用户名: 密码: 验证码:
回旋放大器注波互作用的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
回旋放大器(主要指回旋速调管和回旋行波管)作为最主要的高功率毫米波放大器,所具有的高效率、高功率、高增益和宽频带等特性使得它们在毫米波通信、雷达、电子对抗和高功率微波武器等方面都有着及其广阔的应用前景,属于国际上一个研究热点。而注波互作用的研究是设计回旋放大器的关键环节之一,粒子能量调制以及与高频场的能量交换也在此过程中实现,互作用的强弱也直接决定着回旋放大器的各种输出性能,因此对注波互作用的计算与模拟非常重要。在国家“十一五”计划以及国家高新技术发展计划项目的支持下,作者开始了回旋放大器注波互作用的研究工作。
     基于自洽非线性理论,本文主要对回旋放大器注波互作用进行了详细深入的数值计算研究,并利用FORTRAN语言在Compag Visual Fortran6.6程序编辑平台成功编制了拥有自主知识版权的回旋速调管注波互作用瞬态参量数值模拟软件和回旋行波管注波互作用稳态参量数值模拟软件。此款软件可以说填补了国内回旋速调放大器注波互作用参量模拟软件的空白,也弥补了国外参量模拟软件MAGY和MAGYKL对我国封锁禁运造成的不便,为我国回旋放大器的研制工作提供了重要的设计工具。
     本文的主要研究成果和所反映的工作如下:
     1.对回旋速调放大器高频系统进行了详细深入的数值计算研究,分析了介质加载突变结构谐振腔和波导渐变开放谐振腔高频特性随各个结构参数的变化规律,为高频系统的设计以及后面注波互作用的分析计算提供了先决条件。
     2.详细推导了两种复数形式的适用于回旋速调管注波互作用的瞬态场方程,建立了电子速度零散的详细计算模型,并全面探讨了调制腔、中间腔和输出腔中注波互作用的理论模型和研究方法,为回旋速调管注波互作用数值计算的程序编制提供了坚实的理论基础和完整的系统框架。
     3.详细深入地研究了注波互作用的数值计算流程以及中间变量的监控方法。利用FORTRAN语言在Compag Visual Fortran6.6程序编辑平台成功编制了拥有自主知识版权的回旋速调管注波互作用参量数值计算软件。经对比,发现当速度零散率为5%的时候,数值计算和实验结果较为吻合。
     4.基于电子回旋脉塞色散方程和有源波动方程,分别对回旋行波放大器注波互作用的线性理论和非线性理论进行了详细的数值计算研究。并利用FORTRAN语言成功编制了回旋行波放大器注波互作用自洽非线性参量模拟程序。并以此设计了一支W波段基波回旋行波管注波互作用的初步模型,为回旋行波管注波互作用长度与增益的选取,饱和输出功率和增益的模拟提供了快速的计算方法。
As one of the most important High-power millimeter-wave amplifier, gyro-amplifiers(gyroklystron and gyro-TWT) have been paid a great attention because of its merits ofhigh efficiency, high power, high gain and suitable bandwidth. It can be used as themost important millimeter-wave sources for communication, radar, electronic warfareand high-power microwave weapons. Numerical simulations of the beam-waveinteraction for gyro-amplifier play an important role as they can accurately predictnonlinear effects that dominate the behavior of the device (e.g., output power, efficiencyand bandwidth). The author began research on the beam-wave interaction forgyro-amplifier by the support of the national11thFive-Year plan and the Chinese hi-techdevelopment.
     Based on the nonlinear self-consistent theory, the numerical calculation of thebeam-wave interaction for gyro-amplifier has been studied in detail. Two parameternumerical calculation codes including the description of the electromagnetic fields and aself-consistent analysis of the electrons for gyro-amplifier are successfully designed andthe corresponding software implementations are achieved using Fortran language. Theyhave filled our country blank and made up an absence of the copyright of some otherexcellent codes, such as MAGY and MAGYKL. They also provide an importantcalculation tool for the design of gyro-amplifiers in our country.
