用户名: 密码: 验证码:
自蔓延—热压工艺制备热电材料β-FeSi_2
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热电材料是一类能直接实现热电转换功能的材料,无需机械部件,无噪音,节约能源,因此受到人们的关注。其中β-FeSi_2作为热电材料,在世界能源危机日益显现和人们致力于绿色能源开发的今天,对其的研究开发应用有着重要的现实意义。它的特点是具有比较高的Seebeck系数,来源广泛,价格低廉,高温抗氧化性好,无毒以及高的工作温度。由于β-FeSi_2具备以上优点,它有广泛的应用前景。
     本文采用自蔓延-热压工艺制备热电材料β-FeSi_2。主要从以下几个方面进行研究:1.对于自蔓延高温合成(燃烧合成)的中间产物α-Fe_2Si_5在转变为β-FeSi_2的过程中,热压时间固定为4min,探究不同的热压温度和压力对合成产物的影响,总结最合理的热压工艺参数;2.燃烧合成过程中为了使得产物只包含α-Fe_2Si_5,在配料阶段通过改变硅的含量,研究燃烧合成产物相的组成,寻找最合理的铁硅比例;3.对比分析不同的铜掺杂含量对合成产物的影响,探究最佳掺杂比例;4.通过掺杂不同含量的铝,分析不同含量下合成产物的相组成结构及形貌。
     实验结果表明:1.当铁硅原子比为nFe:nSi=1:3,掺入0.50at%的Cu,热压时间定为4min,热压温度为720℃时,α-Fe_2Si_5已经基本转变为β-FeSi_2,到800℃时部分β相重新转变为α-Fe_2Si_5,且压力的提高有助于β-FeSi_2生成和致密度的提高;2.当铁、硅原子比例为1:2.5时,燃烧合成的球粒状产物只包含α-Fe_2Si_5,消除了ε-FeSi相;利用酒精在超声波清洗仪中清洗燃烧合成球粒状产物时,如果清洗不够充分,熔渣中的ε-FeSi粘附于球粒上,会导致β-FeSi_2合成过程中ε相剩余;3.在利用共析反应α→β+Si生成β-FeSi_2的过程中,少量Cu的掺入可以明显提高反应速度,并且随着Cu含量的增加,反应速度随之提高,由断口SEM形貌可见,反应生成了大小均匀的β-FeSi_2微粒,而生成的Si弥散分布于其中;4.铝的掺入可以提高原始粉料的的利用率,但铝对α-Fe_2Si_5向β-FeSi_2转变的促进作用不太明显。为了避免铝的过多的掺入,当掺入2at%Al的同时掺入0.2at%Cu,α-Fe_2Si_5完全转变为β-FeSi_2,β相的峰值达到最高。
Thermoelectric materials, which can realize thermoelectric conversion directly withoutany mechanical equipments and noise, are attractive as a kind of save-energymaterials. Withincreasing energy crisis,green energy is explored.So doing research and development ofβ-FeSi_2as a potential thermoelectric material possesses important practical significance.It hashigh Seebeck coefficient, abundance as a raw material, low cost, high oxidation resistance,non-toxicity, and high working temperature. Because β-FeSi_2with the above advantages, ithas broad application prospects, and one that fits well with the operating temperatures ofindustrial furnaces, automobile exhausts, and incinerators. However, the synthesis of β-FeSi_2is very difficulty.
     In this paper, we synthesis β-FeSi_2by the way of SHS-hot pressing technology. Thispaper study the following aspects:1.In the process of Intermediate products α-Fe_2Si_5intoβ-FeSi_2, when the temperature is fixed at4min, we looked for the best hot insulation pressingtemperature and pressure through selecting different holding time and pressure, and thenconcluded the most reasonable of hot press process parameters;2.In order to make thecombustion synthesis products contain only α-Fe_2Si_5, we studied the composition of thecombustion synthesis to find the most reasonable proportion of Fe and Si in the batching stageby changing the Si content;3.The best doping ratio were explored through comparativeanalysis of different Cu doping content of synthetic products;4.By doped with differentcontent of Al, we analysis of the phase composition and morphology of the synthetic productsof the different Al content.
