用户名: 密码: 验证码:
基于SOA的数字农务系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农业生产最本质的特征是经济再生产与自然再生产相互交织。在市场经济下,农业生产经营者总是千方百计追求最佳经济效益目标。目前的“数字农作系统”主要侧重于对农业产中领域信息流的数字化表达和整合、突出生产管理技术和精确农作,对经济效益最大化目标、信息咨询服务、农业产前和产后的商品流通关注不够。为了向农户提高覆盖农业产前、产中、产后全过程的决策支持服务,本研究提出了“数字农务系统”(Digital System for Agricultural Affairs, DSAA)概念,以面向服务架构(Service-Oriented Architecture, SOA)为基础,研究了作物模型与农业经济效益模型集成、Web服务组合、农业模型组件管理与复用等关键技术,并研制了基于SOA、农业模型和WebGIS集成的数字农务系统。
     针对目前农业信息资源分散在不同的管理机构和决策单位、开发平台和开发语言各异所带来的数据共享与模型集成困难这一问题,本研究将面向服务的架构引入农业生产经营与评估决策支持领域,以经济效益目标驱动作物生产方案优化为主线,采用域分解与遗产系统分析相结合的方法,分别在田块和区域尺度上识别与抽取了“模型驱动数据-作物模型-效益模型-空间信息分析”业务过程中的Web服务,构建了基于农业模型与WebGIS集成的数字农务Web服务组合框架,从而为研制具有分布式、综合集成特征的数字农务系统提供了基础。
     针对由于软件组件和组件框架的描述信息不统一限制了农业模型在分布式网络环境下的复用与管理能力这一问题,本研究提出了一种新的农业模型描述与表示方法。它以模型组件描述信息为元数据来生成不同层次主题图。首先分析农业模型特征,建立农业模型与模型组件之间的映射关系;然后抽取农业模型组件刻面与关联描述信息,构建了农业模型组件描述模型(DM-AMC),进一步将DM-AMC表示为主题类型、关联类型、事件类型以及关联角色;接下来通过实例化并采用匹配融合算法生成了面向农业模型组件的主题图(TM-AMC);最后以作物生育期模型为例,生成了统一描述与可动态扩展的原子主题图XTM文档。通过对农业模型信息的统一描述,并以DM-AMC为基础生成多层次、便于统一访问的TM-AMC,提升了农业模型信息的全局共享与管理能力,为充分利用分散在不同单位的农业模型组件生成候选Web服务提供了技术支撑。
     针对模型驱动数据的远程调用以及模型计算次数剧增带来的模型运行响应时间长这一问题,本研究提出了基于缓存机制的作物模型Web服务并发处理方案。通过综合分析作物模型Web服务的组合结构、数据Web服务的通信特性以及作物模型Web服务的响应时间特征,以多线程处理和数据缓存技术为基础,设计了基于缓存机制的作物模型Web服务并发处理方案;并以作物栽培管理知识模型Web服务为测试对象,在真实网络环境下,验证了该方案的有效性。结果表明,在单用户多地点请求和多用户多地点请求情况下,采用并发处理方案分别可以缩短32%和35%的模型服务响应时间,极大地提高了模型的多用户并发处理能力。研究结果为作物模型的区域应用提供了技术支撑。
     最后以基于农业模型与WebGIS集成的数字农务Web服务组合框架为基础,集成作物栽培管理知识模型、效益测算模型以及WebGIS空间分析业务功能,研制了基于SOA的数字农务系统(SOA based Digital System for Agricultural Affairs, DSAA-SOA).该系统采用契约优先的Web服务开发方法封装农业模型Web服务;以ArcGIS Service和Model Builder为开发平台,给出了动态专题图和空间插值Web服务的实现方法;系统具有系统管理、数据管理、生产决策、效益测算、信息查询、专家咨询、数字地图等产前、产中、产后一体化信息服务功能。系统在江宁土桥镇的应用实例表明,利用SOA技术可以整合农务数据、农业模型和WebGIS,从而提高农业模型在区域应用中的共享能力。
Agriculture is characterized by the interweaving of natural reproduction and economic reproduction. In market economy, farmers always try every means to achieve optimal economic benefits. However, the existing digital farming system, which focused on digital expression and integration of farming information stream, production supervision and precision farming, paid less attention to the aim of optimal economic benefits, commodity circulation during pre-production and post-production, or consultation services. In order to provide farmers with decision-making assistance in the whole process of agricultural production and management, including pre-production, production and post-production, the concept of Digital System for Agricultural Affairs (DSAA) was introduced in this paper. Key techniques of integration of crop models and economic benefit models, combination of web services, management and reusage of agricultural model components were studied on the basis of Service-Oriented Architecture (SOA). Finally, a SOA-based Digital System for Agricultural Affairs (DSAA-SOA) was designed and implemented by integrating agricultural models and WebGIS.
     Since existing agricultural databases, consultation and information service systems, agricultural models and decision-making support systems developed with different programming languages and on different platforms, were distributed among a lot of administrational or decision-making organizations, it was very difficult for these agricultural information resources to share or integrate. Web service technology is an efficient implementation approach to constructing comprehensively integrated system. By applying service-oriented architecture to the decision-making support domain of agricultural production, management and evaluation, taking the economic benefit and optimization of management practices as objectives, and by integrating the methods of domain decomposition and legacy system analysis, web services were extracted from the process of "model-driven data, crop models, benefit model, spatial information analysis", on field-scale and region-scale, respectively. The framework of web services based on the integration of agricultural models and WebGIS was constructed, which laid a foundation for developing distributed and comprehensive digital system for agricultural affairs.