     The main work made in this paper is below:
     1. Study on the numerical calculation of the high frequency characteristics of agyroklystron has been made in detail. The rules of the high frequencycharacteristics of the corresponding cavity with the structure parameters areanalyzed. This establishes prerequisites for the design of the high frequencystructure and the numerical calculation of the beam-wave interaction.
     2. Two forms of the transient electromagnetic field equation for the gyroklystronare deduced in detail. The numerical calculation model of speedspread isestablished in detail. The theoretical model and the research method of thebeam-wave interaction in input cavity, idler cavity and output cavity are distinctly investigated for the first time. They provide a solid theoretical basisand a complete system frame for the calculation code of beam-waveinteraction.
     3. The calculation model and flow process chart are studied in detail. Acalculation code of the beam-wave interaction for gyroklystron is successfullydesigned and the corresponding software implementation is achieved usingFortran language. When the speedspread is5%, the numerical results arecompared with the experimental datas, which shows that good agreements areobtained.
     4. Based on the Electron Cyclotron Resonance Maser dispersion equation and theactive wave equations, study on the numerical calculation of the linear and thenonlinear theory has been made in detail. A calculation code of the beam-waveinteraction for Gyro-TWT is successfully designed using Fortran language. Apreliminary model of the beam-wave interaction for a W-band Gyro-TWT isgiven and analyzed using the above code. The code provides a fast method forcalculating the optimal interaction length, gain and the saturated output power.
引文
[1] P. Bhartia and I. J. Bahl. Millimeter Waves Engineering and Applications. New York: Wiley,1984,123-134
    [2] Robert S. Symos. Modern Microwave Power Sources. IEEE AESS Systems Magazine,2002,17(1):19-26
    [3]吴坚强.高功率微波的发展和应用.电子科技大学学报,1996,25(7):129-139
    [4]黄裕年.高功率微波武器技术的发展评述.微波学报,1999,15(4):354-360
    [5]王文祥.微波工程技术.北京:国防工业出版社,2009,385-396
    [6] R.Q. Twiss, J.A. Roberts. Electromagnetic radiation from electrons roating in an ionizedmedium under the action of a uniform magnetic field. Aust. J. Phys.,1958,11:(424-432)
    [7] A.V. Gaponov. Interaction between irrectilinear electron beams and electromagnetic waves intransmission lines. Izv. Vuzov. Radiofiz.,1959,2:(836-837)
    [8] J. Schneider. Stimulated emission of radiation by relativistic electrons in a magnetic field.Phys. Rev. Lett,1959,2:(504-508)
    [9] J.L. Hirshfield and J.M. Wachtell. Electron cyclotron maser. Phys. Rev. Lett,1964,12:(533-536)
    [10] V.A. Flyagin, A.V. Gaponov, M.I. Petelin and V.K. Yulpatov. The Gyrotron. IEEETransactions on Microwave Theory and Techniques,1977,25(6):514-521
    [11] V. L. Granatstein. A Quarter Century of Gyrotron Research and Development. IEEETransactions on Plasma Science,1997,25(6):1322-1331
    [12] J. L. Hirshfield and V. L. Granatstein. The electron cyclotron maser—An Historical Survey.IEEE Trans. on Microwave Theory and Techniques,1977,25(6):522-527
