用户名: 密码: 验证码:
短波长光质诱导津田芜菁花青素合成相关基因差异表达机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
短波长光质例如蓝光与紫外线是调节植物生长发育重要的环境因子之一。蓝光会影响植物的生长形态如:向光性、叶绿体移动、气孔张开和花青素积累。高强度的紫外线会破坏植物体内的DNA, RNA和蛋白质,而低强度的紫外线会影响植物的生长形态变化、类黄酮类的合成和防御相关基因的表达。然而紫外线调控花青素的信号传递途径至今并未被阐明。
     本论文以花青素合成光敏感型的津田芜菁(Brassica rapa'Tsuda')为试材,进行了短波长光质诱导花青素合成特性的研究;CHS家族基因的克隆及短波长光质诱导下的表达特性分析;花青素合成相关R2R3类MYB因子的克隆及其他调节基因在短波长光质诱导下的表达特性分析;花青素合成关键调节因子BrPAP1和BrTT8与BrCHS1启动子区Unit1元件的相互作用分析;不同短波长光质诱导下转录组学分析。得到以下主要结果:
     1津田芜菁在不同短波长光质诱导下花青素积累特性分析
     对蓝光、UV-A和UV-B及它们之间的复合光对津田芜菁幼苗下胚轴不同部位花青素的积累进行了分析。不同短波长光质诱导下花青素积累部位并不相同:(1)蓝光诱导花青素合成主要集中在下胚轴的上部;(2)UV-B诱导在上部和中部;(3)UV-A诱导在中下部。同时,蓝光+UV-B复合光的照射会产生增益效应,而其他光质的组合并没有这种现象。UV-A及蓝光+UV-B复合光可以诱导成熟津田芜菁膨大的肉质根表皮花青素积累。
     2CHS家族基因的克隆及短波长光质诱导下的表达特性分析
     利用Southern杂交确认津田芜菁基因组中至少存在六个CHS基因拷贝,利用RT-PCR扩增获得BrCHS5和BrCHS6基因的全长克隆。加上本实验室前期工作中克隆获得的BrCHS1-4基因,在获得的六个CHS基因中,BrCHS1,4,5受光诱导表达,而其余三个没有光反应。BrCHSl,4,5特异地受UV-A及蓝光+UV-B复合光诱导在津田芜菁幼苗下胚轴的中下部表达,这与色素积累的部位保持一致。其中BrCHS5的表达量随光照时间延长及光照强度增加而线性积累,而BrCHS4受蓝光+UV-B诱导表达量最高。相反的,BrCHS基因在蓝光诱导下仅在下胚轴上部微弱表达。同时CHS与DFR基因在成熟津田芜菁中的光诱导表达特性与花青素积累特性类似。
     3花青素合成相关R2R3类MYB因子的克隆及其他调节基因在短波长光质诱导下的表达特性分析
     利用PCR克隆获得6个可能参与花青素合成R2R3类MYB基因,实时荧光定量PCR结果表明:无论在津田芜菁幼苗还是成熟的肉质根表皮PAP1基因的表达均受光调控,且表达特性与花青素积累特性类似。同时MYB4, MYB12和MYB111基因在不同短波长光质诱导下在幼苗下胚轴不同部位表达模式具有特异性。BrTT8也受光诱导,表达量相对较低,表明其可能作为一个辅助因子参与花青素的合成。
     4花青素合成关键调节因子BrPAP1和BrTT8与BrCHS1启动子区Unit1元件的相互作用分析
     通过PCR克隆获得BrCHS4和BrCHS5基因启动子序列,加上本实验室前期工作中克隆获得的BrCHS1基因启动子,利用生物信息学的方法分析得到BrCHSl,4,5启动子区由ACE, RRE和MRE光反应元件组成的顺式作用元件CHS-Unit1。通过酵母单杂交实验证明,津田芜菁BrPAP1、BrTT8和BrHY5因子可以与BrCHS1启动子区CHS-Unit1元件发生特异性的相互作用。
     5不同短波长光质诱导下的转录组学分析
     利用RNA-seq技术分析了不同短波长光质处理6小时的津田芜菁转录组的变化。共获得50703个平均长度为1286.44bp的Unigene,其中有847个受UV-A特异诱导的基因,包含花青素合成相关基因CHS、F3H和DFR等,并含有MYB、bHLH和zinc finger等转录因子和其他信号转导因子,分别参与胁迫反应、含硫氨基酸合成代谢反应、应答化学物刺激和色素的合成等过程。利用MEME软件对UV-A特异诱导基因群的启动子区进行保守元件预测分析,获得了一个可能与UV-A反应相关的顺式作用元件,但其功能还需要相关试验进一步的验证。
     以上结果表明,津田芜菁花青素合成存在三种不同的光诱导反应:UV-A反应、蓝光+UV-B增益效应和蓝光/UV-A反应。UV-A诱导的花青素合成是不同于隐花色素或UV-B受体介导的花青素合成的新途径。
Short-wave length light, such as blue and ultraviolet light, plays an important role in plants. Blue light affects are known to affect the morphology of plants, including phototropism, chloroplast migration, stomatal opening and anthocyanin accumulation. Short-wave length (high-energy) UV light can physically damage DNA, RNA and proteins, while UV at low fluence rates were found to induce morphological changes, flavonoid production and the expression of defense-related genes. However, details of UV signaling pathways control anthocyanin synthesis are still unknown.
     The Brassica rapa'Tsuda'which anthocyanin biosynthesis is light-dependent was used as materials in this research. The investigations were carried out for various patterns of anthocyanin accumulation by different short-wave length light qualities; the cloning and expression of CHS family genes in response to different short-wave length light qualities; the cloning of anthocyanin biosynthesis related R2R3MYB factors and expression pattern of other regulatory genes in response to different short-wave length light qualities; the interactions of BrPAP1and BrTT8with Unitl element of BrCHS1promoter and the analysis of transcriptome in response to different short-wave length light qualities. The main results were obtained as below.
     1Different anthocyanin accumulation pattern of Brassica rapa'Tsuda'in response to different short-wave length light qualities.
     The effects of irradiating blue, UV-A, UV-B and a combination of the lights on anthocyanin accumulation at different hypocotyl positions were investigated in the seedlings of turnip 'Tsuda'. The location of anthocyanin accumulation varied depending on different light spectra. Stronger accumulation of anthocyanin was induced (1) at the upper hypocotyl positions by blue light;(2) mainly at the upper position, but also at the middle position by UV-B light; and (3) at the middle to lower position by UV-A light. There were synergistic effects between blue and UV-B, while such effects were not observed for the other light combinations. UV-A and blue+UV-B can induce anthocyanin biosynthesis in the swollen hypocotyls of turnip'Tsuda'.
     2Cloning and expression of CHS family genes in response to different short-wave length light qualities.
     Southern blot result showed that there were six copies of BrCHS genes in the genome of turnip'Tsuda'. The full length of BrCHS5and BrCHS6were amplified by RT-PCR. Among the six chalcone synthase (CHS) genes identified in this turnip, BrCHS1,4and5exhibited light-dependent expression patterns, while the other three showed no apparent light responses. The expression of BrCHS1,4and5were increased particularly by UV-A and blue+UV-B irradiation at the middle to lower hypocotyl positions, in accordance with anthocyanin accumulation patterns. BrCHS5increased in a linear manner as irradiation time and light intensity increased. The highest induction of gene expression was observed for BrCHS4upon blue+UV-B co-irradiation. In contrast, CHS expression was induced only slightly at higher hypocotyl positions by blue light. Meanwhile, the expression patterns of CHS and DFR gene induced by light were the same as anthocyanin accumulation in the swollen hypocotyls of turnip'Tsuda'.
     3Cloning of anthocyanin-related R2R3-type MYB transcription factor genes and expression analysis of regulatory genes in anthocyanin pathway in response to different short-wave length light qualities.
     Six R2R3-type MYB transcription factor genes were isolated by PCR, and the result of Real-time PCR showed that:PAP1was up regulated by light both in hypcotyls of seedling and swollen hypocotyls of turnip'Tsuda', and the expression pattern was the same as anthocyanin accumulation. Meanwhile, the MYB4, MYB12and MYB111genes exhibited differential expression patterns at different hypocotyl positions; these patterns were unique for different light spectra. BrTT8genes also induced by light, but had a lower expression. Which indicated that it might be a co-factor participating in anthocyanin biosynthesis.
     4Two key factors controlling anthocyanin synthesis:interaction of BrPAP1and BrTT8with Unit1element of BrCHSl promoter.