     For improving the capability of model resource sharing and management for different agricultural disciplines, the study proposed a new approach to description and representation of agricultural models, which used the description information of model components as meta-data to generate the topic maps at different levels. Firstly, the study analyzed the characteristics of agricultural models, established the mapping relationships between agricultural models and model components, and then extracted information on the facets and relationship descriptions of agricultural model components and constructed the Description Model for Agricultural Model Components (DM-AMC). Further, the DM-AMC was represented as topic type, association type, occurrence type and association role. Finally, the Topic Maps for Agricultural Model Components (TM-AMC) was constructed by taking example and using matching and merging algorithms. With crop phasic development model as example, the study generated the XML documents of atomic topic maps with the characters of unified description and dynamic expansion. The results indicated that a unified description on agricultural model information and generation of multi-level and easy-accessed TM-AMC based on DM-AMC could enhance capability of general sharing and management with agricultural model information, which was helpful in taking full advantage of agricultural model components distributed among different organizations to make candidate web services.
     Using data web services to access meteorological data and soil data at multi-location was a good solution to settling data source needed in the implementation of regional application of crop models on field-scale, but in the mean time a remarkable increase in the times of data remote call and model computing resulted in a problem of long responding time of crop model. In order to improve the responding time of crop model web services, the concurrent processing scenario of crop model web services based on caching mechanism was proposed in this paper. By comprehensively analyzing the combination structure of crop model web services, communication features of data web services and responding time feature of crop model web services, the concurrent processing scenario of crop model web services was designed based on multi-thread processing and data caching technology. With web services of crop management knowledge model as the testing target, the effectiveness of concurrent processing scenario was verified in a real network environment. The result indicated that the responding time of crop model web service with concurrent processing scenario reduced32%and35%for single-user at multi-location and multi-user at multi-location, respectively, which improved the model ability for multi-user concurrent processing. These results could provide the technical support for regional application of crop model.
     By integrating crop management knowledge models, economic benefit models, and WebGIS spatial analysis functions on the framework of web service combination, a DSAA-SOA was developed. Web service development approach of contract first was adopted to envelope web services of agricultural models. With ArcGIS Service and Model Builder as development platform, the approach to the development of dynamic thematic map web service and spatial interpolation web service was presented. DSAA-SOA realized comprehensive service functions such as system management, data management, management decision-making, economic benefit calculation, information consultation, digital map, covering the process of pre-production, production and post-production. The case study of DSAA-SOA at Tuqiao town indicated that it was feasible to use SOA technology to integrate agricultural data, models and WebGIS, and enchance the capability of agricultural model sharing in the region-scale application.
引文
[1]熊范伦等.农业专家系统及开发工具[M].北京:清华大学出版社,1999.
    [2]吴泉源等.人工智能与专家系统[M].北京:国防科技出版社,1996.
    [3]Monsi M, Saeki T. Uber den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung fur die stoffproduktion [J]. Japanese Journal of Botany,1953,14:22-52.
    [4]De Wit C T. Photosynthesis of leaf canopies[M]. Wageningen, the Netherlands:Institute for Biological and Chemical Research on Field Crops and Herbage. Agriculture Research Report,1965: 663-671.
    [5]Duncan W G, Loomis R S, Williams W A, et al. A model for simulating Photosynthesis in plant communities[J]. Hilgardia,1967,38:181-205.
    [6]Sinclair R R, Seligman N G. Crop modeling from infancy to maturity[J]. Agronomy Journal,1996, 88:695-697.
    [7]杨京平,王兆骞.作物生长模拟模型及其应用[J].应用生态学报,1999,10(4):501-505.
    [8]Ritchie J T.OTTER S. Description and performance of CERES-Wheat:A user-oriented wheat yield model[J]. USDAARSARS,1985,38:159-175.
    [9]Bouman B A, Keulen H,V. The "School of de Wit" Crop Growth Simulation Models:A Pedigree and Historical Overview[J]. Agricultural Systems,1996,52(23):171-198.
    [10]Van Keulen H, Penning De Vries F W T, Drees E M. A summary model for crop growth//Penning de Vries FWT, van Laar H H (Eds.). Simulation of plant growth and crop production. Simulation Monographs, PUDOC, Wageningen, The Netherlands,1982:87-98.
    [11]Keating B A, Carberry P S, Hammer G L, et al. An overview of APSIM, a model designed for farming systems simulation[J]. European Journal of Agronomy,2003,18:267-288.
    [12]高亮之,金之庆,黄耀.水稻栽培计算机模拟优化决策系统(RCSODS)[M].北京:中国农业出版社,1992.
    [13]戚昌瀚,殷新佑,刘桃菊,等.《RICAM 1.3双季稻高产管理决策支持系统》在小流域双季稻区的“水稻苗情预报”研究[J].江西农业大学学报,2000,22(4):482-484.
    [14]骆世明,彭少麟.农业生态系统分析[M].广州:广东科技出版社,1996.
    [15]Cao W X, Moss D N. Modeling phasic development in wheat:an integration of physiological components [J]. Journal of Agriculture Science,1997,129:163-172.
