用户名: 密码: 验证码:
基于整车性能的高压共轨柴油机燃烧系统开发与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球性能源与环境问题的日趋严峻,高效率低排放柴油机开发已经成为国外汽车企业致力最求的重要目标。一直以来,我国的汽车研发工作基本上采取逆向开发方式,即根据市场需求选择车型,再根据同类车型相比较选择动力传动装置,最后再选用合适的发动机。国内厂家在发动机的控制策略及燃烧系统开发等关键技术方面做了大量细致的工作并达到排放法规,但是未能从整车性能需求角度进行发动机的开发,致使开发后的发动机在整车上无法实现真正合理的匹配。基于此,本文结合企业横向课题对基于整车性能的发动机正向开发技术展开了相关研究。
     针对高速柴油机的特点,为满足车用高速柴油机对混合气快速形成质量以及基于整车性能需要的高低速变化特性,提出缩口低排放燃烧室的具体评价方法,即通过燃烧室内挤流(涡流)强度及其保持性来量化分析燃烧室内的气流特性,以此作为燃烧室设计好坏的评价指标。论文首先通过AVL-FIRE软件利用以上评价方法对影响发动机性能的主要燃烧室形状参数(缩口比、中央凸台高度及余隙高度)进行缸内流动特性及发动机性能的仿真评价,在此基础上,基于厂家提供的SUV车用高压共轨2.8TC柴油机原机燃烧室改进设计了I型和II型两款缩口燃烧室,通过仿真对比分析了两种燃烧室的缸内流动特性的优劣,并对所设计的两种燃烧室进行活塞加工及装机实验。通过不同缩口结构的两种燃烧室性能试验对比分析,证明了本文提出的燃烧室设计评价方法完全可行,可以指导缩口燃烧室设计。
     为充分利用低排放缩口型燃烧室的结构特点,满足柴油机的高速化要求,在缩口燃烧室设计后,通过仿真和实验相结合的手段,以控制混合气形成和动态分布的方式进行了缩口燃烧室与喷油系统结构参数(喷油器和喷射位置)优化匹配。为进一步对所设计的缩口燃烧室进行评价,利用挤流(涡流)强度及其保持性的评价指标分析了发动机转速3000r/min下三种不同进气涡流比(1.4,1.8,2.1)和进气涡流比为1.8下不同转速(3000r/min和3600r/min)的工况对缸内流场特性的影响,最后进行了增压器和EGR的匹配研究。研究结果表明:
     1)喷油器流量特性对发动机的性能有着重要的影响。对于本文选择的不同喷油器,当流量相差为100cm3/min时,在外特性上造成燃油消耗率最大相差可达10%,烟度值相差可达40%。此外,采用相同规格的喷油参数匹配不同的喷油器安装位置的试验结果表明,当喷油器安装位置相对燃烧室的匹配高度改变1mm时,外特性油耗率最大相差可达10%,烟度值最大相差可达50%,排气温度差值最大可达15%。综合考虑喷孔数、孔径和喷油器流量特性对发动机性能的影响,最终选择6孔、孔径0.137mm、流量为700 cm3/mim的喷油器和垫片厚度2mm与I型燃烧室进行匹配。
     2)进气涡流比和转速对缸内流动特性有着重要的影响。对于本文选择的三种涡流比1.4,1.8,2.1,在发动机转速3000r/min和喷雾参数一定条件下,对于挤流强度及其保持性来说,进气涡流比越高,挤流强度越大,但喷雾结束后挤流强度衰减相对较快且挤流强度保持性降低。进气涡流比越小,挤流强度保持性越好;对于涡流强度及其保持性来说,进气涡流比越高,涡流强度越大,但涡流强度保持性与进气涡流比关系不大;通过相同涡流比(1.8)不同转速(3000r/min和3600r/min)的分析可发现,无喷雾时,两种不同转速工况的挤流强度及其保持性基本相同,转速3000r/min时,挤流强度在喷雾结束之前与喷雾结束后均较大,而转速3600r/min时,挤流强度保持性相对较好可促进扩散燃烧,从这点上看,本文设计的缩口燃烧室具有很好的高速适应性。
     3)可变涡轮增压器相比旁通阀式增压器具有较好的车用发动机转速适应性。采用IHI VNT增压器时外特性改善明显,特别是低速转矩特性良好,而且烟度、油耗、排温等均较低。
     4)基于步进电机式EGR控制系统,在分析EGR对NOx生成和烟度排放的影响机理及不同工况下EGR率对柴油机NOx排放和烟度的影响效果基础上,对发动机进行了全工况EGR优化。优化结果表明:基于本文的步进电机式EGR控制系统合理匹配EGR可以有效改善NOx排放。
     在改进设计缩口燃烧室并进行燃烧系统的优化匹配后,为提升所开发的2.5TC高压共轨柴油机性能使之更适合整车性能需要,基于BOSCH第二代高压共轨系统和喷油器,从整车性能角度出发,提出针对汽车行驶过程中对牵引力的不同需求来控制高压共轨柴油机喷油量的方法,建立了基于牵引力控制喷油量的控制流程,详细阐述了基于牵引力的需求的的控制算法,并分析了电控系统对喷油量、喷油正时和轨压的控制策略。按照整车运行过程中有无牵引力把发动机运行划分为起动、怠速、全负荷、部分负荷和限速工况,并给出了不同工况下系统对主控量的控制方法及控制策略。在深入分析高压共轨柴油机喷油量控制策略的基础上,按照基于牵引力需求控制喷油量的方法进行了高压共轨柴油机喷油系统关键MAP图标定,通过各种参数的标定优化,在满足烟度、缸压及涡前排温等因素的基础上,使得发动机的外特性曲线和厂家开发的总体目标基本吻合,最后通过台架试验优化了高压共轨喷射系统参数。结果表明:经过本文标定优化后的发动机在低速时转矩特性明显提高,在发动机中高转速时发动机转矩值基本保持不变的情况下,燃油的消耗率得到很大的改善;优化后的NOx排放明显下降;由于发动机低速时通过增加喷油量来提高转矩,因此造成低速时HC和CO排放增加,但在发动机的中高速阶段HC和CO排放总体得到下降。