     BrCHS4and BrCHS5promoters were isolated by PCR, and the CHS-Unit1motif which consisted of the light-responsive element ACE、RRE and MRE in the BrCHS1,4,5promoters was predicted by bio informatics method. Yeast one-hybrid assay showed that BrPAP1, BrTT8and BrHY5had high binding activities to the CHS-Unit1motif of the BrCHSl promoter.
     5Transcriptome induced by different short-wave length light qualities.
     Transcriptome changes of6hours'different short-wave length light qualities treatment with Brassica rapa'Tsuda'were analyzed by the RNA-seq.50703Unigene with average length of1286.44bp were obtained. Among them,847were specifically induced by UV-A, included anthocyanin synthesis genes CHS, F3H and DFR, and also contained MYB, bHLH, zinc finger and other signal transduction factors. These genes were involved in response to stress, sulfur amino acid biosynthetic process, response to chemical stimulus and pigment biosynthetic process respectively. One conservative element was predicted from promoter of genes in UV-A-specific cluster by MEME program, but further analysis is needed to confirm the functions of it.
     These results demonstrate that there is a distinct UV-A response, blue+UV-B synergistic response and blue/UV-A light response for anthocyanin biosynthesis in turnip. UV-A light- dependent anthocyanin biosynthesis appeared to be regulated in a manner that is distinct from that mediated by cryptochromes and UV-B photoreceptors.
引文
[1]T. Shinomura, A. Nagatani, J. Chory, M. Furuya. The Induction of Seed Germination in Arabidopsis Thaliana Is Regulated Principally by Phytochrome B and Secondarily by Phytochrome A. Plant Physiol.1994,104 (2):363-371
    [2]M. Ahmad, A.R. Cashmore. Hy4 Gene of A. Thaliana Encodes a Protein with Characteristics of a Blue-Light Photoreceptor. Nature.1993,366 (6451):162-166
    [3]J.J. Casal, H. Boccalandro. Co-Action between Phytochrome B and Hy4 in Arabidopsis Thaliana. Planta.1995,197 (2):213-218
    [4]P.R. Robson, H. Smith. Genetic and Transgenic Evidence That Phytochromes a and B Act to Modulate the Gravitropic Orientation of Arabidopsis Thaliana Hypocotyls. Plant Physiol.1996, 110(1):211-216
    [5]C.W. Whippo, R.P. Hangarter. Second Positive Phototropism Results from Coordinated Co-Action of the Phototropins and Cryptochromes. Plant Physiol.2003,132 (3):1499-1507
    [6]T. Kinoshita, M. Doi, N. Suetsugu, T. Kagawa, M. Wada, K. Shimazaki. Phot1 and Phot2 Mediate Blue Light Regulation of Stomatal Opening. Nature.2001,414 (6864):656-660
    [7]C. Galen, J.J. Rabenold, E. Liscum. Functional Ecology of a Blue Light Photoreceptor:Effects of Phototropin-1 on Root Growth Enhance Drought Tolerance in Arabidopsis Thaliana. New Phytol.2007,173 (1):91-99
    [8]J.A. Jackson, G.I. Jenkins. Extension-Growth Responses and Expression of Flavonoid Biosynthesis Genes in the Arabidopsis Hy4 Mutant. Planta.1995,197 (2):233-239
    [9]H. Ueoka-Nakanishi, T. Yamashino, K. Ishida, M. Kamioka, N. Nakamichi, T. Mizuno. Molecular Mechanisms of Circadian Rhythm in Lotus Japonicus and Arabidopsis Thaliana Are Sufficiently Compatible to Regulate Heterologous Core Clock Genes Robustly. Biosci Biotechnol Biochem.2012,76 (12):2332-2334
    [10]D.J. Bagnall, R.W. King, R.P. Hangarter. Blue-Light Promotion of Flowering Is Absent in Hy4 Mutants of Arabidopsis. Planta.1996,200 (2):278-280
    [11]M.N. Merzlyak, O.B. Chivkunova. Light-Stress-Induced Pigment Changes and Evidence for Anthocyanin Photoprotection in Apples. J Photochem Photobiol B.2000,55 (2-3):155-163
    [12]S.O. Duke, S.B. Fox, A.W. Naylor. Photosynthetic Independence of Light-Induced Anthocyanin Formation in Zea Seedlings. Plant Physiol.1976,57 (2):192-196
    [13]M. Ahmad, C. Lin, A.R. Cashmore. Mutations Throughout an Arabidopsis Blue-Light Photoreceptor Impair Blue-Light-Responsive Anthocyanin Accumulation and Inhibition of Hypocotyl Elongation. Plant J.1995,8 (5):653-658
    [14]T. Toguri, N. Umemoto, O. Kobayashi, T. Ohtani. Activation of Anthocyanin Synthesis Genes by White Light in Eggplant Hypocotyl Tissues, and Identification of an Inducible P-450 Cdna. Plant Mol Biol.1993,23 (5):933-946
    [15]W.E. Glassgen, A. Rose, J. Madlung, W. Koch, J. Gleitz, H.U. Seitz. Regulation of Enzymes Involved in Anthocyanin Biosynthesis in Carrot Cell Cultures in Response to Treatment with Ultraviolet Light and Fungal Elicitors. Planta.1998,204 (4):490-498
    [16]Z.Z. Gong, M. Yamazaki, K. Saito. A Light-Inducible Myb-Like Gene That Is Specifically Expressed in Red Perilla Frutescens and Presumably Acts as a Determining Factor of the Anthocyanin Forma. Mol Gen Genet.1999,262 (1):65-72
    [17]H. Kurata, A. Mochizuki, N. Okuda, M. Seki, S. Furusaki. Intermittent Light Irradiation with Second-or Hour-Scale Periods Controls Anthocyanin Production by Strawberry Cells*. Enzyme Microb Technol.2000,26 (8):621-629
    [18]N.W. Albert, D.H. Lewis, H. Zhang, L.J. Irving, RE. Jameson, K.M. Davies. Light-Induced Vegetative Anthocyanin Pigmentation in Petunia. J Exp Bot.2009,60 (7):2191-2202
    [19]A. Eppel, N. Keren, E. Salomon, S. Volis, S. Rachmilevitch. The Response of Hordeum Spontaneum Desert Ecotype to Drought and Excessive Light Intensity Is Characterized by Induction of 02 Dependent Photochemical Activity and Anthocyanin Accumulation. Plant Sci. 2013,201-202:74-80
    [20]M. Mori, K. Yoshida, Y. Ishigaki, T. Matsunaga, O. Nikaido, K. Kameda, T. Kondo. Uv-B Protective Effect of a Polyacylated Anthocyanin, Hba, in Flower Petals of the Blue Morning Glory, Ipomoea Tricolor Cv. Heavenly Blue. Bioorg Med Chem.2005,13 (6):2015-2020
    [21]B. Zhou, Y. Li, Z. Xu, H. Yan, S. Homma, S. Kawabata. Ultraviolet a-Specific Induction of Anthocyanin Biosynthesis in the Swollen Hypocotyls of Turnip (Brassica Rapa). J Exp Bot. 2007,58(7):1771-1781
    [22]C. Kami, S. Lorrain, P. Hornitschek, C. Fankhauser. Light-Regulated Plant Growth and Development. Curr Top Dev Biol.2010,91:29-66
    [23]P.H. Quail. Phytochromes. Curr Biol.2010,20 (12):R504-507
    [24]T. Kleine, P. Lockhart, A. Batschauer. An Arabidopsis Protein Closely Related to Synechocystis Cryptochrome Is Targeted to Organelles. Plant J.2003,35 (1):93-103
    [25]X. Yu, H. Liu, J. Klejnot, C. Lin. The Cryptochrome Blue Light Receptors. Arabidopsis Book. 2010,8:e0135
    [26]I. Chaves, R. Pokorny, M. Byrdin, N. Hoang, T. Ritz, K. Brettel, L.O. Essen, G.T. van der Horst, A. Batschauer, M. Ahmad. The Cryptochromes:Blue Light Photoreceptors in Plants and Animals. Annu Rev Plant Biol.2011,62:335-364