    [13] M.I. Petelin. One Century of Cyclotron Radiation. IEEE Trans. on Plasma Sci.,1999,27(2):291-302
    [14] A. L. Goldenberg and A. G. Litvak. Recent progress of high-power millimeter wavelengthgyrodevices. Phys. Plasmas,1993,2(2):2562-2572
    [15] O. Dumbrajs and G.S. Nusinovich. Coaxial gyrotrons: past, present and future (Review).IEEE Trans. on Plasma Sci.,2004,32(3):934-946
    [16] A.A Andronov, V.A. Flyagin, A.V.Gaponov et al. The gyrotron: high power source ofmillimeter and submillimeter waves. Infrared Phys.,1978,18(5/6):385-393
    [17] M. Thumm and Walter kasparek. Passive High-Power Microwave Components. IEEETrans.On Plasma Science,2002,30(3):755-785
    [18] M. Thumm.Gyro-devices and their applications.IEEE International Vacuum ElectronicsConference, Bangalore, India, Feb.2011,521-524
    [19]耿志辉.毫米波回旋速调管放大器的自洽非线性理论与模拟:[博士学位论文].北京:中国科学院电子学研究所,2005
    [20]王文祥.微波工程技术.北京:国防工业出版社,2009,390-393
    [21]喻胜.腔体回旋脉塞的研究:[博士学位论文].成都:电子科技大学,2002,57-84
    [22]王建勋.Ka波段回旋放大器及W波段带状束电子学光学系统的研究:[博士学位论文].成都:电子科技大学,2010,2-3
    [23]刘濮鲲,徐寿喜.回旋速调管放大器及其发展评述.电子与信息学报,2003,25(5):683-694
    [24] I.I. Antakov, A.V. Gaponov, et al. Gyroklystrons-Millimeter wave amplifiers of the higestpower. Proc.1993International Symposium on Strong Microwaves in Plasmas, Moscow,Russia, Nov.1994,587-596
    [25] H.R. Jory. Development of gyrotron power sources in the millimeter wavelength range. Proc.Joint Varenna-Grenoble International Symposium on Heating in Toroidal Plasmas, Grenoble,France, Feb.1978,351-358
    [26] G.S. Park, V.L. Granatstein, et al. Phase stability of gyroklystron amplifiers. IEEE Trans. onPlasma Sci.,1991,19(4):632-640
    [27] K. Felch, B.G. Danly, H.R. Jory, et al. Characteristics and applications of fast-wavegyrodevices. Proc. IEEE,1999,87(5):752-781
    [28] D.R. Lohrmann. Millimeter wave radars tracting approaching sea-skimming targets. Digest22ndInternational Conference on Infrared and millimeter waves, Wintergreen, VA,1997,39-41.
    [29] I.I. Antakov, E.V. Zasypkin, E.V. Sokolov, et al.35GHz radar gyroklystrons. Digest18thInternational Conference on Infrared and millimeter waves, Colchester, England, Sept.1993,338-339.
    [30] I.I. Antakov, I.G. Gachev and E.V. Zasypkin. Experimental studies of a gyroklystronoperating in the field of a permanent magnet. Radiophysics and Quantum Electronics,2011,54(3):166-173
    [31] E.V. Zasypkin, M.A. Moiseev, I.G. Gachev and I.I. Antakov. Study of high-power Ka-bandsecond-harmonic gyroklystron amplifier. IEEE Trans. on Plasma Sci.,1996,24(3):666-670
    [32] Manfred Thumm. State of the art of high power gyro-devices and free electron maser.Karlsruher: KIT Scientific Publishing,2010,34-36
    [33] J.J. Choi, A.H. McCurdy, et al. Experimental investigation of a high power, two-cavity,35GHz gyroklystron amplifier. IEEE Trans. on Plasma Sci.,1998,26(3):416-425
    [34] J.J. Choi, A.K. Ganguly, et al.35GHz gyroklystron amplifier development at NRL.Proceedings of the1996IEEE International Conference on Plasma Science, Boston, USA,June1996, p-265
    [35] J.P. Calame, M. Garven, J.J. Choi, et al. Experimental studies of bandwidth and powerproduction in a three-cavity,35GHz gyroklystron amplifier. Proceedings of the1998IEEEInternational Conference on Plasma Science, Raleigh, USA, June1998, p-237