     从提高整车性能的角度出发,应用车辆性能模拟仿真软件GT-DRIVE对试验车型的动力传动系统匹配进行了性能分析,并基于改进万有特性的方式对车用发动机性能进行了优化。研究结果表明:本文所开发的小排量的2.5TC发动机,通过采用可变增压器、增压中冷和EGR技术来改变发动机的万有特性并与传动系统合理匹配,在保证整车动力性需求的前提下,相比装载原2.8TC发动机的整车燃油经济性提高了12.8%。
As the increasingly serious challenge of the automobile industry from energy and environment, it requires more and more on the development of the high efficiency and low emission. Automobile researching takes reversing development forms in China all the time, it choice models according to demanding of the market, and then choosing the appropriate transmission device by comparing with similar models, finally to the engine. At present, more and more automobile factories and scientific research institutes are beginning to focus on integration control system of whole-car power transmission system, and to study energy conservation and emission control to meet the Emission regulations, but it is not designed engine from the management of whole-car power transmission system and cannot be achieved purpose of matching. Based on this, the paper combining enterprise horizontal topic of engine based on the vehicle performance of positive development technology launched related research.
     High speed direct injection diesel engine requires fast mixture formation. In order to suffice the rapidity formation of gas mixture of diesel engine for automobile and base on vehicle performance needs better high and low speed change characteristic, the paper proposed a specific method to study reentrant low-emission chamber. The method is use squeeze (swirl) intensity and maintenance to quantitative analyzes the airflow characteristics of the combustion chamber, and uses these as the evaluation to a design of chamber. At first use this method to simulate the shape parameter of chamber important to the performance of diesel engine and airflow characteristic, such as reentrant ratio, piston cup center height, TDC clearance height. Based on this, redesign two reentrant combustion chambers on the base of origin engine of 2.8TC, and then analyze airflow characteristics of the two reentrant combustion chambers though simulation comparison, piston machining and experiment also. Though the comparison analysis between the two different reentrant structure chambers performance test, proves the method to design and evaluate chamber in this paper is completely feasible, can guide the design of reentrant chamber.
