthesized and structure of Co3(CO)9CCH2COOH has been determined by X-ray diffraction.
     2. Four heterobimetallic complexes containing cobalt carbonyl cluster and lanthanide [Ln3{-OOCCCCo3(CO)9}(-OOCCF3)6(THF)3]2Co(-OH)6·THF (Ln=La,Ce, Sm, Eu) have been synthesized by reaction of Co4(CO)10HCCCOOH with Ln(-OOCCF3)3(Ln=La, Ce, Sm, Eu), and structurally characterized by single-crystal X-ray diffraction.
     3. New type of Co-based catalysts were prepared using Co2(CO)6HCCCOOH, Co3(CO)9CCH2COOH and Co4(CO)10HCCCOOH as precursors supported on γ-Al2O3. The Co(NO3)2can be used as precursor for preparing reference catalyst. The F-T synthesis and CH4-CO2reforming performance were investigated. The dispersion, metal particle size and interaction with support of metal cobalt derived from cobalt carbonyl catalysts were researched. The F-T synthesis results suggest that the CO conversion and C5+selectivity decreased in the following:Co3(CO)9CCH2COOH>Co2(CO)6HCCOOH>Co4(CO)10HCCCOOH>Co(NO3)2.. The CH4-CO2reforming results indicated that the catalyst prepared by the precursor of trinuclear cobalt carbonyl clusters exhibited a superior anti-coking property.
     4. Catalysts were prepared using lanthanide-cobalt clusters bridging complexes as catalyst precursors supported on γ-Al2O3. The F-T synthesis and CH4-CO2 reforming performance were explored. The dispersion, metal particle size and interaction with support of metal cobalt species derived from lanthanide-cobalt clusters bridging complexes were researched. The F-T synthesis results suggest that the CO conversion and C5+selectivity decreased in the order:Co-Ce/γ-Al2O3> Co-Eu/γ-Al2O3>Co-Sm/γ-Al2O3>Co-La/γ-Al2O3>Co+Ce/γ-Al2O3>Co(N)/γ-Al2O3; The CH4-CO2reforming results revealed that the catalysts prepared by the lanthanide-cobalt clusters bridging complexes with similar structures showed similar activity for the catalysts with adjacent atomic numbers.
     5. Comparisons of catalytic performance for lanthanide-cobalt clusters bridging complexes and cobalt carbonyl clusters as catalyst precursors were explored. The results as follows:(1) The catalytic activity and C5+selectivity of the catalysts prepared by the lanthanide-cobalt clusters bridging complexes were superior to those prepared by the cobalt carbonyl cluster and the mixture of cobalt carbonyl cluster with lanthanide salt.(2) The CH4-CO2reforming catalytic activity of the catalysts prepared by the lanthanide-cobalt clusters bridging complexes were better than that of those prepared by cobalt carbonyl cluster, but anti-carbon deposition of the catalysts prepared by lanthanide-cobalt clusters bridging complexes decreased on support.