    [27]J.M. Christie, T.E. Swartz, R.A. Bogomolni, W.R. Briggs. Phototropin Lov Domains Exhibit Distinct Roles in Regulating Photoreceptor Function. Plant J.2002,32 (2):205-219
    [28]D.C. Nelson, J. Lasswell, L.E. Rogg, M.A. Cohen, B. Bartel. Fkfl, a Clock-Controlled Gene That Regulates the Transition to Flowering in Arabidopsis. Cell.2000,101 (3):331-340
    [29]D.E. Somers, T.F. Schultz, M. Milnamow, S.A. Kay. Zeitlupe Encodes a Novel Clock-Associated Pas Protein from Arabidopsis. Cell.2000,101 (3):319-329
    [30]T.F. Schultz, T. Kiyosue, M. Yanovsky, M. Wada, S.A. Kay. A Role for Lkp2 in the Circadian Clock of Arabidopsis. Plant Cell.2001,13 (12):2659-2670
    [31]E. Kaiserli, G.I. Jenkins. Uv-B Promotes Rapid Nuclear Translocation of the Arabidopsis Uv-B Specific Signaling Component Uvr8 and Activates Its Function in the Nucleus. Plant Cell. 2007,19 (8):2662-2673
    [32]L. Rizzini, J.J. Favory, C. Cloix, D. Faggionato, A. O'Hara, E. Kaiserli, R. Baumeister, E. Schafer, F. Nagy, G.I. Jenkins, R. Ulm. Perception of Uv-B by the Arabidopsis Uvr8 Protein. Science.2011,332 (6025):103-106
    [33]H.A. Borthwick, S.B. Hendricks, M.W. Parker, E.H. Toole, V.K. Toole. A Reversible Photoreaction Controlling Seed Germination. Proc Natl Acad Sci U S A.1952,38 (8):662-666
    [34]K. Dehesh, C. Franci, B.M. Parks, K.A. Seeley, T.W. Short, J.M. Tepperman, P.H. Quail. Arabidopsis Hy8 Locus Encodes Phytochrome A. Plant Cell.1993,5 (9):1081-1088
    [35]H.E. Boccalandro, M.L. Rugnone, J.E. Moreno, E.L. Ploschuk, L. Serna, M.J. Yanovsky, J.J. Casal. Phytochrome B Enhances Photosynthesis at the Expense of Water-Use Efficiency in Arabidopsis. Plant Physiol.2009,150 (2):1083-1092
    [36]J. Shin, E. Park, G. Choi. Pif3 Regulates Anthocyanin Biosynthesis in an Hy5-Dependent Manner with Both Factors Directly Binding Anthocyanin Biosynthetic Gene Promoters in Arabidopsis. Plant J.2007,49 (6):981-994
    [37]D.E. Somers, P.F. Devlin, S.A. Kay. Phytochromes and Cryptochromes in the Entrainment of the Arabidopsis Circadian Clock. Science.1998,282 (5393):1488-1490
    [38]M.J. Yanovsky, S.A. Kay. Molecular Basis of Seasonal Time Measurement in Arabidopsis. Nature.2002,419 (6904):308-312
    [39]S. Kircher, L. Kozma-Bognar, L. Kim, E. Adam, K. Harter, E. Schafer, F. Nagy. Light Quality-Dependent Nuclear Import of the Plant Photoreceptors Phytochrome a and B. Plant Cell.1999, 11 (8):1445-1456
    [40]C. Fankhauser, J. Chory. Light Control of Plant Development. Annu Rev Cell Dev Biol.1997, 13:203-229
    [41]M.E. Hudson. The Genetics of Phytochrome Signalling in Arabidopsis. Semin Cell Dev Biol. 2000,11 (6):475-483
    [42]M. Ni, J.M. Tepperman, P.H. Quail. Pif3, a Phytochrome-Interacting Factor Necessary for Normal Photoinduced Signal Transduction, Is a Novel Basic Helix-Loop-Helix Protein. Cell. 1998,95 (5):657-667
    [43]P.H. Quail. Phytochrome-Interacting Factors. Semin Cell Dev Biol.2000,11 (6):457-466
    [44]J.F. Martinez-Garcia, E. Huq, P.H. Quail. Direct Targeting of Light Signals to a Promoter Element-Bound Transcription Factor. Science.2000,288 (5467):859-863
    [45]J. Kim, H. Yi, G. Choi, B. Shin, P.S. Song, G. Choi. Functional Characterization of Phytochrome Interacting Factor 3 in Phytochrome-Mediated Light Signal Transduction. Plant Cell.2003,15 (10):2399-2407
    [46]L.H. Ang, S. Chattopadhyay, N. Wei, T. Oyama, K. Okada, A. Batschauer, X.W. Deng. Molecular Interaction between Copl and Hy5 Defines a Regulatory Switch for Light Control of Arabidopsis Development. Mol Cell.1998,1 (2):213-222
    [47]P.H. Quail. Phytochrome Photosensory Signalling Networks. Nat Rev Mol Cell Biol.2002,3 (2):85-93
    [48]S. El-Din El-Assal, C. Alonso-Blanco, A.J. Peeters, C. Wagemaker, J.L. Weller, M. Koornneef. The Role of Cryptochrome 2 in Flowering in Arabidopsis. Plant Physiol.2003,133 (4):1504-1516
    [49]P.F. Devlin, S.A. Kay. Cryptochromes Are Required for Phytochrome Signaling to the Orcadian Clock but Not for Rhythmicity. Plant Cell.2000,12 (12):2499-2510
    [50]J. Mao, Y.C. Zhang, Y. Sang, Q.H. Li, H.Q. Yang. From the Cover:A Role for Arabidopsis Cryptochromes and Copl in the Regulation of Stomatal Opening. Proc Natl Ac ad Sci U S A. 2005,102 (34):12270-12275
    [51]M. Chatterjee, P. Sharma, J.P. Khurana. Cryptochrome 1 from Brassica Napus Is up-Regulated by Blue Light and Controls Hypocotyl/Stem Growth and Anthocyanin Accumulation. Plant Physiol.2006,141(1):61-74
    [52]A.L. Mancinelli, F. Rossi, A. Moroni. Cryptochrome, Phytochrome, and Anthocyanin Production. Plant Physiol.1991,96 (4):1079-1085
    [53]F. Sponga, G.F. Deitzer, A.L. Mancinelli. Cryptochrome, Phytochrome, and the Photoregulation of Anthocyanin Production under Blue Light. Plant Physiol.1986,82 (4): 952-955
    [54]C.A. Brautigam, B.S. Smith, Z. Ma, M. Palnitkar, D.R. Tomchick, M. Machius, J. Deisenhofer. Structure of the Photolyase-Like Domain of Cryptochrome 1 from Arabidopsis Thaliana. Proc Natl Acad Sci US A.2004,101 (33):12142-12147
    [55]A. Moglich, X. Yang, R.A. Ayers, K. Moffat. Structure and Function of Plant Photoreceptors. Annu Rev Plant Biol.2010,61:21-47
    [56]E. Liscum, D.W. Hodgson, T.J. Campbell. Blue Light Signaling through the Cryptochromes and Phototropins. So That's What the Blues Is All About. Plant Physiol.2003,133 (4):1429- 1436
    [57]H. Liu, B. Liu, C. Zhao, M. Pepper, C. Lin. The Action Mechanisms of Plant Cryptochromes. Trends Plant Sci.2011,16 (12):684-691
    [58]H. Liu, X. Yu, K. Li, J. Klejnot, H. Yang, D. Lisiero, C. Lin. Photoexcited Cry2 Interacts with Cibl to Regulate Transcription and Floral Initiation in Arabidopsis. Science.2008,322 (5907): 1535-1539
    [59]L.J. Liu, Y.C. Zhang, Q.H. Li, Y. Sang, J. Mao, H.L. Lian, L. Wang, H.Q. Yang. Copl-Mediated Ubiquitination of Constans Is Implicated in Cryptochrome Regulation of Flowering in Arabidopsis. Plant Cell.2008,20 (2):292-306
    [60]W.R. Briggs, J.M. Christie. Phototropins 1 and 2:Versatile Plant Blue-Light Receptors. Trends Plant Sci.2002,7 (5):204-210
    [61]T. Sakai, T. Kagawa, M. Kasahara, T.E. Swartz, J.M. Christie, W.R. Briggs, M. Wada, K. Okada. Arabidopsis Nphl and Npl1:Blue Light Receptors That Mediate Both Phototropism and Chloroplast Relocation. Proc Natl Acad Sci U S A.2001,98 (12):6969-6974
    [62]K.M. Folta, E.P. Spalding. Unexpected Roles for Cryptochrome 2 and Phototropin Revealed by High-Resolution Analysis of Blue Light-Mediated Hypocotyl Growth Inhibition. Plant J. 2001,26 (5):471-478