    [16]曹卫星,朱艳,田永超,等.数字农作技术研究的若干进展与发展方向[J].中国农业科学,2006,39(2):281-288.
    [17]高亮之,金之庆,黄耀,等.水稻栽培计算机模拟优化决策系统[M].中国农业科技出版社,1992.
    [18]戚昌翰,殷新佑,刘桃菊.水稻生长日历模拟模型的调控决策系统研究[J].江西农业大学学报,1994,16(4):323-327.
    [19]魏军,戴俊英,金忠华,等.玉米生产管理专家咨询系统的研究[J].玉米科学,1994,(1)
    [20]潘洁.小麦生长模拟与决策支持系统的研究[D].南京:南京农业大学,2005:81-90.
    [21]李卫国.水稻生长模拟与决策支持系统的研究[D].南京:南京农业大学,2005.
    [22]汤亮.油菜生长模拟与决策支持系统的研究[D].南京:南京农业大学,2006.
    [23]王世耆.农业专家系统与模拟模型[J].计算机农业应用,1991,(8):1-7.
    [24]郝奎,刘忠双,张虎成,等.农业专家系统发展概况[J],世界农业,1993,(1)
    [25]张斌,杨朋润,夏东利.棉花综合管理专家系统的研究应用[J].计算机与农业,2000,(5):27-29.
    [26]赵春江,诸德辉,李鸿祥,等.小麦栽培管理计算机专家系统的研究与应用[J].中国农业科学,1997,30(5):42-49.
    [27]上官周平,陈培元,李英.黄土早塬小麦生产管理专家系统的设计与实现[J].水土保持学报,1995,9(4):75-83.
    [28]任勃,黄璜,陈灿.网络化水稻生产专家系统知识库的构建[J].作物研究,2004,(2):75-77,80.
    [29]廖桂平,官春云,吴泉源,等.油菜生产专家系统知识库构建[J].作物研究,2002,(3):118-121.
    [30]熊范纶,乔克智,胡海瀛.农业专家系统及开发工具[M].北京:清华大学出版社,1999.
    [31]朱艳,曹卫星,田永超,等.作物管理知识模型系统设计与开发框架研究[J].农业工程学报,2004,20(4):138-142.
    [32]张怀志,朱艳,曹卫星.基于知识模型的棉花管理决策支持系统[J].棉花学报,2005,17(4):201-206.
    [33]朱艳.基于知识模型的小麦管理决策支持系统的研究[D].南京:南京农业大学,2003.
    [34]严定春.水稻管理知识模型及决策支持系统的研究[D].南京:南京农业大学,2004.
    [35]彭汉艮,姚霞,朱艳,等.种植制度知识模型系统的设计与实现[J].南京农业大学学报,2005,28(2):125-128.
    [36]沈维祥.基于知识模型的油菜管理决策支持系统研究[D].南京:南京农业大学,2002.
    [37]郭银巧.玉米栽培管理知识模型系统的设计与实现[D].保定:河北农业大学硕士学位论文,2005.
    [38]朱艳,曹卫星,王其猛,等.基于知识模型和生长模型的小麦管理决策支持系统[J].中国农业科学,2004,37(6):814-820.
    [39]王人潮,史舟.农业信息科学与农业信息技术[M].北京:中国农业出版社,2002.
    [40]曹卫星,罗卫红.作物系统模拟及智能管理[M].高等教育出版社,2003,1:121~139.
    [41]李德仁.论RS, GPS与GIS集成的定义、理论与关键技术[J].遥感学报,1997,1(1):63-68.
    [42]程明华,陈建平.3S技术在农业中的应用[J].山西农业科学,2006,34(2):15-17.
    [43]谢云,J.R. Kiniry.国外作物生长模型发展综述[J].作物学报,2002,28(2):190-195.
    [44]曹卫星,朱艳.作物管理知识模型[M].北京:中国农业出版社,2005.
    [45]罗毅,郭伟.作物模型研究与应用中存在的问题[J].农业工程学报,2008,24(5):307-312.
    [46]Wesseling, J., R. Feddes. Assessing crop water productivity from field to regional scale[J]. Agricultural Water Management.2006,86(1-2):30-39.
    [47]Luo, Y., C. He, M. Sophocleous. Assessment of crop growth and soil water modules in SWAT2000 using extensive field experiment data in an irrigation district of the Yellow River Basin[J]. Journal of Hydrology.2008,352(1-2):139-156.
    [48]李勇,赵军,王毅博.WebGIS支持下的黑土农田施肥决策支持系统——以黑龙江省双城市为例[J].水土保持通报,2009,29(06):193-197.
    [49]王国伟,陈桂芬,姚玉霞.玉米精准作业智能空间决策支持系统的研究与应用[J].安徽农业科学,2010,38(32):18486-18489,18497.
    [50]Lal H, Hoogenboom G, Calixte J P, et al. Using Crop Simulation models and GIS for regional productivity analysis[J]. Transactions of ASAE,1993,36(1):175-184.
    [51]Engle T, Hoogenboom QJones J W,Wilkens P W.AEGIS/Win:A Computer program for application of crop simulation models across geographic areas[J]. Agronomy Journal,1997,89(6):919-928.
    [52]周治国,曹卫星,王绍华,等.基于GIS的区域作物生产系统潜力分析[J].农业工程学报,2003,19(1):124—128.