     In order to make full use of the structural characteristics of reentrant combustion chamber, meet the requirements of high speed diesel engine, the development of the combustion chamber and fuel injection system structural parameter (fuel injector and injection position) are matched, basis on this to further evaluation the designed combustion chamber, use of squeeze (swirl) intensity and evaluating indicator of its retentivity, analyse the effect of intake swirl ratio (1.4,1.8,2.1) under engine speed 3000r/min and different speed (3000r/min and 3600r/min) under intake swirl ratio 1.8 on the characteristic of air field in gasoline cylinder, Finally, carry on the match research of pressure intensifier and the EGR.
     1) When the number of spray holes are same, injector have bigger hole diameter, rate of fuel consumption relatively lower, engine output torque more, when the injector circulation area are same, rate of fuel consumption decreases while the spray holes increases, engine output torque augment. As the normalized flow rate difference 100cm3/min, the external characteristics BSFC maximum difference up to 10%, smoke emission maximum difference up to 40% . Injector spacer have an optimal thickness, when the spacers thickness on the small side, the length of injector deep in cylinder overlength, could result in eddy before exhaust gas temperature ascend and higher rate of fuel consumption, when the spacers thickness on the big side, the length of injector deep in cylinder shorter, could result in eddy before exhaust gas temperature ascend and generates too much soot. Base on the above injector spray holes, hole diameter, injector flow characteristic and spacer thickness matching analysis, we select the injector have 6 holes, hole diameter 0.137, flow 700 cm3/mim and 2mm spacer thickness, and matching it withⅠtype combustion chamber.
     2) Intake swirl ratio and engine speed have a important effect of in-cylinder flow characteristics. In this paper three swirl ratio 1.4,1.8,and 2.1 are choiced. When engine speed is 3000 r/min and spray parameters are constant, the bigger the intake swirl ratio, the greater the squeeze intensity, the squeeze intensity decays faster and the squeeze intensity maintenance decreases after spraying, and the smaller the intake swirl ratio, the better the squeeze intensity for squeeze intensity and squeeze intensity maintenance. The bigger the intake swirl ratio, the greater the swirl intensity and there is a little relationship between the swirl intensity maintenance and intake swirl ratio. When the intake swirl ratio is constant, the two conditions(3000r/min and3600r/min) have the same squeeze intensity and squeeze intensity maintenance. Whether the spraying is underway or over, the squeeze intensity is greater comparatively when the engine speed is 3000r/min. The squeeze intensity maintenance is greater comparatively and it can promote the diffusion combustion when the engine speed is 3600r/min. At the same time, it proves that the reentrant chamber in this paper has a good high-speed adaptability.
     3) VGT and VNT can satisfy the goal the enterprise advanced. Japan's Ishikawajima VNT improved the full load characteristic effectively, especially the low speed torque characteristic, and soot、temperature before turbine and BSFC are lowly.
     4) We optimized the EGR of all the conditions to the engines based on EGR stepper motor control system after analyzing the impact mechanism of the generation of NOx and smoke using EGR and the effect of the NOx and smoke made by the EGR rate of various conditions. The result shows:the EGR stepper motor control system we give here can effectively improve the NOx emissions by matching EGR well.
     The present papers from the perspective of vehicle firstly investigated the engine injection quantity control method on traction requirement, and give out the detailed traction-based injection quantity algorithm and control strategy. Establishing controlling flow of injection quantity control method based on traction requirement, and analyzed the control strategy of injection quantity、injection timing and injection pressure; According to whether or not have traction of vehicle, the condition of the engine was differentiate start、idling、full load、part load and limit speed, and gave out the control methods of primary control variable of these condition and safeguard of the injection quantity.