    [63]M. Ohgishi, K. Saji, K. Okada, T. Sakai. Functional Analysis of Each Blue Light Receptor, Cryl, Cry2, Photl, and Phot2, by Using Combinatorial Multiple Mutants in Arabidopsis. Proc Natl Acad Sci U S A.2004,101 (8):2223-2228
    [64]M. Wada, T. Kagawa, Y. Sato. Chloroplast Movement. Annu Rev Plant Biol.2003,54:455-468
    [65]S. Inoue, A. Takemiya, K. Shimazaki. Phototropin Signaling and Stomatal Opening as a Model Case. Curr Opin Plant Biol.2010,13 (5):587-593
    [66]A. Takemiya, T. Kinoshita, M. Asanuma, K. Shimazaki. Protein Phosphatase 1 Positively Regulates Stomatal Opening in Response to Blue Light in Vicia Faba. Proc Natl Acad Sci U S A.2006,103 (36):13549-13554
    [67]S. Sullivan, C.E. Thomson, E. Kaiserli, J.M. Christie. Interaction Specificity of Arabidopsis 14-3-3 Proteins with Phototropin Receptor Kinases. FEBS Lett.2009,583 (13):2187-2193
    [68]A. Baudry, S. Ito, Y.H. Song, A.A. Strait, T. Kiba, S. Lu, R. Henriques, J.L. Pruneda-Paz, N.H. Chua, E.M. Tobin, S.A. Kay, T. Imaizumi. F-Box Proteins Fkfl and Lkp2 Act in Concert with Zeitlupe to Control Arabidopsis Clock Progression. Plant Cell.2010,22 (3):606-622
    [69]T. Takase, Y. Nishiyama, H. Tanihigashi, Y. Ogura, Y. Miyazaki, Y. Yamada, T. Kiyosue. Lov Kelch Protein2 and Zeitlupe Repress Arabidopsis Photoperiodic Flowering under Non-inductive Conditions, Dependent on Flavin-Binding Kelch Repeat F-Boxl. Plant J.2011,67 (4):608-621
    [70]D.E. Somers, W.Y. Kim, R. Geng. The F-Box Protein Zeitlupe Confers Dosage-Dependent Control on the Circadian Clock, Photomorphogenesis, and Flowering Time. Plant Cell.2004, 16 (3):769-782
    [71]T. Imaizumi, H.G. Tran, T.E. Swartz, W.R. Briggs, S.A. Kay. Fkfl Is Essential for Photoperiodic-Specific Light Signalling in Arabidopsis. Nature.2003,426 (6964):302-306
    [72]M. Yasuhara, S. Mitsui, H. Hirano, R. Takanabe, Y. Tokioka, N. Ihara, A. Komatsu, M. Seki, K. Shinozaki, T. Kiyosue. Identification of Ask and Clock-Associated Proteins as Molecular Partners of Lkp2 (Lov Kelch Protein 2) in Arabidopsis. J Exp Bot.2004,55 (405):2015-2027
    [73]W.Y. Kim, S. Fujiwara, S.S. Suh, J. Kim, Y. Kim, L. Han, K. David, J. Putterill, H.G. Nam, D.E. Somers. Zeitlupe Is a Circadian Photoreceptor Stabilized by Gigantea in Blue Light. Nature.2007,449 (7160):356-360
    [74]S. Ito, Y.H. Song, T. Imaizumi. Lov Domain-Containing F-Box Proteins:Light-Dependent Protein Degradation Modules in Arabidopsis. Mol Plant.2012,5 (3):573-582
    [75]C. Lang-Mladek, L. Xie, N. Nigam, N. Chumak, M. Binkert, S. Neubert, M.T. Hauser. Uv-B Signaling Pathways and Fluence Rate Dependent Transcriptional Regulation of Ariadne12. Physiol Plant.2012,145 (4):527-539
    [76]J.J. Wargent, V.C. Gegas, G.I. Jenkins, J.H. Doonan, N.D. Paul. Uvr8 in Arabidopsis Thaliana Regulates Multiple Aspects of Cellular Differentiation During Leaf Development in Response to Ultraviolet B Radiation. New Phytol.2009,183 (2):315-326
    [77]M. Conte, S. de Simone, S.J. Simmons, C.L. Ballare, A.E. Stapleton. Chromosomal Loci Important for Cotyledon Opening under Uv-B in Arabidopsis Thaliana. BMC Plant Biol.2010, 10:112
    [78]B. Feher, L. Kozma-Bognar, E. Kevei, A. Hajdu, M. Binkert, S.J. Davis, E. Schafer, R. Ulm, F. Nagy. Functional Interaction of the Circadian Clock and Uv Resistance Locus 8-Controlled Uv-B Signaling Pathways in Arabidopsis Thaliana. Plant J.2011,67 (1):37-48
    [79]M. Serrano, K. Kanehara, M. Torres, K. Yamada, N. Tintor, E. Kombrink, P. Schulze-Lefert, Y. Saijo. Repression of Sucrose/Ultraviolet B Light-Induced Flavonoid Accumulation in Microbe-Associated Molecular Pattern-Triggered Immunity in Arabidopsis. Plant Physiol. 2012,158(1):408-422
    [80]D. Wu, Q. Hu, Z. Yan, W. Chen, C. Yan, X. Huang, J. Zhang, P. Yang, H. Deng, J. Wang, X. Deng, Y. Shi. Structural Basis of Ultraviolet-B Perception by Uvr8. Nature.2012,484 (7393): 214-219
    [81]M. Heijde, R. Ulm. Reversion of the Arabidopsis Uv-B Photoreceptor Uvr8 to the Homodimeric Ground State. Proc Natl Acad Sci U S A.2013,110 (3):1113-1118
    [82]M. Heijde, R. Ulm. Uv-B Photoreceptor-Mediated Signalling in Plants. Trends Plant Sci.2012, 17 (4):230-237
    [83]B.A. Brown, L.R. Headland, G.I. Jenkins. Uv-B Action Spectrum for Uvr8-Mediated Hy5 Transcript Accumulation in Arabidopsis. Photochem Photobiol.2009,85 (5):1147-1155
    [84]C. Cloix, E. Kaiserli, M. Heilmann, K.J. Baxter, B.A. Brown, A. O'Hara, B.O. Smith, J.M. Christie, G.I. Jenkins. C-Terminal Region of the Uv-B Photoreceptor Uvr8 Initiates Signaling through Interaction with the Cop1 Protein. Proc Natl Acad Sci U S A.2012,109 (40):16366-16370
    [85]H. Gruber, M. Heijde, W. Heller, A. Albert, H.K. Seidlitz, R. Ulm. Negative Feedback Regulation of Uv-B-Induced Photomorphogenesis and Stress Acclimation in Arabidopsis. Proc Natl Acad Sci U S A.2010,107 (46):20132-20137
    [86]H.K. Wade, T.N. Bibikova, W. J. Valentine, G.I. Jenkins. Interactions within a Network of Phytochrome, Cryptochrome and Uv-B Phototransduction Pathways Regulate Chalcone Synthase Gene Expression in Arabidopsis Leaf Tissue. Plant J.2001,25 (6):675-685
    [87]S.D. Castellarin, A. Pfeiffer, P. Sivilotti, M. Degan, E. Peterlunger, D.I.G. G. Transcriptional Regulation of Anthocyanin Biosynthesis in Ripening Fruits of Grapevine under Seasonal Water Deficit. Plant Cell Environ.2007,30 (11):1381-1399
    [88]Y. Zhang, S. Zheng, Z. Liu, L. Wang, Y. Bi. Both Hy5 and Hyh Are Necessary Regulators for Low Temperature-Induced Anthocyanin Accumulation in Arabidopsis Seedlings. J Plant Physiol.2011,168 (4):367-374
    [89]K. Lorenc-Kukula, S. Jafra, J. Oszmianski, J. Szopa. Ectopic Expression of Anthocyanin 5-O-Glucosyltransferase in Potato Tuber Causes Increased Resistance to Bacteria. J Agric Food Chem.2005,53 (2):272-281
    [90]M.G. Bidart-Bouzat, A. Imeh-Nathamel. Global Change Effects on Plant Chemical Defenses against Insect Herbivores. J Integr Plant Biol.2008,50 (11):1339-1354
    [91]K. Lin-Wang, K. Bolitho, K. Grafton, A. Kortstee, S. Karunairetnam, T.K. McGhie, R.V. Espley, R.P. Hellens, A.C. Allan. An R2r3 Myb Transcription Factor Associated with Regulation of the Anthocyanin Biosynthetic Pathway in Rosaceae. BMC Plant Biol.2010,10: 50
    [92]T.A. Holton, E.C. Cornish. Genetics and Biochemistry of Anthocyanin Biosynthesis. Plant Cell.1995,7 (7):1071-1083
    [93]K. Petroni, C. Tonelli. Recent Advances on the Regulation of Anthocyanin Synthesis in Reproductive Organs. Plant Sci.2011,181 (3):219-229