    [53]陈长青,周治国,卞新民.基于GIS和专家系统的作物气候适应性评价系统分析和设计[J].农业系统科学与综合研究,2006,22(4):315—318.
    [54]陈云坪,赵春江,王秀,等.基于知识模型与WebGIS的精准农业处方智能生成系统研究[J].中国农业科学,2007,40(6):1190-1197.
    [55]郭银巧,赵传德,刘小军,等.基于模型和GIS的数字棉作系统的设计与实现[J].农业工程学报,2008,24(11):139-144.
    [56]张浩,席磊,许鑫,等.基于GIS的县域小麦自然生产潜力评价系统[J].农业工程学报,2009,25(12):198-205.
    [57]单英杰,刘小军,姜海燕,等.基于GIS和模型的种植系统设计[J].农业工程学报,2009,25(2):145-151.
    [58]李凤菊,刘小军,姜海燕,等.基于WebGIS与知识模型的小麦病虫草害管理决策支持系统研究[J].麦类作物学报,2009,29(5):934-940.
    [59]严正娟,段增强,卢树昌,等.基于GoogleMap和WebGIS的区域桃园施肥决策系统的建立与应用[J].农业工程学报,2010,26(5):207-212.
    [60]李勇,赵军,谢叶伟,等.针对农户地块的施肥决策支持系统的设计与实现[J].农业工程学报,2010,26(增刊1):192-196.
    [61]姜晓剑,刘小军,田永超,等.基于遥感影像的作物生长监测系统的设计与实现[J].农业工程学报,2010 26(3):156-160.
    [62]Jones D, Barnes EM. Fuzzy composite programming to combine remote sensing and crop models for decision support in precision crop management [J]. Agricultural Systems,2000,65:137-158.
    [63]Wesseling JG, Feddes RA. Assessing crop water productivity from field to regional scale[J]. Agricultural Water Management,2006,86:30-39.
    [64]王纯枝,宇振荣,辛景峰.基于遥感和作物生长模型的作物产量差估测[J].农业工程学报,2005,221(7):84-89.
    [65]孙希华.基于GIS和RS的章丘市农业自然资源质量综合评价[J].山东师范大学学报(自 然科学版),2004,19(1):48-59.
    [66]姜晓剑.基于模型和3S的数字稻作技术及系统研究[D].南京:南京农业大学,2010.
    [67]Economic Research Service/USDA. Precision agriculture adoption continues to grow[EB/OL).Agricultural Outlook/November 2002 (2011-11-07) http://www.ers.usda.gov/publications/agoutlook/nov2002/ao296.pdf
    [68]David Schimmelpfennig, Robert Ebel. On the doorstep of the information age:Recent Adoption of Precision Agriculture (EB/OL).Agriculture Economic Research Service/USDA, (2011-08) (2011-11-07). http://www.ers.usda.gov/Publications/EIB80/EIB80.pdf
    [69]吴华瑞,王之岭,杨宝祝,等.基于应用服务器的电子农务平台研究与实现[J].微机发展,2004,14(1):75-78.
    [70]陈天恩,赵春江,陈立平,等.基于GIS Web Service的数学农业空间决策系统[J].计算机工程与设计,2008,(29),12:3094-3097.
    [71]曹琼,杨锦忠.基于WEB模式的植物生长分析计算模型的设计与实现[J].农业网络信息,2006,(8):21-22,28.
    [72]花登峰,刘小军,汤亮,等.基于构件化生长模型的作物管理决策支持系统[J].南京农业大学学报,2008,31(1):17-22.
    [73]曹卫星.农业信息学[M].北京:中国农业出版社,2005:288.
    [74]张浩,祝利莉,胡为群,等.郑可锋区域农业与农村社会经济信息系统研究与开发——以浙江省嘉兴市秀城区为例[J].农业网络信息,2007,(12):18-20.
    [75]鄂越,诸叶平,雪燕,等.基于GIS的农业经济信息与服务系统研究[J].中国农学通报,2005,(1):301-305.
    [76]杨福运,诸叶平,鄂越.基于GIS的农业经济信息服务系统的设计与实现[J].中国农学通报,2008,(5):429-433.
    [77]孙立平,殷文杰,吴永兴.农业经济运行动态监测管理系统设计[J].农业网络信息,2006,(7):16-19.
    [78]张海燕,曹其炜,黄倩倩,等.基于WebGIS的农业经济运行动态监测信息管理与绩效评估系统[J].经济师,2008,(10):241-242.
    [79]李卫江,吴永兴,茅国芳.基于WebGIS与模型的农业经济监测与评价系统的建立[J].农业工程学报,2010,26(5):213-219.
    [80]孙香花,陈华,李柳柏,等.涪陵区、乡农业市场行情信息系统的研究与实现[J].西南农业大学学报(社会科学版)2005,3(3).
    [81]郭鹏,李乃祥,刘同海,等.基于GSM短消息的农产品供求信息发布Web系统[J].安徽农业科学,2010,(32).
    [82]刘慧涛,邢素丽,高强,等.网络环境下农产品供求信息高效共享与开发利用研究[J].农业网络信息2004,(3):21-23.
    [83]詹锦川,朱轶峰,闵新力,等.基于SOA的农业市场信息服务整合[J].河北农业科学,2009, 13(7):153-155.
    [84]罗婷婷,赵瑞雪.基于多模型的农产品供求信息预测系统研究[J]. 中国农学通报,2009,(23):451-455.