     With the demand of vehicle dynamic performance keep rising, how to optimize electrical parameter of calibration engine makes vehicle possess fine dynamic, economy and meet emissions requirements is particularly critical. Think from the perspective of vehicle driving performance, base on the theory of traction control engine fuel charge, to research the relation among rail pressure, injection timing, pre-injection time, pre-fuel charge and effect factor of MAP by its control, summing up the principle and method of every system parameter in calibration procedure, and calibrating the important picture of MAP based on traction control, through the series of control the MAP setting, and the optimized calibration of control parameters of fuel injection volume, injection timing and rail pressure etc., to the satisfy the basis of qualification of the smoke emission, the cylinder peak pressure and the exhaust temperature, the actual total load speed and the target characteristic curve characteristic curve in good agreement. With the fuel injection volume to control the MAP and the initial calibration of other control parameters, the economy and emission characteristics of the engine that working in the area of common conditions of the Universal Characteristics have a greater improvement, that fit the target of the manufacturers'requirements. After the critical MAP calibration, through bench test, the paper has a detailed analysis of the injection pressure and timing, the pre-injection parameters that effect on engine combustion process, economy and emissions performance, and make a contrast analysis on the diesel power, economy and emission characteristics of high-pressure common rail injection system between after and before optimization of parameters. The results shows that, after the optimization, the engine torque at low speeds increased significantly, particularly within the speed of 1400-2000r/min, but the fuel consumption has a little increase in this stage; at the high engine speed, the value of torque almost unchanged, but the fuel consumption has a greater improvement; the optimized emissions of NOx have a greatly improve, the value decreased about 10%; in the low speed, because increased the fuel injection volume, HC and CO emission is also increased, but in the middle and high speed, HC and CO emission have an improve.
     Using the tool of vehicle performance simulation software GT-DRIVE on the test vehicle's power-train to match the performance, and the method of basing on control over of Universal Characteristics, to improve and optimize the performance of engine to fit the needs of vehicle traffic. The results shows that:for the engine developed by this paper, a reasonable selection for the ratio of transmission of the power-train can improve the fuel economy, but make some power loss; for certain transmission, by the method of improving the Universal Characteristics that realization through matching variable pressurization device, and using the technology of cold and EGR, to effectively improve the vehicle dynamic property, fuel economy and emission characteristics; comparing with the original car's performance, at the precondition of dynamic property, the vehicle economy has a great improvement, and emissions regulatory requirements can be achieved.
引文
[1]李亚芬.我国石油供求现状、问题及改善对策[J].国际金融研究,2005.
    [2]柳荫成.可持续发展背景下中国石油资源战略研究[D].南京:南京师范大学公共管理学院,2007.
    [3]林学东编.汽车动力匹配技术。北京:中国水利水电出版社,2010.01
    [4]田农.柴油车走进家庭一试乘试驾宝来TDI.世界汽车,2004(6):43-45
    [5]明日汽车新能源.世界汽车.2004(12):78-81
    [6]中国汽车工程学会.车用柴油机发展面临的形势及对策建议.中国柴油车.2001(8):11-12
    [7]Johnson T V.(美)柴油机排放控制回顾.国外内燃机.2002.5
    [8]王万利等.满足EURO Ⅱ以上法规的柴油机排放控制技术.柴油机,2003,2:p30
    [9]杜海明等.498B直喷式柴油机的研制.柴油机,2003,2:p12
    [10]Nobore Hikosaka. A View of the Future of Automotive Diesel Engines. SAE Paper 972682
    [11]Ming-fa Yao, Zhao-lei Zheng and Xia Liang. Numerical Study on the Chemical Reaction Kinetics of DME/Methanol for HCCI Combustion Process[C]. SAE Paper 2006-01-1521
    [12]Jumpei Ozaki and Norimasa Iida. Effect of Degree of Unmixedness on HCCI Combustion Based on Experiment and Numerical Analysis[C]. SAE Paper. 2006-32-0046
    [13]Nebojsa Milovanovic, et, all. SI-HCCI-SI Mode Transition at Different Engine Operating Conditions[C]. SAE Paper 2005-01-0156
    [14]Kushal Narayanaswamy, et al. "A Modeling Investigation of Combustion Control Variables During DI-Diesel HCCI Engine Transients"[C].SAE Paper.2006-01-1084
    [19]林学东.发动机原理[M].北京:机械工业出版社,2008
    [20]林学东,王霆.车用发动机电子控制技术[M].北京:机械工业出版社,2008
    [21]陆家祥.柴油机涡轮增压技术[M].机械工业出版社,1999,9.