    [94]T. Arioli, P.A. Howies, J.J. Weinman, B.G. Rolfe. In Trifolium Subterraneum, Chalcone Synthase Is Encoded by a Multigene Family. Gene.1994,138 (1-2):79-86
    [95]T.B. Ryder, S.A. Hedrick, J.N. Bell, X.W. Liang, S.D. Clouse, C.J. Lamb. Organization and Differential Activation of a Gene Family Encoding the Plant Defense Enzyme Chalcone Synthase in Phaseolus Vulgaris. Mol Gen Genet.1987,210 (2):219-233
    [96]J.H. Jeon, H.S. Kim, K.H. Choi, Y.H. Joung, H. Joung, S.M. Byun. Cloning and Characterization of One Member of the Chalcone Synthase Gene Family from Solanum Tuberosum L. Biosci Biotechnol Biochem.1996,60 (11):1907-1910
    [97]P. Franken, U. Niesbach-Klosgen, U. Weydemann, L. Marechal-Drouard, H. Saedler, U. Wienand. The Duplicated Chalcone Synthase Genes C2 and Whp (White Pollen) of Zea Mays Are Independently Regulated; Evidence for Translational Control of Whp Expression by the Anthocyanin Intensifying Gene In. EMBO J.1991,10 (9):2605-2612
    [98]C.B. Della Vedova, R. Lorbiecke, H. Kirsch, M.B. Schulte, K. Scheets, L.M. Borchert, B.E. Scheffler, U. Wienand, K.C. Cone, J.A. Birchler. The Dominant Inhibitory Chalcone Synthase Allele C2-Idf (Inhibitor Diffuse) from Zea Mays (L.) Acts Via an Endogenous Rna Silencing Mechanism. Genetics.2005,170 (4):1989-2002
    [99]W. Rohde, S. Dorr, F. Salamini, D. Becker. Structure of a Chalcone Synthase Gene from Hordeum Vulgare. Plant Mol Biol.1991,16(6):1103-1106
    [100]R.E. Koes, R. Van Blokland, F. Quattrocchio, A.J. Van Tunen, J. Mol. Chalcone Synthase Promoters in Petunia Are Active in Pigmented and Unpigmented Cell Types. Plant Cell.1990, 2 (5):379-392
    [101]H. Li, J. Qiu, F. Chen, X. Lv, C. Fu, D. Zhao, X. Hua, Q. Zhao. Molecular Characterization and Expression Analysis of Dihydroflavonol 4-Reductase (Dfr) Gene in Saussurea Medusa. Mol Biol Rep.2012,39 (3):2991-2999
    [102]B. Charrier, C. Coronado, A. Kondorosi, P. Ratet. Molecular Characterization and Expression of Alfalfa (Medicago Sativa L.) Flavanone-3-Hydroxylase and Dihydroflavonol-4-Reductase Encoding Genes. Plant Mol Biol.1995,29 (4):773-786
    [103]Y. Tanaka, Y. Fukui, M. Fukuchi-Mizutani, T.A. Holton, E. Higgins, T. Kusumi. Molecular Cloning and Characterization of Rosa Hybrida Dihydroflavonol 4-Reductase Gene. Plant Cell Physiol.1995,36 (6):1023-1031
    [104]G. Fuglevand, J.A. Jackson, G.I. Jenkins. Uv-B, Uv-a, and Blue Light Signal Transduction Pathways Interact Synergistically to Regulate Chalcone Synthase Gene Expression in Arabidopsis. Plant Cell.1996,8 (12):2347-2357
    [105]M. Ito, Y. Ichinose, H. Kato, T. Shiraishi, T. Yamada. Molecular Evolution and Functional Relevance of the Chalcone Synthase Genes of Pea. Mol Gen Genet.1997,255 (1):28-37
    [106]U. Hartmann, W.J. Valentine, J.M. Christie, J. Hays, G.I. Jenkins, B. Weisshaar. Identification of Uv/Blue Light-Response Elements in the Arabidopsis Thaliana Chalcone Synthase Promoter Using a Homologous Protoplast Transient Expression System. Plant Mol Biol.1998, 36 (5):741-754
    [107]S. Lipphardt, R. Brettschneider, F. Kreuzaler, J. Schell, J.L. Dangl. Uv-Inducible Transient Expression in Parsley Protoplasts Identifies Regulatory Cis-Elements of a Chimeric Antirrhinum Majus Chalcone Synthase Gene. EMBO J.1988,7(13):4027-4033
    [108]P. Schulze-Lefert, M. Becker-Andre, W. Schulz, K. Hahlbrock, J.L. Dangl. Functional Architecture of the Light-Responsive Chalcone Synthase Promoter from Parsley. Plant Cell. 1989,1 (7):707-714
    [109]A. Block, J.L. Dangl, K. Hahlbrock, P. Schulze-Lefert. Functional Borders, Genetic Fine Structure, and Distance Requirements of Cis Elements Mediating Light Responsiveness of the Parsley Chalcone Synthase Promoter. Proc Natl Acad Sci U S A.1990,87 (14):5387-5391
    [110]T. Merkle, H. Frohnmeyer, P. Schulze-Lefert, J.L. Dangl, K. Hahlbrock, E. Schafer. Analysis of the Parsley Chalcone-Synthase Promoter in Response to Different Light Qualities. Planta. 1994,193 (2):275-282
    [111]G. Kalbin, A. Strid, H. Frohnmeyer. Transcriptional Activation of the Parsley Chalcone Synthase Promoter in Heterologous Pea and Yeast Systems. Plant Physiol Biochem.1999,37 (11):821-829
    [112]U. Hartmann, M. Sagasser, F. Mehrtens, R. Stracke, B. Weisshaar. Differential Combinatorial Interactions of Cis-Acting Elements Recognized by R2r3-Myb, Bzip, and Bhlh Factors Control Light-Responsive and Tissue-Specific Activation of Phenylpropanoid Biosynthesis Genes. Plant Mol Biol.2005,57 (2):155-171
    [113]A. Baudry, M.A. Heim, B. Dubreucq, M. Caboche, B. Weisshaar, L. Lepiniec. Tt2, Tt8, and Ttgl Synergistically Specify the Expression of Banyuls and Proanthocyanidin Biosynthesis in Arabidopsis Thaliana. Plant J.2004,39 (3):366-380
    [114]N. Nesi, C. Jond, I. Debeaujon, M. Caboche, L. Lepiniec. The Arabidopsis Tt2 Gene Encodes an R2r3 Myb Domain Protein That Acts as a Key Determinant for Proanthocyanidin Accumulation in Developing Seed. Plant Cell.2001,13 (9):2099-2114
    [115]F. Zhang, A. Gonzalez, M. Zhao, C.T. Payne, A. Lloyd. A Network of Redundant Bhlh Proteins Functions in All Ttgl-Dependent Pathways of Arabidopsis. Development.2003,130 (20):4859-4869
    [116]L.L. Zhou, M.Z. Shi, D.Y. Xie. Regulation of Anthocyanin Biosynthesis by Nitrogen in Ttgl-G13/Tt8-Pap1-Programmed Red Cells of Arabidopsis Thaliana. Planta.2012,236 (3):825-837
    [117]A. Baudry, M. Caboche, L. Lepiniec. Tt8 Controls Its Own Expression in a Feedback Regulation Involving Ttgl and Homologous Myb and Bhlh Factors, Allowing a Strong and Cell-Specific Accumulation of Flavonoids in Arabidopsis Thaliana. Plant J.2006,46 (5):768- 779
    [118]M. Sagasser, G.H. Lu, K. Hahlbrock, B. Weisshaar. A. Thaliana Transparent Testa 1 Is Involved in Seed Coat Development and Defines the Wip Subfamily of Plant Zinc Finger Proteins. Genes Dev.2002,16 (1):138-149
    [119]W.A. Peer, D.E. Brown, B.W. Tague, G.K. Muday, L. Taiz, A.S. Murphy. Flavonoid Accumulation Patterns of Transparent Testa Mutants of Arabidopsis. Plant Physiol.2001,126 (2):536-548
    [120]G. Chen, W. Deng, F. Peng, M. Truksa, S. Singer, C.L. Snyder, E. Mietkiewska, R.J. Weselake. Brassica Napus Tt16 Homologs with Different Genomic Origins and Expression Levels Encode Proteins That Regulate a Broad Range of Endothelium-Associated Genes at the Transcriptional Level. Plant J.2013
    [121]H.F. Zhu, K. Fitzsimmons, A. Khandelwal, R.G. Kranz. Cpc, a Single-Repeat R3 Myb, Is a Negative Regulator of Anthocyanin Biosynthesis in Arabidopsis. Mol Plant.2009,2 (4):790-802