    [85]马九杰,张象枢,顾海兵.粮食安全衡量及预警指标体系研究[J].管理世界,2001,(1):155-163.
    [86]赵瑞莹.贾卫丽.农产品市场风险预警管理研究[J].农业现代化研究,2004,(1)
    [87]赵予新.粮食价格预警模型与风险防范机制研究[J].经济经纬,2007,(1):125-128.
    [88]聂荣.基于加权马尔柯夫链的粮食单产风险预测——以辽宁省为例[J].农业技术经济,2007,(5):88-92.
    [89]赵瑞莹.杨学成农产品价格风险预警模型的建立与应用——基于BP人工神经网络[J].农业现代化研究,2008,(2):172-175.
    [90]吴清华,高峰,冯中朝.中国油菜产业风险预警研究-----基于BP神经网络[J].华中农业大学学报(社会科学版),2010,(2):29-33.
    [91]姚国章,丁慧.韩国移动农业信息服务系统[J].电子政务,2010,(12):61-63.
    [92]林初有,奚延勇.智能电话语音系统在农业信息服务中的应用[J].农业网络信息,2008,(3):39-40,48.
    [93]新浪新闻中心.上海农民一点通布点完成实现涉农行政村全覆盖[EB/OL].中国广播网,(2011-07-25) [2011-08-12]. http://news.sina.com.cn/o/2011-07-25/144722872755.shtml
    [94]张彦军,李道亮,吴建强,等.江苏典型行政村信息化调查[J].中国信息界,2008,(10):24-28.
    [1]Service-oriented architecture (SOA) definition. [2011-11-13].http://www.service-architecture.com/ web-services/articles/service-oriented_architecture_soa_definition.html
    [2]Eric Nesconer, Greg Lomow. Understanding SOA with Web Services中文版[M].徐函.译.北京:电子工业出版社,2006:21.
    [3]党德宣,陈敏克,林何莺,等.基于SOA的农业信息系统综合集成研究[J].农业网络信息,2011,(8):5-7,26.
    [4]李帅,王永丽,杨宝祝.基于SOA的数据服务中间件的研究与实现[J].成都信息工程学院学报,2010,(10):457-461.
    [5]李继峰,李海舰,黄高磊.面向服务在企业信息系统中的应用[J/OL]. (2009-05-18) [2011-11-18]. http://articles.e-works.net.cn/SOA/Article66923_1.htm
    [6]郝媛.基于SOA的海运货代业务模型分析及其系统实现[硕士学位论文][D].哈尔滨工业大学,2009.
    [7]H.M. Deitelt等.Web服务实用技术教程[M].励志等译.北京:机械工业出版社,2006:5-6.
    [8]于海龙,邬伦,林星.基于WebService的小流域地貌演化问题计算设计与实现[J].北京大学学报(自然科学版),2005,41(11):890-896.
    [9]周琳,张宏.Web Servie团队开发解决方案的设计与实现[J].信息技术,2006,(12):100-102.
    [10]叶宇风.基于SOA的企业应用集成研究[J].微电子学与计算机,006,23(5):211-213.
    [11]Martin Keen,Susan Bishop,Alan Hopkins, et al. Patterns:implementing an SOA using an enterprise service bus [M]. IBM Redbooks,2004.
    [12]Web Services definition. [2011-11-13]. http://www.service-architecture.com/web-services/articles. /web services definition.html
    [13]Joe Clabby. Web Service Gotchas (2002-07-01)[2011-11-13].http://www.ibm.com/developerworks/ cn/webservices/ws-gotcha/
    [14]W3C:XML Essentials[EB/OL]. [2011-11-18].http://www.w3.org/standards/xml/core
    [15]W3school:XML 简介. [EB/OL]. [2011-11-18].http://www.w3school.com.cn/x.asp
    [16]W3school:XML Schema 简介. [EB/OL]. [2011-11-18].http://www.w3school.com.cn/schema/ schema_intro.asp
    [17]IBM中国高校合作项目远程教育与学习:UDDI的技术特性[EB/OL]. [2011-11-18].http://ibmur. hust.edu.cn/elearning/webservice/b06.htm
    [18]Tom Bellwood.理解UDDI:跟上规范的不断发展[EB/OL]. (2002-07-01) [2011-11-18]. http://www.ibm.com/developerworks/cn/webservices/ws-featuddi/
    [19]Steve Pepper, Graham Moore. TopicMaps.Org. XML Topic maps (XML)1.0[EB/OL]. (2001-08-06) [2011-11-18]. http://www.topicmaps.org/xtm/index.html
    [20]Michel Biezunski, Martin Bryan, Steven R. Newcomb.ISO/IEC Standard 13250[EB/OL]. (1998-09-21) [2011-11-18]. http://www.infoloom.com/tnm/draft27.htm
    [21]崔运鹏.基于本体论的农业知识管理关键技术研究[M].北京:中国农业科学技术出版社,2009.
    [22]Lars Marius Garshol. What Are Topic Maps?[EB/OL]. (2002-09-11) [2011-11-18]. http://www.xml.com/pub/a/2002/09/11/topicmaps.html
    [23]Studer R, Benjamins V R, Fensel D. Knowledge engineering:principles and methods[J]. Data and Knowledge Engineering,1998,25(1/2):161-197.
    [24]贺琛,陈肇雄,黄河燕.Web缓存技术综述[J].小型微型计算机系统,2004,25(5):836-843.