    [22]林学东等.增压器结构参数对柴油机性能的影响.农业机械学报,1999,1Vol.30
    [25]许思传等.涡流比对直喷式柴油机缸内湍流流动规律的影响.吉林工业大学自然科学学报,2000,1 Vol.30 No.1:p11
    [26]刘永长.内燃机热力过程模拟.机械工业出版.2000.12
    [27]吴志军等.柴油机气道紊流试验的测量方法.吉林工业大学自然科学学报,2001,1 Vol.31 No.1:p71
    [28]林学东.刘忠长.刘巽俊.采用可变进气涡流机构改善柴油机的性能.农业机械学报,1995Vo1.30
    [29]邱卓丹等.进气道对车用直喷式柴油机性能的影响.小型内燃机与摩托车,2003,1第32卷第1期:p5
    [30]赵高晖等.柴油机进气和压缩过程中气缸内流动的研究.内燃机工程,Vol.24 2003,3:p80
    [31]陆家祥.柴油机涡轮增压技术[M].机械工业出版社,1999,9.
    [32]钱耀义.汽车发动机排气污染与控制[M].人民交通出版社,1987.
    [33]王世震等.降低柴油机NOx排放的机外措施.小型内燃机与摩托车,2003,4第32卷第4期p33
    [34]林学东等.采用排气再循环技术改善车用柴油机NOx的排放特性.汽车工程,1998,5第20卷
    [35]Ishikawa N.and Zhang L. Characteristics of Air-Entrainment in a Diesel Spray. SAE Paper 1999-01-0522,1999.
    [36]张晓宇,刘敬平等.发动机性能数字式开发平台的构建与应用.Vol.26(2008)Suppl.
    [37]石桂花.依维柯汽车TCS神经PI白适应控制及车速估算算法研究[D].长春:吉林大学,2003.
    [38]赵健.四轮驱动汽车TCS制动压力调节装置及附着系数分离路面控制方法的研究[D].长春:吉林大学,2001.
    [39]司利增编著.汽车防滑控制系统一ABS与ASR[M].北京:人民交通出版社.1996
    [40]程军,徐光辉,崔继波.一种新型的车辆速度及加速度测量方法[J].汽车研究与开发,1999(3):41-43,56.
    [41]徐菲,陈慧岩,翟涌.车辆动力传动一体化设计中的1553B总线接口板设计[J]: 北京汽车.2005,(2)
    [42]Zhang JingBo, Ma Yuefeng, Liu Zhaodu, et al.New Adaptive Approach for Road Condition Identification in ASR Control System[J].Journal of Beijing Institute ofTechnology,2006,15(1):31-35.
    [43]刘兆勇,陈晓青,成婷.气压ABS/ASR硬件在环仿真平台的设计与应用[J].汽车电器,2007,(12):9-11.
    [44]朱冰.基于PWM的轻型越野车TCS驱动轮制动控制研究[D].长春:吉林大学,2006.
    [45]林学东编.现代汽车动力传动装置得控制技术.北京:北京理工大学出版社,2003.10
    [46]Hans Bruneel. Heavy Duty Testing Cycles Development:A New Methodology, SAE 2000-01-1860
    [47]N.Dembski, Y.Guezennec, et al. Analysis and Experimental Refinement of Real-World Driving Cycles, SAE 2002-01-0069
    [48]Peter de Haan, Mario Keller. Real-world driving cycles for emission measurements: ARTEMIS and Swiss cycles. Final Report, March 2001.