引文
[1]http://guba.eastmoney.com/look,600028,10003275518.html
    [2]http://www.cifco.com.cn/cifcoshow.shtml newsId=209774&infoId=178838
    [3]http://baike.baidu.com/view/1031408.htm
    [4]胡予红,孙欣,张文波等.煤炭对环境的影响研究[J].中国能源.2004,26(1):32-35
    [5]谢克昌.煤化工发展与规划(M)].北京:化学工业出版社,2005
    [6]高志芳,朱书全,张晓勇等.煤炭洗选加工在环境保护和可持续发展中的作用[J].中国资源综合利用.2007,25(2):26-29
    [7]姚强,陈超.洁净煤技术.北京:化学工业出版社,2004
    [8]K. Yamashita, L. Barreto. Energyplexes for the 21st century:Coal gasification for co-producing hydrogen, electricity and liquid fuels, Energy,2005,30:2453-2473
    [9]D. L. Greene. An assessment of energy and environmental issues related to the use of gas-to-liquid fuels in transportation. Report Prepared by Oak Ridge National Laboratory, U.S., ORNL/TM-1999/258,1999:1-69. Available at:http://www-cta.ornl.gov/cta/Publications/Reports/ORNL_TM_1999_258.pdf
    [10]S. Srinivas, R.K. Malik, S.M. Mahajani. Fischer-Tropsch synthesis using bio-syngas and CO2,4th & 5th National Conference on Advances in Energy Research. December,2006:317-322. IIT-Bombay. Available at:http://www.ese.iitb.ac.in/aer2006 files/papers/121.pdf
    [11]A. P. Steynberg, H. G. Nel. Clean coal conversion options using Fischer-Tropsch technology. Fuel,2004, 83(6):765-770
    [12]M.E. Dry. Fischer-Tropsch reactions and the environment. Appl. Catal., A:Gen.,1999,189:185-190
    [13]J.P. Szybist, S.R. Kirby, A.L. Boehman. NOx Emissions of Alternative Diesel Fuels:A Comparative Analysis of Biodiesel and F-T Diesel. Energy Fuels,2005,19(4):1484-1492
    [14]加藤顺,小林博行,村田义夫著,金革等译.碳—化学工业生产技术.北京:化学工业出版社,1990
    [15]舒歌平,史士东.煤炭液化技术.煤炭工业出版社,北京:2003
    [16]R. L. Espinoza, A. P. Steynberg, B. Jager, et al. Low temperature Fischer-Tropsch synthesis from a Sasol perspective. Appl. Catal. A,1999,186(1-2):13-26
    [17]A. P. Steynberg, R.L Espinoza, B. Jager, et al. High temperature Fischer-Tropsch synthesis in commercial practice. Appl. Catal. A,1999,186(1-2):41-54
    [18]周敏来,张志新,张碧汪.煤基合成液体燃料的MF-T工艺技术.燃料化学学报,1999,17(12):12-14
    [19]R. A. Dictor, A. T. Bell. An Explanation for Deviations of Flscher-Tropsch Products from a Schulz-Flory Distribution. Ind. Eng. Chem. Process Des. Dev,1983,22:678-681
    [20]E. Iglesia, S. C. Reyes, R. J. Madon. Transport-enhanced a-olefin readsorption pathways in Ru-Catalyed hydrocarbon synthesis. J. Catal.,1991,129(1):238-256
    [21]I. Puskas, R. S. Hurlbut. Comments about the causes of deviations from the Anderson-Schulz-Flory distribution of the Fischer-Tropsch reaction products. Catal. Today,2003,84:99-109
    [22]M. Ojeda, M. L Granados, S. Rojas, et al. Influence of residual chloride ions in the CO hydrogenation over Rh/SiO2catalysts[J]. Journal of Molecular Catalysis A:Chemical,2003,202:179-186
    [23]R. J. Madon, E. Iglesia. The importance of olefin readsorption and H2/CO reactant ratio for hydrocarbon chain growth on ruthenium catalysts. J. Catal.,1993,139(2):576-590
    [24]银董红,李文怀,扬文书等.钴基催化剂在Fischer-Tropsch合成烃中的研究进展.化学进展,2001,13(2):118-127
    [25]A. C. Vosloo. Fischer-Tropsch:a futuristic view, Fuel Process. Technol.,2001,71:149-155
    [26]P. Reubroycharoen, T. Vitidsant, Y.Liu, et al. Highly active Fischer-Tropsch synthesis Co/SiO2 catalysts prepared from microwave irradiation, Catal. Commun.,2007,8:375-3784