    [36] M. Garven, J.P. Calame, et al. Experimental studies of a four-cavity,35GHz gyroklystronamplifier. IEEE International Conference on Plasma Science, Monterey, USA, June1999,p-227
    [37] M. Garven, J.P. Calame, et al. Experimental studies of a four-cavity,35GHz gyroklystronamplifier. IEEE Trans. on Plasma Sci.,2000,28(3):672-680
    [38] M. Blank, J.P. Calame, et al. Experimental demonstration of high power millimeter wavegyro-amplifiers. Proceedings of the IEEE Particle Accelerator Conference, New YorkMar.1999,1016-1018
    [39] W. Lawson, J.P. Calame, et al. Theoretical and experimental investigation of gyrotronamplifiers for collider applications. Technical Digest-International Electron DevicesMeeting, San Francisco, Dec.1994,247-250
    [40] I. Yovchev, W. Lawson, M. Castle, et al. Design of four-cavity high power gyroklystronamplifier. Proceedings of the IEEE Particle Accelerator Conference, New York, Mar.1999,1040-1042
    [41] J.J. Choi, A.H. McCurdy, et al. High power35GHz gyroklystron amplifiers. Proceedings ofthe IEEE Particle Accelerator Conference, Vancouver, Canada, May1997,3159-3161
    [42] P.K. Liu, S.C. Zhang, et al. Development of a Ka-band second harmonic gyroklystronamplifier. Joint3oth Int. Conf. Infrared Mm. Waves13th Int. Conf. Terahertz Elect.,Williamsburg, USA, sept.2005,659-660
    [43] P.K. Liu, S.C. Zhang, et al. Recent results in the development of a Ka-band second harmonicgyroklystron amplifier. The8th IEEE International Vacuum Electronics Conference,Kitakyushu, Japan, May2007,237-238
    [44] P.K. Liu, S.C. Zhang, et al. Experimental studies of a Ka-band second harmonic gyroklystronamplifier. The35th International Conference on Infrared, Millimeter, and Terahertz Waves,Rome, Italy, sept.2010
    [45] J.H. Guo, S. Yu, et al. Study on nonlinear theory and code of beam-wave interaction forgyroklystron. Journal of Infrared, Millimeter, and Terahertz Waves,2011,32(12):1382-1393
    [46] J.H. Guo, S. Yu, et al. Study on transient nonlinear theory of beam-wave interaction forgyroklystron. Proceedings-20108th International Vacuum Electron Sources Conference andNanocarbon, Nanjing, China, Oct.2010,252-253
    [47] M. Blank, B.G. Danly, et al. Experimental demonstration of a W-band gyroklystron amplifier.Physical Review Letters,1997,79(22):4485-4488
    [48] M. Blank, B.G. Danly and B. Levush. Experimental demonstration of W-band gyroklystronamplifiers with improved gain and efficiency. IEEE Trans. on Plasma Sci.,2000,28(3):706-712
    [49] M. Blank, B.G. Danly, B. Levush and D.E. Pershing. Experimental investigation of W-band(93GHz) gyroklystron amplifiers. IEEE Trans. on Plasma Sci.,1998,26(3):409-415
    [50] M. Blank, B.G. Danly, et al. Demonstration of a high power W-band gyroklystron amplifierfor radar applications. IEEE International Conference on Plasma Science, Monterey, USA,June1999, p-185
    [51] B.G. Danly, M. Blank, et al. Development and testing of a high-average power,94-GHzgyroklystron. IEEE Trans. on Plasma Sci.,2000,28(3):713-726
    [52] M. Blank, B.G. Danly, et al. Circuit design of a wideband W-band gyroklystron amplifier forradar application. IEEE Trans. on Plasma Sci.,1998,26(3):426-432