    [49]Wolfgang Mayer, Jochen Wiedemann. Road Load Determination Based on Driving-Torque-Measurement, SAE 2003-01-0933
    [50]Samhaber C, Wimmer A, Loibner E. Modeling of Engine Warm-Up with Integration of Vehicle and Engine Clcle Simulation. SAE 2001-01-1697
    [51]JJ.Creenbaum JJ, light truck powertrain optimization techniques and procedures, SAE Paper872232。
    [52]夏迎春,陈慧岩等.动力传动系统的整体控制技术[J].车辆与动力技术.,2002,(2)
    [53]赵慧超.CA4DC欧III柴油机开发关键技术.[D]长春:吉林大学,2006
    [54]于建锋.柴油机高压共轨系统电控单元开发.浙江大学硕士学位论文.
    [55]德]Bartsch C.未来的柴油喷射系统——共轨还是喷油嘴.国外内燃机.2006(2):1-9
    [56]Kalevi Huhtala, Matti Vilenius. Study of a common-rail fuel injection system. SAE Paper 2001-01-3184
    [57]L FIRE Manual, Fire_v8.3_CFD_Solver
    [58]高月俊照.低公害,高出力新型燃燒室の开发.自勤卓技術,1994,10 Vo1.48,No.10:p36
    [59]林学东,宋涛,冯先振等.车用柴油机低排放缩口燃烧系统的优化.吉林大学学报(工学版)2007(1)
    [60]刘金玉,郑广勇,李康.GT-POWER在发动机开发中的应用[S].第一汽车集团公司技术中心.2002
    [61]李云清,张静,吕匡等.燃烧室几何尺寸对喷雾碰壁过程的影响[J].江苏大学学报(自然科学版),2006,27(4):314-319
    [62]段树林,武占华,王迎新.燃烧室几何形状对柴油机缸内气体流动和性能的影响[J].大连海事大学学报,2003,29(增刊):95-99
    [63]植田 隆広.筒内空気流动,燃烧ヘのPIVの应用.自勤卓技衍,2001,3:p58
    [64]E.Nino, et al. Two-COLOR particle Image Velocimetry in an Engine with Combustion. SAE Paoer 930872
    [66]夏心兰,王金华,李德桃.柴油机缸内过程三维数值模拟.南昌大学学报[J].2000,9,22(3)
    [67]杜德芳层流小火焰模型在柴油机湍流燃烧中的应用[D]。2005
    [68]石秀勇,李国祥。基于拟序火焰模型的柴油机燃烧过程数值模拟。车用发动机[J],2007.8:31-35
    [69]史春涛秦德等。内燃机燃烧模型的发展现状。农业机械学报[J],2007.4:181-185
    [70]吴超。湍流燃烧模型在燃烧室数值计算中的应用研究[D]。2009
    [71]黄勇成周龙保。用特征时间燃烧模型模拟直喷式柴油机的燃烧。西安交通大学学报[J],2005.1;26-30、
    [72]王锡斌,马志豪,蒋德明.燃烧室几何形状对缸内气体流动和发动机性能的影响[J].内燃机工程,2002,23(2):6-11
    [73]Shahrokh Hajireza, Gerhard Regner and Anthony Christie et al. Application of CFD Modeling in Combustion Bowl Assessment of Diesel Engines Using DoE Methodology [C].SAE 2006-01-3330
    [74]Arturo de Risi, Teresa Donateo and Domenico Laforgia. Optimization of the Combustion Chamberof Direct Injection Diesel Engines [C]. SAE 2003-01-1064
    [75]周龙保.内燃机学.北京:机械工业出版社,2005.1
    [76]赵亚杰,张希武,邹乃威.柴油机高压共轨燃油喷射技术.科学探讨.2006(1):94-96
    [77]袁永先。喷油器结构对柴油机性能影响的研究。车用发动机,2004.2;24-26
    [78]张海艳徐蔡舟。喷油器参数对柴油机排放的影响。柴油机设计与制造,2004.1;15-19
    [79]岩泽胜三等喷油嘴流量特性对柴油机性能的影响。
    [80]林学东,袁兆成.电控可变增压技术改善柴油机性能的研究.农业机械学报,2002(1):1-3.