    [27]A. Y. Khodakov, W. Chu, P. Fongarland. Advances in the Development of Novel Cobalt Fischer-Tropsch Catalysts for Synthesis of Long-Chain Hydrocarbons and Clean Fuels, Chem. Rev.,2007,107: 1692-1749
    [28]E. W. Kuipers, W. Vinkenburg, H. Oosterbeek. Chain Length Dependence ofα-Olefin Readsorption in Fischer-Tropsch Synthesis. J.Catal.,1995,152(1):137-146
    [29]E. Kikuchi, R. Sorita, H. Takahashi, T. Matsuda. Catalytic performances of cobalt-based ultrafine particles prepared by chemical reduction in slurry-phase Fischer-Tropsch synthesis Appl. Catal.A:Gener, 1999,186(1-2):121-128
    [30]D. J. Klinke Ⅱ, L. J. Broadbelt. Construction of a mechanistic model of Fischer-Tropsch synthesis on Ni(111)and Co(0001)surfaces. Chem.Eng.Sci.,1999,54:3379-3389
    [31]A. A. Mirzaei, M. Faizi, R. Habibpour. Effect of preparation conditions on the catalytic performance of cobalt manganese oxide catalysts for conversion of synthesis gas to light olefins. Applied Catalysis, A: General 2006,306:98-107
    [32]G. Bian, T. Mochizuki, N. Fujishita, et al. Activation and Catalytic Behavior of Several Co/Si02 Catalysts for Fischer-Tropsch Synthesis. Energy & Fuels 2003,17(4):799-803
    [33]M. Kraum, M. Baerns. Fischer-Tropsch synthesis:the influence of various cobalt compounds applied in the preparation of supported cobalt catalysts on their performance Appl. Catal.A:Gener,1999 186(1-2): 189-200
    [34]J. V. Loosdrecht, M. V. Haar, A. M. V. Kraan, et al. Preparation and properties of supported cobalt catalysts for Fischer-Tropsch synthesis. Appl.Catal.A:Gener.,1997,150(2):365-376.
    [35]M. K. Nimel, A. O. I. Krause, T. Vaara, et al. The effect of the precursor on the characteristics of Co/SiO2 catalysts. Appl.Catal.A:Gener,1996,147(2):325-345
    [36]T. Matsuzaki, K. Takeuchi, T. Hanaoka, et al. Hydrogenation of carbon monoxide over highly dispersed cobalt catalysts derived from cobalt(Ⅱ)acetate. Catal. Today,1996,28(3):251-259
    [37]T. Matsuzaki, K. Takeuchi, T. Hanaoka, et al. Oxygenates from syngas over highly dispersed cobalt catalysts. Catal.Today,1997,36(3):311-324
    [38]李剑锋,侯学锋,代小平等.不同载体和前驱体对钴基催化剂浆相费托合成性能的影响.石油大学学报(自然科学版),2004,28(5):94-98
    [39]M. Kraum, M. Baerns. Fischer-Tropsch synthesis:the influence of various cobalt compounds applied in the preparation of supported cobalt catalysts on their performance. Appl. Catal. A,1999,186(1-2): 189-200
    [40]J. vande Loosdrecht, M. vander Haar, A. M. vander Kraan, et al. Preparation and properties of supported cobalt catalysts for Fischer-Tropsch synthesis. Appl.Catal.A,1997,150(2):365-376
    [41]M. K. Niemela, A.O.I. Krause, T. Vaara, et al. The effect of the precursor on the characteristics of Co/SiO2 catalysts. Appl.Catal.A,1996,147(2):325-345
    [42]J. L. Zhang, J.G.Chen, J.Ren, et al. Chemical treatment of γ-Al2O3 and its influence on the properties of Co-based catalysts for Fischer-Tropsch synthesis. Appl.Catal.A,2003,243(1):121-133
    [43]R. Bechara, D. Balloy, D. Vanhove. Catalytic properties of Co/Al2O3 system for hydrocarbon synthesis. Appl.Catal.A,2001,207(1-2):343-353
    [44]T. Ishihara, K. Egichi, H. Arai. Importance of surface hydrogen concentration in enhancing activity of Co-Ni alloy catalyst for CO hydrogenation. J. Mol. Cata.,1992,72(2):253-261
    [45]R. Riva, H. Miessner, R. Vitali, et al. Metal-support interaction in Co/SiO2 and Co/TiO2. Appl. Catal. A,2000,196(1):111-123