    [53] M. Blank, K. Felch, et al. Development and demonstration of high-average power W-bandgyro-amplifiers for radar applications. IEEE Trans. on Plasma Sci.,2002,30(31):865-875
    [54] M. Blank, P. Borchard, et al. Millimeter-wave gyro-amplifiers: Principles and state-of-the-art.Conf. Dig. Joint Int. Conf. Infrared Millim. Waves Int. Conf. Terahertz Electron, Karlsruhe,Germany, sept.2004,267-268
    [55] B.G. Danly, M. Blank, et al. Gyro-amplifiers for high millimeter wave radar. Proc.3rdIEEEInt. Vacuum Electronics Conf., Monterey, USA,2002,361-362
    [56] I.I Antakov, E.V. Zasypkin and E.V. Sokolov. Design and performance of94-GHz high powermulticavity gyroklystron amplifier. Proceedings of SPIE-The International Society forOptical Engineering, Colchester, England, Sept.1993,466-467
    [57] E.V. Zasypkin, I.G. Gachev, et al. Development of a W-band120kW gyroklystron at IAP.Conf. Dig.23rd Int. Conf. Infrared Millim. Waves, Colchester,UK, sept.1998,183-184
    [58] A.A Tolkachev, B.A. Levitan, et al. Megawatt power millimeter-wave phase-array radar.IEEE Aerospace and Electronic Systems Magazine,2000,15(7):25-32
    [59] G.J. Linde, M.T. Ngo, et al. WARLOC: A high-power coherent94GHz radar. IEEETransactions on Aerospace and Electronic Systems,2008,44(3):1102-1107
    [60] M. Thumm. Novel applications of millimeter and submillimeter wave gyro-devices.International Journal of Infrared and Millimeter Waves,2001,22(3):377-386
    [61] B. Levush, D.K. Abe, et al. Vacuum electronics: Status and trends. IEEE Aerospace andElectronic Systems Magazine,2007,22(9):28-34
    [62] M. Blank, P. Borchard, et al. Development and demonstration of a broadband W-bandgyro-TWT amplifier. The Joint30th International Conference on Infrared and MillimeterWaves, Williamsburg, USA, Sept.2005,652-653
    [63] M. Blank, P. Borchard, et al. Development of a broadband W-band gyro-TWT amplifier. The5Th IEEE International Vacuum Electronics Conference, Monterey, USA, Apr.2004,59-60
    [64] M. Blank, P. Borchard, et al. Broadband W-band gyrotron amplifier development.IRMMW-THz-Int. Conf. Infrared Millimeter Waves Int. Conf. Terahertz Electron.,Shanghai, China, Sept.2006, p-198
    [65] J.J. Choi, G.S. Park, et al. Broad-band gyro-amplifier research at NRL. Proceedings of SPIE-The International Society for Optical Engineering, Pasadena, USA, Dec.1992,314-317
    [66] V.L. Granatstein, P. Sprangle, R.K. Parker, et al. An electron synchrotron maser based on anintense relativistic electron beam. J. Appl. Phys.,1975,46(1):2021-2028
    [67] V.L. Granatstein, P. Sprangle, M. Herndon, et al. Microwave amplification with an intenserelativistic electron beam. J. Appl. Phys.,1975,46(2):3800-3805
    [68] E. Ott and W.M. Manheimer. Theory of microwave emission by velocity-space instabilitiesof an intense relativistic electron beam. IEEE Trans. on Plasma Sci.,1975,3(2):1-5
    [69] J.L. Seftor, V.L. Granatstein and K.R. Chu. The electron cyclotron maser as a high powertraveling-wave amplifier of millimeter waves. IEEE J. Quantum Electron,1979,15(2):848-853
    [70] K.R. Chu, A.T. Drobot, et al. Theory and simulation of the gyrotron traveling wave amplifieroperating at cyclotron harmonics. IEEE Trans. Microwave Theory Tech.,1980,28(2):313-317