    [1]曹卫星,朱艳,田永超等.数字农作技术研究的若干进展与发展方向[J].中国农业科学,2006,39(2):281-288.
    [2]高亮之.农业模型研究与21世纪的农业科学[J].山东农业科学.2001(01):43-46.
    [3]曹卫星.数字农作技术[M].北京:科学出版社,2008.
    [4]于海龙,邬伦,刘瑜,等.基于Web Services的GIS与应用模型集成研究[J].测绘学报,2006,35(2):153—159.
    [5]邢少敏,周伯生.SOA研究进展[J].计算机科学,2008,35(9):13—20.
    [6]Goodall JL, HorsburghJ S, WhiteakerT L. et al. A first approach to web services for the National Water InformationSystem[J].Environmental Modellingand Software,2008,23:404-411.
    [7]许鑫,张浩,席磊,等.基于WebGIS的小麦精准施肥决策系统[J].农业工程学报,2011,27(增刊2):94—98.
    [8]阎晓军,王维瑞,梁建平.农业空间决策支持系统的设计与实现[J].农业工程学报,2010,26(9):257—262.
    [9]Papajorgjj, HowardW.Beck, et al. An architecture for developing service-oriented and component-based environmental models[J].Ecologocal Modeling,2004,179:61-76.
    [10]XinwenYu, AtsushiYamakawa,et al.CROWIS:A System for sharing and Integrating Crop and Weather Data[J].Agricultural information reasearch,2007,16(3):124-131.
    [11]陈云坪,赵春江,王秀,等.基于知识模型与WebGIS的精准农业处方智能生成系统研究[J].中国农业科学,2007,40(6):1190—1197.
    [12]王志强,甘国辉,王健,等.基于Web服务和GIS的作物生长模拟系统及应用[J].农业工程学报,2008,24(1):179—182.
    [13]Jonathan L G, Bella B F, Castronova A M, et al. Modeling water resource systems using a service-oriented computing paradigm[J]. Environmental Modellingand Software,2011,26:573-582.
    [14]Granell C, DiazL, GouldM. Service-oriented applications for environmentalmodels:reusable geospatial services[J]. Environmental Modellingand Software,2010,25(2):182-198.
    [15]王忠杰,徐晓飞,战德臣.面向企业间集成的Web服务规范化设计方法[J].计算机科学,2006,33(5):131-135.
    [16]罗毅,郭伟.作物模型研究与应用中存在的问题[J].农业工程学报.2008,24(05):307-312
    [17]姜海燕,朱艳,徐焕良,等.作物模型资源构造平台(CMRCP)的构建研究[J].农业工程学报,2008,41(3):695—703.
    [18]于格,刘爱民.中美小麦生产成本效益比较分析[J].农业经济问题.2003,24(03):39-44
    [19]罗毅,郭伟.作物模型研究与应用中存在的问题[J].农业工程学报.2008,24(05):307-312.
    [20]孙雨,李国庆,黄震春.基于OGC WPS标准的处理服务实现研究[J].计算机科学,2009,36(8):86—88.
    [1]Papajorgji P. A plug and play approach for developing environmental models[J]. Environmental Modelling and oftware,2005,20 (10):1353-1357.
    [2]Donatelli M, Carlini L, Bellocchi G. A software component for estimating solar radiation[J]. Environmental Modelling and Software,2006,21(3):411-416.
    [3]Robert M A. An overview of model integration for environmental applications-components, frameworks and semantics [J]. Environmental Modelling and Software,2004,19(3):219-234.
    [4]van Ittersum M, Ewert F, Thomas H, Jacques W, et al. A component-based framework for the european union (SEAMLESS)[J]. Agricultural Systems,2008,96(1-3)):150-165.
    [5]赵春江,吴华瑞,杨宝祝,等.基于软构件模型的农业智能系统平台[J].农业工程学报,2004,20(2):140-143.
    [6]花登峰,刘小军,汤亮,等.基于构件化生长模型的作物管理决策支持系统[J].南京农业大学,2008,31(1):17—22.
    [7]王志强,甘国辉,王健,等.基于Web服务和GIS的作物生长模拟系统及应用[J].农业工程学报,2008,24(1):179—182.
    [8]Donatelli M, Russell G, Rizzoli A E, et al. A component-based framework for simulating agricultural production and externalities[C].//In:Van Ittersum, M., et al. (Eds.), Environmental and Agricultural Modelling:Integrated approaches for Policy Impact Assessment. Springer Verlag, Berlin, Germany,2010,63-108.
    [9]Villa F. A semantic framework and software design to enable the transparent integration, reorganization and discovery of natural systems knowledge[J]. Journal of Intelligent Information Systems,2007,29 (1):79-96.
    [10]Rizzoli A E, Donatelli M, Athanasiadis I N, et al. Semantic links in integrated modelling frameworks[J]. Mathematics and Computers in Simulation,2008,78 (2-3):412-423.
    [11]Athanasiadis I N, Rizzoli A E, Janssen S, et al. Ontology for seamless integration of agricultural data and models[C]. In 3rd Intl Conf on Metadata and Semantics Research (MTSR'09), (Sartori, F., Sicilia, M. A., and Manouselis, N., Eds.), Springer Verlag,2009,282-293.
    [12]ISO/IEC13250:Topic maps information technology, document description and processing languages[S].