    [46]A. Y. Khodakov, W. Chu, P. Fongarland. Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem. Rev.,2007,107 (5):1692-1744
    [47]R. C. Reuel, C.H.Bartho lomew. J. Catal.,1984,85(1):78-88
    [48]C. H. Bartho lomew, R. C.Reuel. Ind. Eng. Chem. Prod. Res.Dev.,1985,24(1):56-61
    [49]S. Bessell. Support effects in cobalt-based fischer-tropsch catalysis. Appl. Catal. A,1993,96(2): 253-268
    [50]S. Halvorsen, K. Vinje, S. Lofthus, et al. Stud. Surf. Sci.Catal..1991,61:281-287
    [51]E. Iglesia, S. L. Soled, R. A.Fiato. J. Catal.,1992,137(1):212-224
    [52]M. Kraum, M. Baerns. Appl. Catal. A,1999,186(1-2):189-200
    [53]王桂茹.催化剂与催化作用(第二版).大连理工出版社
    [54]H. Ming, B.G. Baker. Characterization of cobalt Fischer-Tropsch catalysts I.Unpromoted cobalt-silica gel catalysts. Applied Catalysis A:General 1995,123(1):23-26
    [55]张金柯.F-T合成Co基催化剂研究[D].浙江工业大学,2008
    [56]E. Iglesia. Appl. Catal. Appl.Gener,1997,161(1-2):59-78
    [57]杨文书,银董红,常杰等.助剂对Co/HMS催化剂结构和F-T合成性能的影响.化学学报,2003,61(5):681-687
    [58]S. All, B.Chen, J.G.Goodwin. Zr Promotion of Co/SiO2 for Fischer-Tropsch Synthesis. J.Catal.,1995, 157(1):35-41
    [59]陈建刚,相宏伟,孙予罕.硅胶来源对费托合成用Co/SiO2催化剂性能的影响.催化学报,2000,21(2):169-171
    [60]陈建刚,任杰,孙予罕.K, Mn, Zr助剂对钴基F-T合成催化剂反应性能的影响.燃料化学学报,1999,27(s1):107-110
    [61]陈建刚,相宏伟,董庆年,王秀芝,孙予罕.钴基费-托合成催化剂上CO、H2的吸附行为.物理化学学报,2001,17(2):161-164
    [62]陈建刚,相宏伟,王秀芝,孙予罕,刘涛,胡天斗,谢亚宁.锆助剂含量对钴基费-托合成催化剂的影响.催化学报,2000,21(4):359-362
    [63]李强,徐继鹏,代小平,余长春,沈师孔.助剂锆对费托合成反应性能的影响.石油与天然气化工,1999,32(1):71-74
    [64]F. Rohr, O. A. Lindvg, A. Holmen, et al. Fischer-Tropsch synthesis over cobalt catalysts supported on zirconia-modified alumina, Catal.Today,2000,58(4):247-254
    [65]J. L. Zhang, J. Ren, J. G. Chen. Effect of manganese promoter on the performance of CO/Al2O3 catalysts for Fischer-Tropsch synthesis. Acta. Phys-Chim. Sin.,2002,18(3):260-263
    [66]N. Tsubaki, S.L. Sun, K. Fujimoto. Different functions of the noble metals added to cobalt catalysts for Fischer-Tropsch synthesis. J.Catal.,2001,199(2):236-246
    [67]G. Jacobs, T.K. Das, Y.Q.Zhang, et al. Fischer-Tropsch synthesis:support, loading, and promoter effects on the reducibility of cobalt catalysts. Appl. Catal.,2002,233(2):263-281
    [68]L. E. S. Rygh, C. J. Nielsen. Infrared study of CO adsorbed on a Co/Re/Al2O3-based Fischer-Tropsch catalyst. J. Catal.,2000,194(2):401-409
    [69]D. Schanke, S.Vada, E. A. Blekkan, A. M. Hilmen, et al. StudyofPt-Promoted Cobalt CO Hydrogenation Catalysts. J.Catal,1995,156(1):85-95
    [70]徐东彦,李文钊,段洪敏.Pt, Ru和Pd助剂对F-T合成中Co/y-Al2O3催化剂性能的影响.催化学报,2005,26(9):780-784
    [71]G. J. Haddad, B.Chen, J.G.Goodwin. Characterization of La3+-promoted Co/SiO2 catalysts, J.Catal., 1996,160(1):43-51
    [72]G. J. Haddad, B.Chen, J.G.Goodwin. Effect of La3+ promotion of Co/SiO2 catalysts on CO hydrogenation. J.Catal.,1996,161(2):274-281
    [73]S. Vada, B. Chen, J. G. Goodwin. Isotopic Transient Study of La Promotion of Co/Al2O3 for CO Hydrogenation. J.Catal.,1995,153:224-231
    [74]B. Ernst, L. Hilaire, A. Kiennemann. Effects of highly dispersed ceria addition on reducibility, activity and hydrocarbon chain growth of a Co/SiO2 Fischer-Tropsch catalyst. Catal. Today,1999,413-427
    [75]代小平,余长春,沈师孔.助剂Ce02对Co/Al2O3催化剂上F-T合成反应性能的影响.催化学报,2001,22(2):104-108.