     The experimental results include the following main points:1.The main products ofcombustion synthesis are α-Fe_2Si_5and Si when the atomic ratio of Fe to Si is1:3and0.5at%copper is doped. When the temperature is800℃, the parts of β-FeSi_2re-transformed intoα-Fe_2Si_5, pressure increased contributes to the products density increase and α-Fe_2Si_5transformed into β-FeSi_2;2.When the atomic ratio of Iron, silicon is1:2.5, the combustionsynthesis sphere products only contain α-Fe_2Si_5and eliminating ε-FeSi phase. The followingtest and analysis results have larger deviation whether combustion synthesis sphere productsare clean using ultrasonic cleaning device.when the cleaning is insufficient, the ε-FeSi in theslag buildup in the sphere, and then they will make the synthesis process of β-FeSi_2is notentirely;3.In the process of Eutectoid reaction α→β+Si to generate β-FeSi_2, a small amount ofCu doping can significantly improve the speed of response, and the reaction speed willincrease with increasing Cu content.The particles of reaction are uniform size be seen by the fracture SEM micrographs,and the Si particles dispersed in it;4.Al does not affect the phasecomposition of the combustion synthesis shere products, the sphere products of combustionsynthesis are still α-Fe_2Si_5, but Al doping can improve the utilization of the original powder,and the effect of doped Al is not obviously in the process of α→β+Si. In order to avoidexcessive Al, α-Fe_2Si_5completely transformed into β-FeSi_2while2at%Al is doped inoriginal powder adds0.2at%Cu to it. The hot pressed samples achieve the highest peak ofthe β phase.
引文
[1]刘艳春,曾令可,任雪潭等.热电材料的研究现状及展望[J].陶瓷学报,2006,27(01):116
    [2]李伟文,赵新兵,周邦昌.β-FeSi2热电材料的研究进展[J].材料导报,2002,16(05):14-16
    [3]张丽鹏,于先进,肖晓明.热电材料的研究进展[J].现代技术陶瓷,2006,(109):21-22
    [4]况学成,郝恩奇.热电材料及其研究现状[J].中国陶瓷工业,2008,15(05):27-30.
    [5]罗胜耘,曾正,路安江.一种新型环境半导体材料—β-FeSi2[J].广西轻工业,2008,24(05):20-21
    [6] D Leong, M Harry,KJ Recscn, et al.A Silicon/Iron-Disilicide Light-Emitting Diode Operating at a Wavelength Of1.5μm[J]. Nature,1997,387(6634):686-688
    [7]罗胜耘,谢泉,张晋敏等.热处理对环境半导体材料β-FeSi2形成的影响[J].贵州大学学报(自然科学版),2006,23(01):81-85
    [8] Ozvold M,Dubnicka M,Gasparik V.The Temperature Dependenceof the Directgap of β-FeSi2Films[J]. SolidFilms,1997,295(1-2):147-150
    [9]朱铁军,赵新兵.β-FeSi2热电材料的性能优化及测试方法[J].材料科学与工程,1999,17(04):55-58
    [10] M.Umemoto. Preparation of thermoelectric β-FeSi2doped with Al and Mn bymechanical alloying[J]. Mater Trans JIM,1995,36(02):373
    [11]闫万珺,周士芸,桂放等.β-FeSi2的结构、光电特性及应用[J].安顺学院学报,2009,11(01):247-250