    [13]马文峰,杜小勇,著.数字资源整合:理论、方法与应用[M].北京:北京图书馆出版社,2007.
    [14]吴笑凡,周良,张磊,等.基于XML主题地图的知识仓库[J].武汉大学学报,2006,39(1):121—125.
    [15]Herzum P, Sims O. Business Component Factory:A Comprehensive Overview of Component-Based Development for the Enterprise[M]. Machinery Industry Press Publisher,2005.
    [16]常继传,李克勤.青鸟系统中可复用软件构件的表示与查询[J].电子学报,2000,28(8):20—24.
    [17]姜海燕,朱艳,徐焕良,等.作物模型资源构造平台(CMRCP)的构建研究[J].农业工程学报,2008,41(3):695—703.
    [18]姜海燕,朱艳,汤亮,等.基于多库融合的作物模型资源仓库[J].农业工程学报,2008,24(9):141-147.
    [1]曹卫星,朱艳,田永超,等.数字农作技术研究的若干进展与发展方向[J].中国农业科学,2006,39(2):281-288.
    [2]王冀川,马富裕,冯胜利,等.基于现代系统理论基础上的作物模拟模型方法概述[J].农业现代化研究,2007,28(1):96-100.
    [3]Petraq P, Howard W B, et al. An architecture for developing service-oriented and component-based environmental models [J]. Ecological Modeling,2004,179(1):61-76.
    [4]Jonathan L G, Jeffery S H, Timothy L W, et al. A first approach to web services for the National Water Information System [J]. Environmental Modelling & Software,2008,23(4):404-411.
    [5]Edson M, Antonio M S, Luiz C M, et al. An infrastructure for the development of distributed service oriented information systems for precision agriculture [J]. Computers and Electronics in Agriculture, 2007,5(1):37-48.
    [6]Feng M, Liu S, Ned H J, et al. Prototyping an online wetland ecosystem services model using open model sharing standards [J]. Environmental Modeling & Software.2011,26(4):458-468.
    [7]Xu Liyuan,, Chen Liping, Chen Tianen, et al. SOA-base precision irrigation decision support system [J]. Mathematical and Computer Modeling.2011,12(4):1-6.
    [8]王志强,甘国辉,王健,等.基于Web服务和GIS的作物生长模拟系统及应用[J].农业工程学报,2008,24(1):179-182.
    [9]Dongarra J, Foster Ⅰ, Geoffrey F, et al.莫则尧译.并行计算综论[M].北京:电子工业出版社,2005,5-10.Dongarra J, Foster Ⅰ, Geoffrey F, et al. Sourcebook of parallel computing[M].Beijing:Electronic Industry Press,5-10
    [10]Dimov I, Georgiev K, Ostromsky Tz, et al. Computational challenges in the numerical treatment of large air pollution models[J]. Ecological Modelling,2004,179 (2) 187-203
    [11]Lipp M, Wonka P, Wimmer M. Parallel generation of multiple L-systems [J].Computers & Graphics. 2010,34(5):585-593.
    [12]赵玉伟,赵小雨,乔木,等.缓存技术在B/S架构信息系统中的应用[J].计算机工程,2008,34(1):233-235.
    [13]文俊浩,李笑一,向益其.非实时服务的SOAP响应缓存策略及其应用[J].计算机应用,2010,30(3):593-596.
    [14]姜海燕,朱艳,徐焕良,等.作物模型资源构造平台(CMRCP)的构建研究[J].农业工程学报,2008,24(2):170-175.
    [15]朱艳,曹卫星,王其猛,等.基于知识模型和生长模型的小麦管理决策支持系统[J].中国农业科学,2004,37(6):814-820.
    [16]Keating B A, Brown S, Carberry P, et al. An over view of APSIM:a model designed for farming systems simulation [J]. European Journal of Agronomy,2003,18 (3-4):267-288.
    [17]姜海燕,朱艳,汤亮,等.基于多库融合的作物模型资源仓库[J].农业工程学报,2008,24(9):141-147.
    [18]郑德舜.一种高效的散列查询算法.南京邮电大学学报(自然科学版),2006,26(2):92-96.
    [1]曹卫星,朱艳,田永超,等.数字农作技术研究的若干研究进展与发展方向[J].中国农业科学,2006,39(2):281—288.
    [2]杨宝祝,赵春江,李爱平,等.2002.网络化、构件化农业专家系统开发平台(PAID)的研究与应用.高技术通讯,(3):5-9.
    [3]廖桂平,李爱平,吴泉源,等.基于Web的油菜生产专家系统施肥知识表示[J].湖南农业大学学报(自然科学版),2002,28(5):378-382.
    [4]刘小军,朱艳,姚霞,等.2006.基于WebGIS的农业空间信息管理及辅助决策系统.农业工程学报,22(5):125-129.
    [5]曹宏鑫,杨余旺,金之庆,石春林,葛道阔,魏秀芳.2008.基于Web与模拟模型的水稻栽培数字化设计,24(12):137-140
    [6]罗毅,郭伟.作物模型研究与应用中存在的问题[J].农业工程学报,2008,24(5):307—312.
    [7]Jones J W, Hoogenboom G, Porter C H, et al. The DSSAT cropping system model. European Journal of Agronomy,2003,18(3/4):235-265..
    [8]WatkinsK B,Lu YC,Reddy VR.An economic evaluation of alternative pix application strategies for cotton production using GOSSYM/COMAX[J].Com puters and Electronics in Agriculture,1998,20:251-262.