    [76]贺黎明,沈召军.甲烷的转化和利用.北京:化学工业出版社,2005
    [77]S. C. Teuner, P. Neumann, F. Vonlinde. The calcor standard and clcor ecnomy processes. Oil Gas Eur.Mag., 2003,3:44-46
    [78]S. B. Wang, G. Q. Lu. Carbon Dioxide Reforming of Methane to Produce Synthesis Gas over Metal-Supported Catalysts. State of the Art, Energy&Puels,1996,10:896-904
    [79]F. Solymosi, G. Kutsan, A. Erdohelyi. Catalytic reaction of CH4 with CO2 over alumina supported Pt metals. Catal. Lett.,1991,11:149-156
    [80]Y. Sakai, H. Saito, T. Sodesawa, et al. Catalytic reactions of hydrocarbons with carbon dioxide over metallic catalysts React Kinet. Catal. Lett.,1984,24:253-257
    [81]A. T. Ashcroft, A. K. Cheetham, L. H. Greenm, et al. Partial oxidation of methane to synthesis gas using carbon-dioxide. Nature,1991,352:225-226
    [82]J. T. Richardson, S. A. Paripatyadar. Carbon dioxide reforming of methane with supported rhodium. Appl. Catal., A Gen.,1990,61:293-309
    [83]J. Nakamura, T. Uchijima. Methane reforming with carbon dioxide. Shokubai,1993,35:478-484
    [84]D. Qin, J. L. szewicz. Study of mixed steam and CO2 reforming of CH4 to syngas on MgO supported metals. Catal. Today,1994,21:551-560
    [85]O. Takayasu, E. Hirose, N. Matsuda, et al. Partial oxidation of methane by metal catalysts supported on ultrafine single crystal magnesium oxide. Chem. Express,1991,6:447-450
    [86]J. S. H. O.Perera, J. W. Couves, G. Sandar, et al. The catalytic activity of Ru and Ir supported on Eu2O3 for the reaction, CO2+CH4→2H2+2CO:a viable solar-thermal energy system. Catal. Lett.,1991,11: 219-225
    [87]G. J. Kim, D. S. Cho, K. H. Kim, et al. The reaction of CO2 with CH4 to synthesize H2 and CO over nickel loaded Y-zeolites. Catal. Lett.,1994,28:41-52
    [88]徐恒泳,孙希贤,范业梅等.甲烷、二氧化碳转化制合成气的研究I.催化剂及其催化性能,石油化工,1992,2(3):147-153
    [89]索掌怀,金明善,徐秀峰等.担载Ni催化剂中Ni担载量及金属助剂对CH4和CO2重整反应活性的影响.烟台大学学报,2001,14(3):174-179
    [90]A. T. Ashcroft, A. K. Cheetham, M. L. H. Green, et al. Partial oxidation of methane to synthesis gas using carbon dioxide. Nature,1991,352:225-226
    [91]T. Inui. Reforming of CH4 by CO2,O2 and/or H2. Catalysis,2002,16:133-154
    [92]A. Guerrero-Ruiz, I. Rodriguez-Ramos, A.Sepiialveda-Escribano. Effect of the basic function in Co, MgO/C catalysts on the selective oxidation of methane by carbon dioxide. J Chem Soc Chem Commun, 1993,5:487-488
    [93]王鹏飞,吴念慈,郑小明.甲烷与二氧化碳转化制合成气的研究I.负载型钴金属催化剂的催化性能,催化学报,1998,19(3):196-200
    [94]路勇,邓存,丁雪加等.担载型钴金属催化剂上甲烷与二氧化碳转化制合成气.催化学报,1995,16(6):447-452
    [95]E. Ruckenstein, H. Y. Wang. Carbon Deposition and Catalytic Deactivation during CO2 Reforming of CH4 over Co/y-Al2O3 Catalysts. Journal of Catalysis,2002,205:289-293