    [122]R. Stracke, M. Werber, B. Weisshaar. The R2r3-Myb Gene Family in Arabidopsis Thaliana. Curr Opin Plant Biol.2001,4 (5):447-456
    [123]R. Stracke, H. Ishihara, G. Huep, A. Barsch, F. Mehrtens, K. Niehaus, B. Weisshaar. Differential Regulation of Closely Related R2r3-Myb Transcription Factors Controls Flavonol Accumulation in Different Parts of the Arabidopsis Thaliana Seedling. Plant J.2007,50 (4): 660-677
    [124]K. Matsui, H. Tanaka, M. Ohme-Takagi. Suppression of the Biosynthesis of Proanthocyanidin in Arabidopsis by a Chimeric Pap1 Repressor. Plant Biotechnol J.2004,2 (6):487-493
    [125]J.O. Borevitz, Y. Xia, J. Blount, R.A. Dixon, C. Lamb. Activation Tagging Identifies a Conserved Myb Regulator of Phenylpropanoid Biosynthesis. Plant Cell.2000,12 (12):2383-2394
    [126]A. Gonzalez, M. Zhao, J.M. Leavitt, A.M. Lloyd. Regulation of the Anthocyanin Biosynthetic Pathway by the Ttgl/Bhlh/Myb Transcriptional Complex in Arabidopsis Seedlings. Plant J.2008,53 (5):814-827
    [127]C. Dubos, J. Le Gourrierec, A. Baudry, G. Huep, E. Lanet, I. Debeaujon, J.M. Routaboul, A. Alboresi, B. Weisshaar, L. Lepiniec. Mybl2 Is a New Regulator of Flavonoid Biosynthesis in Arabidopsis Thaliana. Plant J.2008,55 (6):940-953
    [128]K. Matsui, Y. Umemura, M. Ohme-Takagi. Atmybl2, a Protein with a Single Myb Domain, Acts as a Negative Regulator of Anthocyanin Biosynthesis in Arabidopsis. Plant J.2008,55 (6):954-967
    [129]L. Zhao, L. Gao, H. Wang, X. Chen, Y. Wang, H. Yang, C. Wei, X. Wan, T. Xia. The R2r3-Myb, Bhlh, Wd40, and Related Transcription Factors in Flavonoid Biosynthesis. Funct Integr Genomics.2012
    [130]A.M. Takos, F.W. Jaffe, S.R. Jacob, J. Bogs, S.P. Robinson, A.R. Walker. Light-Induced Expression of a Myb Gene Regulates Anthocyanin Biosynthesis in Red Apples. Plant Physiol. 2006,142 (3):1216-1232
    [131]J.T. Matus, R. Loyola, A. Vega, A. Pena-Neira, E. Bordeu, P. Arce-Johnson, J.A. Alcalde. Post-Veraison Sunlight Exposure Induces Myb-Mediated Transcriptional Regulation of Anthocyanin and Flavonol Synthesis in Berry Skins of Vitis Vinifera. J Exp Bot.2009,60 (3): 853-867
    [132]E. Cominelli, G Gusmaroli, D. Allegra, M. Galbiati, H.K. Wade, G.I. Jenkins, C. Tonelli. Expression Analysis of Anthocyanin Regulatory Genes in Response to Different Light Qualities in Arabidopsis Thaliana. J Plant Physiol.2008,165 (8):886-894
    [133]M.Z. Shi, D.Y. Xie. Features of Anthocyanin Biosynthesis in Pap1-D and Wild-Type Arabidopsis Thaliana Plants Grown in Different Light Intensity and Culture Media Conditions. Planta.2010,231 (6):1385-1400
    [134]D.D. Rowan, M. Cao, K. Lin-Wang, J.M. Cooney, D.J. Jensen, P.T. Austin, M.B. Hunt, C. Norling, R.P. Hellens, R.J. Schaffer, A.C. Allan. Environmental Regulation of Leaf Colour in Red 35s.Papl Arabidopsis Thaliana. New Phytol.2009,182 (1):102-115
    [135]H. Chen, Z. Liu, S. Gong, X. Wu, W.L. Taylor, R.W. Williams, S.G. Matta, B.M. Sharp. Genome-Wide Gene Expression Profiling of Nucleus Accumbens Neurons Projecting to Ventral Pallidum Using Both Microarray and Transcriptome Sequencing. Front Neurosci.2011, 5:98
    [136]CM. Small, GE. Carney, Q. Mo, M. Vannucci, A.G. Jones. A Microarray Analysis of Sex-and Gonad-Biased Gene Expression in the Zebrafish:Evidence for Masculinization of the Transcriptome. BMC Genomics.2009,10:579
    [137]A.E. Lockyer, J. Spinks, R.A. Kane, K.F. Hoffmann, J.M. Fitzpatrick, D. Rollinson, L.R. Noble, C.S. Jones. Biomphalaria Glabrata Transcriptome:Cdna Microarray Profiling Identifies Resistant-and Susceptible-Specific Gene Expression in Haemocytes from Snail Strains Exposed to Schistosoma Mansoni. BMC Genomics.2008,9:634
    [138]R.S. Seelan, A. Khalyfa, J. Lakshmanan, M.F. Casanova, R.N. Parthasarathy. Deciphering the Lithium Transcriptome:Microarray Profiling of Lithium-Modulated Gene Expression in Human Neuronal Cells. Neuroscience.2008,151 (4):1184-1197
    [139]S.G. Ralph, H. Yueh, M. Friedmann, D. Aeschliman, J.A. Zeznik, C.C. Nelson, Y.S. Butterfield, R. Kirkpatrick, J. Liu, S.J. Jones, M.A. Marra, C.J. Douglas, K. Ritland, J. Bohlmann. Conifer Defence against Insects:Microarray Gene Expression Profiling of Sitka Spruce (Picea Sitchensis) Induced by Mechanical Wounding or Feeding by Spruce Budworms (Choristoneura Occidentalis) or White Pine Weevils (Pissodes Strobi) Reveals Large-Scale Changes of the Host Transcriptome. Plant Cell Environ.2006,29 (8):1545-1570
    [140]W.A. Rensink, C.R. Buell. Microarray Expression Profiling Resources for Plant Genomics. Trends Plant Sci.2005,10 (12):603-609
    [141]A. Butte. The Use and Analysis of Microarray Data. Nat Rev Drug Discov.2002,1 (12):951-960
    [142]V.E. Velculescu, L. Zhang, B. Vogelstein, K.W. Kinzler. Serial Analysis of Gene Expression. Science.1995,270 (5235):484-487
    [143]U. Kannbley, K. Kapinya, U. Dirnagl, G. Trendelenburg. Improved Protocol for Sage Tag-to-Gene Allocation. Biotechniques.2003,34 (6):1212-1214,1216-1219
    [144]Z. Du, A.D. Scott, G.D. May. Amplification of High-Quantity Serial Analysis of Gene Expression Ditags and Improvement of Concatemer Cloning Efficiency. Biotechniques.2003, 35 (1):66-67,70-62
    [145]D.R. Ekman, W.W. Lorenz, A.E. Przybyla, N.L. Wolfe, J.F. Dean. Sage Analysis of Transcriptome Responses in Arabidopsis Roots Exposed to 2,4,6-Trinitrotoluene. Plant Physiol. 2003,133 (3):1397-1406
    [146]S. Brenner, M. Johnson, J. Bridgham, G. Golda, D.H. Lloyd, D. Johnson, S. Luo, S. McCurdy, M. Foy, M. Ewan, R. Roth, D. George, S. Eletr, G. Albrecht, E. Vermaas, S.R. Williams, K. Moon, T. Burcham, M. Pallas, R.B. DuBridge, J. Kirchner, K. Fearon, J. Mao, K. Corcoran. Gene Expression Analysis by Massively Parallel Signature Sequencing (Mpss) on Microbead Arrays. Nat Biotechnol.2000,18 (6):630-634
    [147]L. Liu, Y. Li, S. Li, N. Hu, Y. He, R. Pong, D. Lin, L. Lu, M. Law. Comparison of Next-Generation Sequencing Systems. J Biomed Biotechnol.2012,2012:251364
    [148]E.D. Hyman. A New Method of Sequencing DNA. Anal Biochem.1988,174 (2):423-436
    [149]D. Dressman, H. Yan, G. Traverso, K.W. Kinzler, B. Vogelstein. Transforming Single DNA Molecules into Fluorescent Magnetic Particles for Detection and Enumeration of Genetic Variations. Proc Natl Acad Sci U S A.2003,100 (15):8817-8822
    [150]S.C. Schuster. Next-Generation Sequencing Transforms Today's Biology. Nat Methods.2008, 5(1):16-18