    [71] K.R. Chu, A.T. Drobot, V.L. Granatstein, et al. Characteristics and optimum operatingparameters of a gyrotron traveling wave amplifier. IEEE Trans. Microwave Theory Tech.,1979,27(3):178-187
    [72] P. Sprangle and A.T. Drobot. The linear and self-consistent nonlinear theory of the electroncyclotron maser instability. IEEE Trans. Microwave Theory Tech.,1977,25(2):528-544
    [73] P. Sprangle and W.M. Manheimer. Coherent nonlinear theory of a cyclotron-instability. Phys.Fluids,1975,18(3):224-230
    [74] L.R. Barnett, K.R. Chu, et al. Gain, saturation and bandwidth measurements of the NRLgyrotron traneling wave amplifier. IEDM Tech. Dig.,1979,1(1):164-167
    [75] L.R. Barnett, J.M. Baird, Y.Y Lau, et al. A high gain single stage gyrotron traveling waveamplifier. IEDM Tech. Dig.,1980,1(2):314-317
    [76] Y.Y Lau and K.R. Chu. Gyrotron traveling wave amplifier—A proposed wideband fast waveamplifier. Int. J. Infrared Millim. Waves,1981,2(1):415-425
    [77] K.R. Chu, Y.Y Lau and L.R. Barnett. Theory of a wideband distributed gyrotron travelingwave amplifier. IEEE Trans. Electron Devices,1981,28(1):866-871
    [78] L.R. Barnett, Y.Y Lau and K.R. Chu. An experimental wideband gyrotron traveling-waveamplifier. IEEE Trans. Electron Devices,1981,28(1):872-875
    [79] R.S. Symons, H.R. Jory and S.J. Hegji. An experimental gyro-TWT. IEDM Tech. Dig.,1979,1(1):676-679
    [80] R.S. Symons, H.R. Jory and S.J. Hegji. An experimental gyro-TWT. IEEE Trans. MicrowaveTheory Tech.,1981,29(2):181-184
    [81] P.E. Ferguson, G. Valier and R.S. Symons. Gyrotron-TWT operating characteristics. IEEETrans. Microwave Theory Tech.,1981,29(2):794-799
    [82] Y.Y Lau, K.R. Chu and L.R. Barnett. Gyrotron-traveling-wave amplifier—Ⅰ. Analysis ofoscillations. Int. J. Infrared Millim. Waves,1981,2(1):373-393
    [83] Y.Y Lau, K.R. Chu and L.R. Barnett. Gyrotron-traveling-wave amplifier—Ⅱ. Effects ofvelocity spread and wall resistivity. Int. J. Infrared Millim. Waves,1981,2(1):395-413
    [84] L.R. Barnett, L.H. Chang, et al. Absolute instability competition and suppression in amillimeter-wave gyrotron traveling-wave tube. Phys. Rev. Lett.,1989,63(1):1062-1065
    [85] K.R. Chu and A.T. Lin. Gain and bandwidth of the gyro-TWT and CARM amplifier. IEEETrans. Plasmas Sci.,1988,16(1):90-104
    [86] K.R. Chu, L.R. Barnett, et al. Nonlinear dynamics of the gyrotron traveling-wave amplifier.Phys. Fluids B,1991,3(1):2403-2408
    [87] K.R. Chu, L.R. Barnett, et al. A wide-band millimeter-wave gyrotron traveling-waveamplifier experiment. IEEE Trans. Electron Devices,1990,37(2):1557-1560
    [88] K.R. Chu, L.R. Barnett, et al. Stabilizing of absolute instabilities in gyrotron traveling-waveamplifier. Phys. Rev. Lett.,1995,74(1):1103-1106
    [89] K.R. Chu, H.Y. Chen, et al. Ultra high gain gyrotron traveling-wave amplifier. Phys. Rev.Lett.,1998,81(1):4760-4763
    [90] K.R. Chu, H.Y. Chen, et al. Theory and experiment of ultrahigh gain gyrotron traveling-waveamplifier. IEEE Trans. Plasmas Sci.,1999,27(2):391-404
    [91] D.B. McDermott, H.H. Song, et al. Design of a W-band TE01gyro-TWT with high powerand broadband capabilities. IEEE International Conference on Plasma Science, Banff,Canada, May2002, p-184