    [81]Steven D.Arnold,Turbocharging Technologies to Meet Critical Performance Demands of Ultra-Low Emissions Diesel Engines,SAE paper,1999-01-1359
    [82]Maktoto Hagashi,Development of a Turbocharging System with Variable AreaTurbine Nozzle for HD Trucks,SAE paper,920045
    [83]Steve Arnold,Mark Groskreutz,Advanced Variable Geometry Turbocharger forDiesel Engine Applications,SAE paper,2002-01-161
    [84]Akiko Kawamoto,Variable geometry system turbocharger for passenger carDiesel engine,SAE paper,2001-01-0273
    [85]N.Heintz, M.Mews, A.J.Beaumont, An Approach to Torque-Based Engine Management Systems, SAE 2001-01-0269.
    [86]Yamada K, HashiguchiM, ItoM. Traction control system—simulation analysis of the system. Int J. of Vehicle Design,1991,12(1):89~96
    [87]李德刚,林学东,田维等.基于牵引力需求的车用高压共轨柴油机喷油量控制方法研究.汽车工程2010(10)(860-864)
    [88]于志生.汽车理论.,清华大学出版社,1989,第2版
    [89]R. H. Preprints Engine Transmission Matching, SAE 1981
    [90]Nigel N. Clark, Mridul Gautam, et al. Creation and Evaluation of a Medium Heavy-Duty Truck Test Cycle, SAE2003-01-3284
    [91]许洪国.汽车运用工程基础[M].清华大学出版社,2003,第一版,2-50
    [92]曲明辉、吴良勤、张春润.柴油机NOx排放控制技术.小型内燃机.1998年第6期
    [93]Charles R. Schenk、 Joseph F. McDonald. High-Efficiency NOx and Pm Exhaust Emission Control for Heavy-Duty On-Highway Diesel Engines. SAE Paper 2001-01-1351
    [94]Andrea Bertola, Raffael Schubiger. Characterization of Diesel Particulate Emissions in Heavy-Duty Di Diesel Engines With Common-Rail Fuel Injection-Influence of Injection Parameters and Fuel Composition. SAE Paper 2001-01-3573
    [95]Naoya Ishikawa, Taiji Uekusa, Teruo Nakada. Di Diesel Emission Control By Optimized Fuel Injection. SAE Paper 2004-01-0117
    [96]arco Stotz, Joachim Schommers etc. Potential of Common-Rail Injection System for Passenger Car Di Diesel Engines. SAE Paper 2000-01-0944
    [97]平涛,方祖华,金江善等.高压共轨燃油系统共轨压力控制技术研究.内燃机工程.2005(3):46-48
    [98]郭建波.高压共轨柴油机电控燃油喷射系统及开发环境的研究.浙江大学硕士学 位论文.
    [99]Marco Stotz, Joachim Schommers etc. Potential of Common-Rail Injection System for Passenger Car Di Diesel Engines. SAE Paper 2000-01-0944
    [100]任勇刚.商用车发动机与动力传动系参数匹配的模糊优化研究[D].吉林农业大学硕士学位论文,2005.6
    [101]许洪国.汽车运用工程基础[M].清华大学出版社,2003,第一版,2-50
    [102]何仁.汽车传动系最优评价指标的探讨[J].汽车工作,1996,第一版,1-16
    [103]杨连生.汽车的万有特性及其应用.节能技术,1988,第三版,10~135
    [104]ECE-GRPE WHDC Working Group. Development of a Worldwide Harmonised Heavy-duty Engine Emissions Test Cycle, Final Report, TRANS/WP29/GRPE/2001/2
    [105]N.Dembski, Y.Guezennec, et al. Analysis and Expermental Refinement of Real-Word Driving Cycles, SAE2002-01-0069
    [106]Wolfgang Mayer, Jochen Wiedemann. Road load Determination Based on Driving-Torque-Measurement, SAE2003-01-0933
    [107]刘成华.混合动力汽车全局发动机最优工作曲线控制策略研究.吉林大学硕士学位论文.2006.5:27-31

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700