    [151]H. Ruparel, L. Bi, Z. Li, X. Bai, D.H. Kim, N.J. Turro, J. Ju. Design and Synthesis of a 3'-O-Allyl Photocleavable Fluorescent Nucleotide as a Reversible Terminator for DNA Sequencing by Synthesis. Proc Natl Acad Sci U S A.2005,102 (17):5932-5937
    [152]T.S. Seo, X. Bai, D.H. Kim, Q. Meng, S. Shi, H. Ruparel, Z. Li, N.J. Turro, J. Ju. Four-Color DNA Sequencing by Synthesis on a Chip Using Photocleavable Fluorescent Nucleotides. Proc Natl Acad Sci U S A.2005,102 (17):5926-5931
    [153]G.P. Pfeifer, S.D. Steigerwald, P.R. Mueller, B. Wold, A.D. Riggs. Genomic Sequencing and Methylation Analysis by Ligation Mediated Pcr. Science.1989,246 (4931):810-813
    [154]Z. Wang, M. Gerstein, M. Snyder. Rna-Seq:A Revolutionary Tool for Transcriptomics. Nat Rev Genet.2009,10 (1):57-63
    [155]A. Oshlack, M.D. Robinson, M.D. Young. From Rna-Seq Reads to Differential Expression Results. Genome Biol.2010,11 (12):220
    [156]M. Garber, M.G. Grabherr, M. Guttman, C. Trapnell. Computational Methods for Transcriptome Annotation and Quantification Using Rna-Seq. Nat Methods.2011,8 (6):469-477
    [157]P.L. Auer, S. Srivastava, R.W. Doerge. Differential Expression--the Next Generation and Beyond. Brief Funct Genomics.2012,11 (1):57-62
    [158]J. Ferreira de Carvalho, J. Poulain, C. Da Silva, P. Wincker, S. Michon-Coudouel, A. Dheilly, D. Naquin, J. Boutte, A. Salmon, M. Ainouche. Transcriptome De Novo Assembly from Next-Generation Sequencing and Comparative Analyses in the Hexaploid Salt Marsh Species Spartina Maritima and Spartina Alterniflora (Poaceae). Heredity (Edinb).2013,110 (2):181-193
    [159]T. Raz, P. Kapranov, D. Lipson, S. Letovsky, P.M. Milos, J.F. Thompson. Protocol Dependence of Sequencing-Based Gene Expression Measurements. PLoS One.2011,6 (5): e19287
    [160]R. Li, C. Yu, Y. Li, T.W. Lam, S.M. Yiu, K. Kristiansen, J. Wang. Soap2:An Improved Ultrafast Tool for Short Read Alignment. Bioinformatics.2009,25 (15):1966-1967
    [161]H. Li, J. Ruan, R. Durbin. Mapping Short DNA Sequencing Reads and Calling Variants Using Mapping Quality Scores. Genome Res.2008,18 (11):1851-1858
    [162]H. Li, R. Durbin. Fast and Accurate Short Read Alignment with Burrows-Wheeler Transform. Bioinformatics.2009,25 (14):1754-1760
    [163]B. Langmead, C. Trapnell, M. Pop, S.L. Salzberg. Ultrafast and Memory-Efficient Alignment of Short DNA Sequences to the Human Genome. Genome Biol.2009,10 (3):R25
    [164]C. Trapnell, L. Pachter, S.L. Salzberg. Tophat:Discovering Splice Junctions with Rna-Seq. Bioinformatics.2009,25 (9):1105-1111
    [165]H. Jiang, W.H. Wong. Seqmap:Mapping Massive Amount of Oligonucleotides to the Genome. Bioinformatics.2008,24 (20):2395-2396
    [166]S.A. Filichkin, H.D. Priest, S.A. Givan, R. Shen, D.W. Bryant, S.E. Fox, W.K. Wong, T.C. Mockler. Genome-Wide Mapping of Alternative Splicing in Arabidopsis Thaliana. Genome Res.2010,20(1):45-58
    [167]U. Nagalakshmi, K. Waern, M. Snyder. Rna-Seq:A Method for Comprehensive Transcriptome Analysis. Curr Protoc Mol Biol.2010, Chapter 4:Unit 4 11 11-13
    [168]C. Zhao, C. Waalwijk, P.J. de Wit, D. Tang, T. van der Lee. Rna-Seq Analysis Reveals New Gene Models and Alternative Splicing in the Fungal Pathogen Fusarium Graminearum. BMC Genomics.2013,14:21
    [169]J.R. Miller, A.L. Delcher, S. Koren, E. Venter, B.P. Walenz, A. Brownley, J. Johnson, K. Li, C. Mobarry, G. Sutton. Aggressive Assembly of Pyrosequencing Reads with Mates. Bioinformatics.2008,24 (24):2818-2824
    [170]D.B. Jaffe, J. Butler, S. Gnerre, E. Mauceli, K. Lindblad-Toh, J.P. Mesirov, M.C. Zody, E.S. Lander. Whole-Genome Sequence Assembly for Mammalian Genomes:Arachne 2. Genome Res.2003,13 (1):91-96
    [171]M. de la Bastide, W.R. McCombie. Assembling Genomic DNA Sequences with Phrap. Curr Protoc Bioinformatics.2007, Chapter 11:Unitl 114
    [172]J.B. Hiatt, R.P. Patwardhan, E.H. Turner, C. Lee, J. Shendure. Parallel, Tag-Directed Assembly of Locally Derived Short Sequence Reads. Nat Methods.2010,7 (2):119-122
    [173]Y. Li, Y. Hu, L. Bolund, J. Wang. State of the Art De Novo Assembly of Human Genomes from Massively Parallel Sequencing Data. Hum Genomics.2010,4 (4):271-277
    [174]M.G. Grabherr, B.J. Haas, M. Yassour, J.Z. Levin, D.A. Thompson, I. Amit, X. Adiconis, L Fan, R. Raychowdhury, Q. Zeng, Z. Chen, E. Mauceli, N. Hacohen, A. Gnirke, N. Rhind, F. di Palma, B.W. Birren, C. Nusbaum, K. Lindblad-Toh, N. Friedman, A. Regev. Full-Length Transcriptome Assembly from Rna-Seq Data without a Reference Genome. Nat Biotechnol. 2011,29 (7):644-652
    [175]J.T. Simpson, K. Wong, S.D. Jackman, J.E. Schein, S.J. Jones, I. Birol. Abyss:A Parallel Assembler for Short Read Sequence Data. Genome Res.2009,19 (6):1117-1123
    [176]D.R. Zerbino, E. Birney. Velvet:Algorithms for De Novo Short Read Assembly Using De Bruijn Graphs. Genome Res.2008,18 (5):821-829
    [177]B. Li, C.N. Dewey. Rsem:Accurate Transcript Quantification from Rna-Seq Data with or without a Reference Genome. BMC Bioinformatics.2011,12:323
    [178]J.J. Goetz, J.M. Trimarchi. Transcriptome Sequencing of Single Cells with Smart-Seq. Nat Biotechnol.2012,30 (8):763-765
    [179]C.J. Beggs, E. Wellmann. Analysis of Light-Controlled Anthocyanin Formation in Coleoptiles of Zea Mays L.:The Role of Uv-B, Blue, Red and Far-Red Light. Photochem Photobiol.1985,41 (4):481-486
    [180]J.M. Christie, G.I. Jenkins. Distinct Uv-B and Uv-a/Blue Light Signal Transduction Pathways Induce Chalcone Synthase Gene Expression in Arabidopsis Cells. Plant Cell.1996,8 (9): 1555-1567
    [181]H. Junghans, K. Dalkin, R.A. Dixon. Stress Responses in Alfalfa (Medicago Sativa L.).15. Characterization and Expression Patterns of Members of a Subset of the Chalcone Synthase Multigene Family. Plant Mol Biol.1993,22 (2):239-253
    [182]H. Tsukaya, T. Ohshima, S. Naito, M. Chino, Y. Komeda. Sugar-Dependent Expression of the Chs-a Gene for Chalcone Synthase from Petunia in Transgenic Arabidopsis. Plant Physiol. 1991,97 (4):1414-1421
    [183]A. Leyva, J.A. Jarillo, J. Salinas, J.M. Martinez-Zapater. Low Temperature Induces the Accumulation of Phenylalanine Ammonia-Lyase and Chalcone Synthase Mrnas of Arabidopsis Thaliana in a Light-Dependent Manner. Plant Physiol.1995,108 (1):39-46
    [184]T. Kaiser, K. Emmler, T. Kretsch, B. Weisshaar, E. Schafer, A. Batschauer. Promoter Elements of the Mustard Chs1 Gene Are Sufficient for Light Regulation in Transgenic Plants. Plant Mol Biol.1995,28 (2):219-229
    [185]M.L. Falcone Ferreyra, S. Rius, J. Emiliani, L. Pourcel, A. Feller, K. Morohashi, P. Casati, E. Grotewold. Cloning and Characterization of a Uv-B-Inducible Maize Flavonol Synthase. Plant J.2010,62(1):77-91