    [92] D.B. McDermott, H.H. Song, et al. Design of a W-band TE01mode gyrotron traveling-waveamplifier with high power and broad-band capabilities. IEEE Trans. on Plasma Sci.,2002,30(3):894-902
    [93] C.K. Chong, D.B. McDermott and N.C. Luhmann. Large-signal operation of athird-harmonic slotted gyro-TWT amplifier. IEEE Trans. on Plasma Sci.,1998,26(1):500-507
    [94] V.L. Bratman, A.W. Gross, et al. Gyrotron traveling wave amplifier with a helical interactionwaveguide. Phys. Rev. Lett.,1998,81(1):5680-5683
    [95] H.Z. Guo, D.S. Wu, et al. Special complex open-cavity and low-magnetic-field high-powergyrotron. IEEE Trans. on Plasma Sci.,1990,18(3):326-333
    [96] H.F. Li, Z.L. Xie, et al. A35-GHz low-voltage third-harmonic gyrotron with a permanentmagnet system. IEEE Trans. on Plasma Sci.,2003,31(2):264-271
    [97] X.J. Niu, L. Wang and H.F. Li. Experimental investigation of94GHz second-harmonicgyrotrons. IEEE International Vacuum Electronics Conference, Rome, Italy, Apr.2009,485-486
    [98] S. Yu, X.J. Niu, et al. Simulation design and experiment of an8mm gyroklystron amplifier.Tien Tzu Hsueh Pao/Acta Electronica Sinica,2006,34:2541-2543
    [99] H. Wang, H.F. Li, et al. Theoretical and experimental investigation of a Ka-band gyro-TWTwith lossy interaction structure. Journal of Infrared, Millimeter, and Terahertz Waves,2011,32(2):172-185
    [100] B.T. Liu, E.F. Wang, et al. Experimental study of a Ka band Gyro-TWT with themode-selective circuits. Journal of Infrared, Millimeter, and Terahertz Waves,2010,31(12):1463-1468
    [101]刘盛纲.相对论电子学.北京:科学出版社,1987,137-322
    [102] E.V. Zasypkin, M.A. Moiseev, et al. Effect of penultimate cavity position and tuning onthree-cavity gyroklystron amplifier performance. International Journal of Electronics,1995,78(2):423-433
    [103] G.S. Nusinovich and O. Dumbrajs. Two-harmonic prebunching of electrons in multicavitygyrodevices. Phys. Plasmas,1995,2(2):568-577
    [104] G.S. Nusinovich, G.P. Saraph and V.L. Granatstein. Scaling law for ballistic bunching inmulticavity harmonic gyroklystrons. Phys. Rev. Lett.,1997,78(9):1815-1818
    [105] R.J. Barker, et al.高功率微波源与技术.北京:清华大学出版社,2005,364-421
    [106]邵福球.等离子体粒子模拟.北京:科学出版社,2002
    [107] B. Goplen, L. Ludeking, et al. User-configurable MAGIC for electromagnetic PICcalculations. Computer Physics Communications,1995,87(1):54-86
    [108] M.C. Balk. Simulation possibilities of vacuum electronic devices with CST PARTICLESTUDIO. IEEE International Vacuum Electronics Conference, Monterey, USA, Apr.2008,459-460
    [109] J. Zhou, D.G. Liu, C. Liao and Z.H. Li. CHIPIC: A HIGHLY EFFICIENT CODE FORELECTROMAGNETIC PIC MODELING AND SIMULATION. Proceedings of the17thInternational Conference on High-Power Particle Beams, Xi’an, China, July2008,158-162
    [110] M. Botton, T.M. Antonson, et al. MAGY: A Time-Dependent Code for Simulation of Slowand Fast Microwave Sources. IEEE Trans. on Plasma Sci.,1998,26(3):882-892
    [111] J.R. Pierce. Traveling wave tubes. New York: Van Nostrand,1950
    [112] J.E. Rowe. Nonlinear electron-wave interaction phenomena. New York: Academic Press,1965
    [113] A.S. Gilmour. Principles of traveling wave tubes. Norwood, MA: Artech House,1994
    [114] A.K Ganguly and S. Ahn. Self-consistent large signal theory of the gyrotron traveling waveamplifier. Int. J. Electronics,1982,53(6):641-658