    [12] K. Hattori, Y. Murata, A.N. Hattori,et al. Growth of Fe silicides on Si(111) surfaces frombcc-Fe to fine-polycrystal and β-FeSi2phases[J]. Vacuum,2009,06(31):1-5
    [13]马秋花,路朋献.β-FeSi2基热电材料的研究进展[J].稀有金属快报,2006,25(07):1-5
    [14]陈秀娟,王思谦,马淑芬等.燃烧合成铁硅金属间化合物[J].粉末冶金工业,2009,19(03):24-29
    [15] Birkholz U, Schelm J.Mechanism of electrical conduction in β-FeSi2[J]. Phys. Stat. Sol,1968,27:413-425
    [16] Nishida I.Study of semiconductor-to-metal transitionin Mn-doped FeSi2[J]. PhysRev,1973,B7:2710-2713
    [17] Isamu Yamauchi, Takashi Okamoto, Hajime Ohata, et al. β-phaseTransformation and thermoelectric power in FeSi2and Fe2Si5based alloys containing small amounts of Cu[J]. Alloys and Compounds,1997,26:162-171
    [18] Zhao X B, Zhu T J, Hu S H, et al.Transport properties of rapidsolidified Fe-Si-Mn-Cu thermoelectric alloys [J]. Alloys and Compounds,2000,306:303-306
    [19]芦玉峰,赵新兵,倪华良等.原位氧化对Al掺杂β-FeSi2热电材料结构与性能的影响[J].材料研究学报,2003,17(05):472-473
    [20]陈向东,王连卫,林贤等.退火条件对β-FeSi2形成的影响[J].半导体学报,1995,16(10):794
    [21] J.H.Oh, S.K.Lee, K.P.Han,et al.Effects of the different heat Treatments on thegrowth and formation of iron silicide on Si(100)[J]. Thin Solid Films,1999,341:160-164
    [22] Zhu T J,Zhao X B. Transport Properties of P-Type β-FeSi2Semiconductor Prepared by Rapid Solidification[J]. Functional Materials,2001,32(03):280-283
    [23] Takeshi Negase,Isamu Yamauchi,Itsuo Ohnaka. Effect of Rapid Solidification onMicrostructure of Various Fe25.9-xSi70.5-xAlloys [J]. Alloys and Compounds.2003,12:295-301
    [24] Jalrarez J, Hinarejos J, Gmichel E. Surface Characterization of EptitaxialSemicongducting FeSi2Grown on Si(001)[J]. Appl Phys Lett.1991,59(1):99-101
    [25] Chen Haiyan,Zhao Xinbing, Mueler Eckhard, et a1.Microstructures of FeSi2Based Therm oelectric Materials Prepared by Rapid Solidification and Hot Pressing[J]. Journal of University of Science and Technology Beijing,2004,11(01):60-70
    [26]周幼华,陆培祥,龙华等.脉冲激光沉积法制备β-FeSi2半导体薄膜的研究[D].武汉:华中科技大学,2007:19-22
    [27] H. Udono, I. Kikuma. Electrical Properties of p-type β-FeSi2Single Crystals Grown from Ga and Zn Solvents[J]. Thin Solid films.2004,46(01):188-192
    [28] H.Udono, S.Takaku, I.Kikuma. Crystal Growth of β-FeSi2by Temperature Gradient Solution Growth Method Using Zn Solvent[J]. Journal of Crystal Growth.2002,239(03):1971-1975
    [29] H.Udono, I.Kikuma, T.Okuno, et al. Optical Properties of β-FeSi2Single CrystalsGrown from Solutions[J]. Thin Solid films.2004,46(01):182-187
    [30] C.Gras, E.Gaffet, F.Bernard, et al. Enhancement of selfsustaining reaction by mechanical activation: case of an Fe-Si system[J]. Materials Science and Engineering,1999,264(1-2):94-107