    [186]N. Goto-Yamamoto, G.H. Wan, K. Masaki, S. Kobayashi. Structure and Transcription of Three Chalcone Synthase Genes of Grapevine (Vitis Vinifera). Plant Science.2002,162 (6): 867-872
    [187]S.T. Jeong, N. Goto-Yamamoto, S. Kobayashi, A. Esaka. Effects of Plant Hormones and Shading on the Accumulation of Anthocyanins and the Expression of Anthocyanin Biosynthetic Genes in Grape Berry Skins. Plant Science.2004,167 (2):247-252
    [188]T. Shimizu, S. Akada, M. Senda, R. Ishikawa, T. Harada, M. Niizeki, S.K. Dube. Enhanced Expression and Differential Inducibility of Soybean Chalcone Synthase Genes by Supplemental Uv-B in Dark-Grown Seedlings. Plant Mol Biol.1999,39 (4):785-795
    [189]S. Dhaubhadel, M. Gijzen, P. Moy, M. Farhangkhoee. Transcriptome Analysis Reveals a Critical Role of Chs7 and Chs8 Genes for Isoflavonoid Synthesis in Soybean Seeds. Plant Physiol.2007,143 (1):326-338
    [190]M.A. Heim, M. Jakoby, M. Werber, C. Martin, B. Weisshaar, P.C. Bailey. The Basic Helix-Loop-Helix Transcription Factor Family in Plants:A Genome-Wide Study of Protein Structure and Functional Diversity. Mol Biol Evol.2003,20 (5):735-747
    [191]L. Lepiniec, I. Debeaujon, J.M. Routaboul, A. Baudry, L. Pourcel, N. Nesi, M. Caboche. Genetics and Biochemistry of Seed Flavonoids. Annu Rev Plant Biol.2006,57:405-430
    [192]C. Dubos, R. Stracke, E. Grotewold, B. Weisshaar, C. Martin, L. Lepiniec. Myb Transcription Factors in Arabidopsis. Trends Plant Sci.2010,15 (10):573-581
    [193]J. Thevenin, C. Dubos, W. Xu, J. Le Gourrierec, Z. Kelemen, F. Charlot, F. Nogue, L. Lepiniec, B. Dubreucq. A New System for Fast and Quantitative Analysis of Heterologous Gene Expression in Plants. New Phytol.2012,193 (2):504-512
    [194]L.L. Zhou, H.N. Zeng, M.Z. Shi, D.Y. Xie. Development of Tobacco Callus Cultures over Expressing Arabidopsis Pap1/Myb75 Transcription Factor and Characterization of Anthocyanin Biosynthesis. Planta.2008,229 (1):37-51
    [195]J. Velten, C. Cakir, E. Youn, J. Chen, C.I. Cazzonelli. Transgene Silencing and Transgene-Derived Sirna Production in Tobacco Plants Homozygous for an Introduced Atmyb90 Construct. PLoS One.2012,7 (2):e30141
    [196]J. Velten, C. Cakir, C.I. Cazzonelli. A Spontaneous Dominant-Negative Mutation within a 35s::Atmyb90 Transgene Inhibits Flower Pigment Production in Tobacco. PLoS One.2010,5 (3):e9917
    [197]R. Stracke, J.J. Favory, H. Gruber, L. Bartelniewoehner, S. Bartels, M. Binkert, M. Funk, B. Weisshaar, R. Ulm. The Arabidopsis Bzip Transcription Factor Hy5 Regulates Expression of the Pfgl/Myb12 Gene in Response to Light and Ultraviolet-B Radiation. Plant Cell Environ. 2010,33(1):88-103
    [198]H. Jin, E. Cominelli, P. Bailey, A. Parr, F. Mehrtens, J. Jones, C. Tonelli, B. Weisshaar, C. Martin. Transcriptional Repression by Atmyb4 Controls Production of Uv-Protecting Sunscreens in Arabidopsis. EMBO J.2000,19 (22):6150-6161
    [199]H.D. Kranz, M. Denekamp, R. Greco, H. Jin, A. Leyva, R.C. Meissner, K. Petroni, A. Urzainqui, M. Bevan, C. Martin, S. Smeekens, C. Tonelli, J. Paz-Ares, B. Weisshaar. Towards Functional Characterisation of the Members of the R2r3-Myb Gene Family from Arabidopsis Thaliana. Plant J.1998,16 (2):263-276
    [200]Y. Ban, C. Honda, Y. Hatsuyama, M. Igarashi, H. Bessho, T. Moriguchi. Isolation and Functional Analysis of a Myb Transcription Factor Gene That Is a Key Regulator for the Development of Red Coloration in Apple Skin. Plant Cell Physiol.2007,48 (7):958-970
    [201]R.V. Espley, R.P. Hellens, J. Putterill, D.E. Stevenson, S. Kutty-Amma, A.C. Allan. Red Colouration in Apple Fruit Is Due to the Activity of the Myb Transcription Factor, Mdmyb10. Plant J.2007,49 (3):414-427
    [202]H. Mathews, S.K. Clendennen, C.G. Caldwell, X.L. Liu, K. Connors, N. Matheis, D.K. Schuster, D.J. Menasco, W. Wagoner, J. Lightner, D.R. Wagner. Activation Tagging in Tomato Identifies a Transcriptional Regulator of Anthocyanin Biosynthesis, Modification, and Transport. Plant Cell.2003,15 (8):1689-1703
    [203]M. Sapir, M. Oren-Shamir, R. Ovadia, M. Reuveni, D. Evenor, Y. Tadmor, S. Nahon, H. Shlomo, L. Chen, A. Meir, I. Levin. Molecular Aspects of Anthocyanin Fruit Tomato in Relation to High Pigment-1. J Hered.2008,99 (3):292-303
    [204]J.A. Arias, R.A. Dixon, C.J. Lamb. Dissection of the Functional Architecture of a Plant Defense Gene Promoter Using a Homologous in Vitro Transcription Initiation System. Plant Cell.1993,5 (4):485-496
    [205]L.O. Morales, M. Brosche, J. Vainonen, G.I. Jenkins, J.J. Wargent, N. Sipari, A. Strid, A.V. Lindfors, R. Tegelberg, P. J. Aphalo. Multiple Roles for Uv Resistance Locus 8 in Regulating Gene Expression and Metabolite Accumulation in Arabidopsis under Solar Uv Radiation. Plant Physiol.2012
    [206]S. Zenoni, A. Ferrarini, E. Giacomelli, L. Xumerle, M. Fasoli, G. Malerba, D. Bellin, M. Pezzotti, M. Delledonne. Characterization of Transcriptional Complexity During Berry Development in Vitis Vinifera Using Rna-Seq. Plant Physiol.2010,152 (4):1787-1795
    [207]D.M. Soanes, A. Chakrabarti, K.H. Paszkiewicz, A.L. Dawe, N.J. Talbot. Genome-Wide Transcriptional Profiling of Appressorium Development by the Rice Blast Fungus Magnaporthe Oryzae. PLoS Pathog.2012,8 (2):e1002514
    [208]A.J. Severin, J.L. Woody, Y.T. Bolon, B. Joseph, B.W. Diers, A.D. Farmer, G.J. Muehlbauer, R.T. Nelson, D. Grant, J.E. Specht, M.A. Graham, S.B. Cannon, G.D. May, C.P. Vance, R.C. Shoemaker. Rna-Seq Atlas of Glycine Max:A Guide to the Soybean Transcriptome. BMC Plant Biol.2010,10:160
    [209]S. Sarowar, Y. Zhao, R.E. Soria-Guerra, S. Ali, D. Zheng, D. Wang, S.S. Korban. Expression Profiles of Differentially Regulated Genes During the Early Stages of Apple Flower Infection with Erwinia Amylovora. J Exp Bot.2011,62 (14):4851-4861
    [210]F. Martinelli, S.L. Uratsu, U. Albrecht, R.L. Reagan, M.L. Phu, M. Britton, V. Buffalo, J. Fass, E. Leicht, W. Zhao, D. Lin, R. D'Souza, C.E. Davis, K.D. Bowman, A.M. Dandekar. Transcriptome Profiling of Citrus Fruit Response to Huanglongbing Disease. PLoS One.2012, 7 (5):e38039
    [211]C. Zhu, C. Feng, X. Li, C. Xu, C. Sun, K. Chen. Analysis of Expressed Sequence Tags from Chinese Bayberry Fruit (Myrica Rubra Sieb. And Zucc.) at Different Ripening Stages and Their Association with Fruit Quality Development. Int J Mol Sci.2013,14 (2):3110-3123

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700