    [96]T. Osaki, T. Horiuchi, K. Suzuki, et al. Catalyst performance of MoS2 and WS2 for the CO2-reforming of CH4 Suppression of carbon deposition. Appl. Catal. A,1997,180:85-100
    [97]V. I. Mahesh, P. N. Lawrence, P. Alex, et al. Catalysis for synthesis gas formation from reforming of methane. Topics in Catal.,2004,29:197-200
    [98]K. Takanabe, K. Nagaoka, K. Nariai, et al. Titania-supported cobalt and nickel bimetallic catalysts for carbon dioxide reforming of methane. Journal of Catalysis,2005,232:268-275
    [99]O. Gonzalez, J. Lujano, E. Pietri, et al. New Co-Ni catalyst systems used for methane dry reforming based on supported catalysts over an INT-MM1 mesoporous material and a perovskite-like oxide precursor LaCoo.4Ni0.6O3. Catalysis Today,2005:107-108,436-443
    [100]J. G. Zhang, H. Wang, A. K. Dalai. Development of stable bimetallic catalysts for carbon dioxide reforming of methane. Journal of Catalysis,2007,249:300-310
    [101]J. G. Zhang, H. Wang, A. K. Dalai. Effects of metal content on activity and stability of Ni-Co bimetallic catalysts for CO2 reforming of CH4. Applied Catalysis A:General 2008,339:121-129
    [102]Rostrap Nielsen J R, In Catalysis, Science and Technology, Anderson J R, Boudart M, Eds., Springer:1982,5:1
    [103]M. Masai, H. Kado, A. Miyake, et al. Methane Reforming by Carbon Dioxide and Steam Over Supported Pd, Pt, and Rh Catalysts. Stud. Surf. Sci. Catal.,1988,36:67-71
    [104]H. Liu, S. Q. Li, S. B. Zhang, et al. Catalytic Performance of Monolithic Foam Ni/SiC Catalyst in Carbon dioxide Reforming of Methane to Synthesis Gas. Catal. Lett.,2008,120:111-115
    [105]Z. L. Zhang, X. Z. J. Vekrios. Carbon dioxide reforming of methane to synthesis gas over supported Ni catalysts. Catal. Today,1994,21:589
    [106]许峥,李玉敏,张维炎等.甲烷二氧化碳重整制合成气的镍基催化剂性能.催化学报1997,5:15-18
    [107]P. Tomiainen, X. Chu, L. D. Schmidt. Comparison of monolish-Supported metals for the direct oxidation of methane to syngas. Journal of Catalysis,1994,146:1
    [108]许峥,张继炎,张军礼等.超细镍基催化剂CH4-CO2重整反应性能:制备方法对催化剂结构和还原性能的影响.催化学报,2000,21(3):234-238
    [109]R. Bouarab, O. Cherifi, A. Auroux. Effect of the basicity created by La2O3 addition on the catalytic properties of Co(O)/SiO2 in CH4+CO2 reaction. Thermochimica Acta.,2005,434:69-73
    [110]B. S. Liu, C. T. Au. Carbon deposition and catalyst stability over La2NiO4/γ-Al2O3 during CO2 reforming of methane to syngas. Appl.Catal.A,2003,244:181-195
    [111]S. Tang, L. Ji, J.Lin, et al. CO2 reforming of methane to synthesis gas over sol-gel-made Ni/y-Al2O3 catalysts from organometallic precursors. J.Catal,2000,194:424-430