    [31] C.Gras, N.Bernsten, F.Bernard,et al. The mechanically activated combustion reaction in the Fe-Si system: in situ time-resolved synchrotron investigations[J]. Intermetallics,2002,10(03):271-282
    [32] Ch.Gras, N.Zink, F.Bernard, et al.Assisted self-sustaining combustion reaction in the Fe–Si system:Mechanical and chemical activation[J]. Materials Science and Engineering,2007,456(02):270-277
    [33] Dagkaldiran, et al.Microchanneling Investigation of β-FeSi2-Structures[J]. J.Appl.Phys,2001,(89):2
    [34] H.Lange. Electronic structure and interband optical properties of β-FeSi2[J]. Thin SolidFilms,2001,(381):172-173
    [35] Leong D,Harry M, Reeson K J,et a1.A silicon/iron-disilici delight emitting diode operating at a wavelength of1.5μm[J].Nature,1997,(387):686-688
    [36]陈荔群,李成,赖虹凯.β-FeSi2材料的生长、性质及其在光电子器件中的应用[J].中国材料科技与设备,2006,(03):16-19
    [37]张建中.温差发电器国际动态[J].电源技术,1989,(02):37-41
    [38] F.J.Disalvo. Thermoelectric cooling and power generation[J]. Science,1999,285(5428):703-706
    [39] Merzhanov A G. Self-propagating High temperature Synthesis:Twenty Years of Search and Findings[M]. New York:VCH Press,1990
    [40]殷声主编.自蔓延高温合成技术和材料[M].北京:冶金工业出版社,1995,3-6
    [41]梁丽萍,刘玉存,王建华.自蔓延高温合成的发展前景[J].2006,35(09):716-718
    [42]符寒光.自蔓延高温合成技术应用展望[J].石油矿场机械,2003,32(01):1-2
    [43]王汉立,黄为秀.自蔓延燃烧法(SHS)材料合成技术[J].湖北第二师范学院学报,2008,25(2):74
    [44]殷声.燃烧合成[M].北京:冶金工业出版社,1999(6):147-158.
    [45] Laszlo J K, Thomas K, Andrus N. Microstructural properties of combustion-synthesized and dynamically consolidated titanium diboride and titanium carbide [J]. JAm Ceram Soc,1990,73(05):1274.
    [46] Rabin B H, Korth G E, Williamson R L. Fabrication of Titanium Carbide-Alumina Composites by Combustion Synthesis and Subse-quent Dynamic Consolidation[J]. J Am Ceram Soc,1990,73(07):2156-2157.
    [47]王强,赫冀成,张廷安.燃烧合成(CS)过程的致密化研究[J].材料导报,1997,11(05):27
    [48]唐先觉,李希超.烧结[M].北京:冶金工业出版社,1984,1-2
    [49]傅菊英,姜涛,朱德庆.烧结球团学[M].长沙:中南工业大学出版社,1996年,1-2
    [50]范晓慧,王海东.烧结过程数学模型与人工智能[M].长沙:中南大学出版社,2002,3-4
    [51]德白鹤纳施-阿松朗,张颖.热压烧结-理解烧结机理的新途径[J].无机材料学报,1988,3(04):289-290
    [52]李蔚,高濂,归林华等.热压烧结制备纳米Y-TZP材料[J].无机材料学报,2000,15(4):608-609
    [53]余晓华,邵刚勤,段兴龙等.纳米复合WC-Co粉末的热压烧结[J].硅酸盐通报,2004,(02):8-9
    [54]陈琦,何毅,崔长庚等.一种制备氧化物超导材料的新方法-热压烧结[J].低温物理学报,1989,11(05):378-379
    [55]吕强,荣剑英,赵磊等.热压工艺参数对n型和P型Bi2Te3基赝三元热电材料电学性能的影响[J].物理学报,2005,54(07):3321-3325
    [56]高恒蛟,陈秀娟,封小鹏,高君玲.Cu掺杂及Si含量对β-FeSi2产率的影响[J].材料热处理学报,2011,32(05):17-21
    [57]芦玉峰.快速凝固β-FeSi2基热电材料的研究:[浙江大学硕士学位论文].杭州:浙江大学材料与化学工程学院,2003,41
    [58]李瑜煜,张仁元.热电材料热压烧结技术研究[J].材料导报,2007,21(07):126-128

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700