    [9]刘小军,朱艳,曹卫星,等.基于WebGIS和知识模型的精确农作决策支持系统[J].南京农业大学学报,2007,30(4):11-15.
    [10]蒋红军,刘小军,汤亮,等.基于模型和3S技术的数字麦作系统的设计与实现[J].麦类作物学报,2007,27(5):908-913.
    [11]黄芬,刘小军,朱艳,等.基于模型和WebGIS数字农作支持系统的设计与实现[J].南京农业大学学报,2009,32(1):12-17.
    [12]Edson Murakami, Antonio M. Saraiva, Luiz C.M. Ribeiro Junior, et al. An infrastructure for the development of distributed service-oriented information systems for precision agriculture [J]. Computers and Electronics in Agriculture,2007,5(1):37-48.
    [13]Xinwen Yu, Atsushi Yamakawa, et al. CROWIS:A System for sharing and Integrating Crop and Weather Data[J].Agricultural information reasearch,2007,16(3):124-131.
    [14]王志强,甘国辉,王健,等.基于Web服务和GIS的作物生长模拟系统及应用[J].农业工程学报,2008,24(1):179-182.
    [15]王彦集,陈天恩,徐刚,等.基于SOA的农田测绘成图系统的设计与实现[J].农业工程学报,2009,25(增刊2):267-271.
    [16]毛新生.SOA原理·方法·实践[M].2007:138-146.
    [17]曹卫星,朱艳.作物管理知识模型[M].北京:中国农业出版社,2005:1-44.
    [1]于海龙,邬伦,刘瑜,等.基于Web Services的GIS与应用模型集成研究[J].测绘学报,2006,35(2):153—159.
    [2]Goodall JL, HorsburghJ S, WhiteakerT L. et al. A first approach to web services for the National Water InformationSystem[J].Environmental Modellingand Software,2008,23:404-411.
    [3]许鑫,张浩,席磊,等.基于WebGIS的小麦精准施肥决策系统[J].农业工程学报,2011,27(增刊2):94—98.
    [4]阎晓军,王维瑞,梁建平.农业空间决策支持系统的设计与实现[J].农业工程学报,2010,26(9):257—262.
    [5]Papajorgji P. A plug and play approach for developing environmental models[J]. Environmental Modelling and Software,2005,20 (10):1353-1357.
    [6]Donatelli M, Carlini L, Bellocchi G. A software component for estimating solar radiation[J]. Environmental Modelling and Software,2006,21(3):411-416.
    [7]Robert M A. An overview of model integration for environmental applications-components, frameworks and semantics [J]. Environmental Modelling and Software,2004,19(3):219-234.
    [8]van Ittersum M, Ewert F, Thomas H, Jacques W, et al. A component-based framework for the european union (SEAMLESS)[J]. Agricultural Systems,2008,96(1-3)):150-165. ersity,2006,39(1):121-125.
    [9]Herzum P, Sims O. Business Component Factory:A Comprehensive Overview of Component-Based Development for the Enterprise[M]. Machinery Industry Press Publisher,2005.
    [10]常继传,李克勤.青鸟系统中可复用软件构件的表示与查询[J].电子学报,2000,28(8):20-24.
    [11]Edson M, Antonio M S, Luiz C M, et al. An infrastructure for the development of distributed service oriented information systems for precision agriculture [J]. Computers and Electronics in Agriculture,2007,5(1):37-48.
    [12]Feng M, Liu S, Ned H J, et al. Prototyping an online wetland ecosystem services model using open model sharing standards [J]. Environmental Modeling & Software.2011,26(4):458-468.
    [13]Xu Liyuan,, Chen Liping, Chen Tianen, et al. SOA-base precision irrigation decision support system [J]. Mathematical and Computer Modeling.2011,12(4):1-6.
    [14]王志强,甘国辉,王健,等.基于Web服务和GIS的作物生长模拟系统及应用[J].农业工程学报,2008,24(1):179-182.
    [15]Petraq P, Howard W B, et al. An architecture for developing service-oriented and component-based environmental models [J]. Ecological Modeling,2004,179(1):61-76.
    [16]Jonathan L G, Jeffery S H, Timothy L W, et al. A first approach to web services for the National Water Information System [J]. Environmental Modelling & Software,2008,23(4):404-411.
    [17]Dimov Ⅰ, Georgiev K, Ostromsky Tz, et al. Computational challenges in the numerical treatment of large air pollution models[J]. Ecological Modelling,2004,179 (2) 187-203.
    [18]赵玉伟,赵小雨,乔木,等.缓存技术在B/S架构信息系统中的应用[J].计算机工程,2008,34(1):233-235.
    [19]Lipp M, Wonka P, Wimmer M. Parallel generation of multiple L-systems [J].Computers & Graphics. 2010,34(5):585-593.
    [20]文俊浩,李笑一,向益其.非实时服务的SOAP响应缓存策略及其应用[J].计算机应用,2010,30(3):593-596.
    [21]姜海燕,朱艳,徐焕良,等.作物模型资源构造平台(CMRCP)的构建研究[J].农业工程学报,2008,24(2):170-175.
    [22]朱艳,曹卫星,王其猛,等.基于知识模型和生长模型的小麦管理决策支持系统[J].中国农业科学,2004,37(6):814-820.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700