    [112]S. Tomiyama, R. Takanashi, S. Stato, et al. Preparation of Ni/SiO2 catalyst with high thermal stability for C02-refroming of CH4. Appl.Catal.A,2003,241(1-2):349-361
    [113]L. Gaihuan, L. Yuliang, C. Wei, et al. Plasma-assisted preparation of Ni/SiO2 catalyst using atmospheric high frequency cold plasma jet. Catalysis Communications,2008,9:1087-1091
    [1]申浮文.无机化学.北京:化学工业出版社,2002
    [2]钱延龙,陈新滋.金属有机化学与催化(A)[M].北京:化学工业出版社,1997
    [3]殷元骐,李庆山,丁二润.手性原子簇合物与不对称催化反应[J].分子催化,1997,11(6):445-449.Cataysis,1997,11(6):445-449
    [4]单永奎,戴立益,余淑媛等.多元多金属含氧簇合物在催化化学中的应用[J].化学进展,2003,15(2):151-160
    [5]胡襄,刘树堂,刘启望.劈开组合法合成新结构和新成键的金属羰基簇合衍生物[J].内蒙古大学学报,自然科学版,1997,28(3):387-399
    [6]于世泳,刘树堂,吴秉芳.含硫桥基配体的三核钌羰基簇合衍生物的合成与表征[J].内蒙古大学学报:自然科学版,2004,35(2):164-167
    [7]单秋杰.配合物及其应用.哈尔滨工业大学出版社,2003,6:94-97
    [8]E. L. Muetterties, T. N. Rhodin, C. F. Brucker, et al. Clusters and surfaces, Chem. Rev.,1997,79:91-137
    [9]E. Sappa, A. Tiripicchio, P. Braunsterin. Alkyne-substituted homo- and hetrometallic carbonyl clusters of the iron, cobalt and nickel triads. Chem. Rev.,1983,83:203-239
    [10]F. E. Hong, Y.L.Huang, Y.C.Chang, et al. Appl. Organomet. Chem.,2003,17:458-464
    [11]S.Onaka, Y.Katsukawa, M. Shiotsuka. J. Organomet. Chem.,1998,570:113-119
    [12]K. W. Muir, R. Rumin, F. Y. Petillon, J. Organomet. Chem.,2001,635:110-118
    [13]J. E.Hallgren, C. S. Eschbach, D. Seyferth. J. Am. Chem. Soc.,1972,94:2541-2556
    [14]W.Cen, K. J. Haller, T.P. Fehlner. Inorg. Chem.,1993,32:995-1003
    [15]X. J. Lei, M. Y. Shang, T. P. Fehlner, et al. Clusters as ligangd, part 3 Generation of tricobalt cluster carboxylate-bridged iron-cobalt and manganese-cobalt mixed-metal alkoxide cubes from iron and manganese tricobalt cluster metal carboxylates. J. Organomet. Chem.,1997,541:57-70
    [16]C. P. Victor, M. Y. Shang, P. A. Glenn, et al. The syntheses and X-ray crystal structures of novel transition metal cluster arrays containing 2-5 coordinated [(CO)9 Co3 (μ3-CCOO)]- ligands in a variety of geometries. Polyhedron,1999,18:1869-1880
    [17]X.N.Chen, J.Zhang, Y.Q.Yin, et al. Reactions of 1,8-Nonadiyne with Co2(CO)8 and Mo2(C5H4R)2(CO)4 and Crystal Structure of [M2L2(CO)4][μ-HC2(CH2)5C2H-μ] [Mo2(C5H4R)2(CO)4] (M=Co,L=CO;M=Mo,L=C5H4R,R=H,COCH3,COOC2H5). Orgnometallics,1999,18:3146-3169
    [18]E. Christine, Plecnic, S. M. Liu, Sheldon. Lanthanide-Transition-Metal Comple-xes:From Ion Pairs to Extended Arrays. Acc. Chem.Res.,2003,36:499-506
    [19]G. Z. Suleimanov, L. F. Rybakova, L. T. Abullaeva, et al. Beletskaya, Dokl. Akad. Nauk SSSR 1983,272: 885
    [20]J. P. WhiteⅢ, H.B.Deng, E. P. Boyed, et al. Coordination Geometries of Solvated Lanthanide(Ⅱ) Ions: Molecular Structures of the Cationic Species [(DIME)3Ln]2+(DIME= Diethylene Glycol Dimethyl Ether; Ln2+= Sm, Yb),[(DIME)2Yb(CH3CN)2]2+, [(DIME)Yb(CH3CN)5]2+, and[(C5H5N)5Yb(CH3CN)2]2+. Inorg. Chem.,1994,33:1685-1694
    [21]H. B. Deng, H. C. Sung, J.Philip, et al. Direct Lanthanide-Transition Metal Interactions:Synthesis of (NH3)2YbFe(CO)4 and Crystal Structures of{[(CH3CN)3YbFe(CO)4]2-CH3CN}∞ and [(CH3CN)3YbFe(CO)4]∞. Inorg. Chem.,1996,35:3891-3900
    [22]C. E. Plecnik, S. G. Liu, X. N. Chen, et al. Lanthanide-Transition-Metal Carbonyl Complexes:New [Co4(CO)11]2 Clusters and Lanthanide(II) Isocarbonyl Polymeric Arrays. J. Am. Chem. Soc.,2004,126: 204-213
    [23]J. H. Ye, H. Q. Su, F. H. Bai, et al. Synthesis, crystal structure and properties of a new lanthanide-transition metal carbonyl cluster. Appl. Organometal. Chem.,2009,23:86-90
    [24]M. F. Mirbach, A.Saus, A. M.Krings, et al. Thermal, Photochemical and Alcohol Catalyzed Formation of Co4(CO)12 From Co2(CO)8 Kinetics and Mechanism. J.Organ.Chem.,1981,205:229-237
    [25]V. Calo-Perez, V. C. Andres, C. Piedad, et al. Properties of carboxylate clusters (CO)6Co2HCC-COOH and (CO)10Co4HCC-COOH as related to their structures. Inorganica Chimica Acta,2002,333:15-24
    [26]G. Bor, G. Sbrignadello, F. Marcati. Infrared spectroscopic studies on metal carbonyl compounds. J.Organometal.Chem., Chim. Acta,1972,46:357-368
    [27]H. Berit, B. Tamas, Z.Claudia, et al. On the Reactivity of Acetylenes Coordinated to Cobalt.9. Effects of Substitution and Coordination on the (μ2-R1C2R2)Co2(CO)6 Complexes. Molecular Structure of (μ2-R1C2R2)Co2(CO)6.Organometallics,1995,14:809-819
    [28]荣国斌,朱士正.波谱数据表—有机化合物的结构解析.华东理工大学出版社,2002
    [1]S. Suvantoa, A. Tapani, Pakkanena, etc. Controlled deposition of Co2(CO)8on silica in a fluidized bed reactor: chemisorption and decomposition studies, Applied Catalysis A:General,1999,177:25-36
    [2]B. Arnaud, M. Guy-Antonin, P. Ramirez delaPiscina, ect. Co/SiO2 catalysts prepared from Co2(CO)8 for CO hydrogenation into alcohols and hydrocarbons:characterization by magnetic methods and temperature-programmed hydrogenation. Applied Catalysis A:General,2001,210:75-81
    [3]S. J. Gregg, K. S. W. Sing, Adsorption. Surface Area and Porosity. New York, Academic press inc,1982
    [4]何余生,李忠,奚红霞等.气固吸附等温线的研究进展.离子交换与吸附,2004,20(4):376-384
    [5]尹元根.多相催化剂的研究方法.化学工业出版社,1988

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700