    [115] K.T. Nguyen, B. Levush, et al. Modeling of gyroklystrons with MAGY. IEEE Trans. onPlasma Sci.,2000,28(3):867-886
    [116] A.N. Vlasov, T.M. Antonsen Jr., et al. MAGY simulations of mode interaction in a coaxialgyrotron. IEEE Trans. on Plasma Sci.,2008,36(3):606-619
    [117] A.N. Vlasov, T.M. Antonsen Jr., et al. Modeling of multifrequency process in lossy structuresby using MAGY. IEEE International Conference on Plasma Science, New Orleans, LA, USA,2000, p-201
    [118] A.N. Vlasov. Numerical solution of fields in lossy structures using MAGY. IEEETransactions on Electron Devices,2001,48(1):45-55
    [119] P.E. Latham, W. Lawson and V. Irwin. The design of a100MW, Ku band second harmonicgyroklystron experiment. IEEE Trans. on Plasma Sci.,1994,22(5):804-817
    [120] G.P. Saraph, W. Lawson, et al.100-150MW designs of two-and three-cavity gyroklystronamplifiers operating at the fundamental and second harmonics in X-and Ku-bands. IEEETrans. on Plasma Sci.,1996,24(3):671-677
    [121] G.S. Nusinovich. Review of the theory of mode interaction in gyrodevices. IEEE Trans. onPlasma Sci.,1999,27(2):313-326
    [122] T.M. Antonsen Jr., A.A. Mondelli, et al. Advances in modeling and simulation of vacuumelectronic devices. Proceedings of the IEEE,1999,87(5):804-839
    [123] Y. Huang, H.F. Li, S.W. Yang and S.G. Liu. Study of a35-GHz third-harmonic low-voltagecomplex cavity gyrotron. IEEE Trans. on Plasma Sci.,1999,27(2):368-373
    [124] Y. Huang, H.F. Li, P.Z. Du and S.G. Liu. Third-harmonic complex cavity gyrotronself-consistent nonlinear analysis. IEEE Trans. on Plasma Sci.,1997,25(6):1406-1411
    [125]喻胜,李宏福,谢仲怜,罗勇.渐变复合腔回旋管高次谐波注—波互作用非线性模拟.物理学报,2000,49(12):2455-2459
    [126]喻胜,李宏福,谢仲怜,罗勇.8mm波段三次谐波复合腔回旋管的非线性分析.物理学报,2001,50(10):1979-1983
    [127]喻胜.腔体回旋脉塞的研究:[博士学位论文].成都:电子科技大学,2002,11-55
    [128]黄勇.35GHz三次谐波复合腔回旋管理论及模拟研究:[博士学位论文].成都:电子科技大学,2001,30-74
    [129]万洪容.回旋振荡管计算机辅助设计:[硕士学位论文].成都:电子科技大学,1998,7-49
    [130]杞宁.复合腔回旋管注波互作用研究及计算机辅助设计:[硕士学位论文].成都:电子科技大学,2000,9-41
    [131]刘睿,李宏福,牛新建.回旋管谐振腔本征模式计算的新算法.物理学报报,2011,60(9):090205
    [132] A.H. McCurdy and J.J. Choi. Design and analysis of a coaxial coupler for a35-GHzgyroklystron amplifier. IEEE Transactions on Microwave Theory and Techniques,1999,47(2):164-175
    [133]罗勇.回旋速调放大器高频系统及注—波互作用研究:[博士学位论文].成都:电子科技大学,2003
    [134]李宏福,杜品忠等.突变复合腔回旋管自洽场理论与模拟.物理学报,2000,49(2):312-317
    [135]罗勇,李宏福,谢仲怜,喻胜等.含有吸收介质的突变结构腔体场匹配分析.物理学报,2004,53(1):229-234
    [136]刘盛纲.相对论电子学.北京:科学出版社,1987,110-111
    [137] J.J. Choi, S. Ahn, et al. PIC code simulations on NRL gyro-amplifiers. IEEE InternationalConference on Plasma Science, Boston, USA, June1996, p-297
    [138] M.C. Lin and D.N. Smithe. Study on low-frequency oscillations in a gyrotron using a3DCFDTD PIC method. IEEE International Vacuum Electronics Conference, Bangalore, India,Feb.2011,117-118
    [139] D.B. McDermott, R.C. Statzman, et al.94-GHz25-kW CW low-voltage harmonic gyrotron.IEEE Trans. on Plasma Sci.,1998,26(3):402-408
    [140]刘盛纲.相对论电子学.北京:科学出版社,1987,328-330
    [141] G. S. Nusinovich. Introduction to the Physics of Gyrotrons. Baltimore and London: TheJohns Hopkins University Press,2004:21-42
    [142]钟尔杰,黄廷祝.数值分析.北京:高等教育出版社,2004
    [143]程正兴,李水根.数值逼近与常微分方程数值解.西安:西安交通大学出版社,2000
    [144]邓巍巍,王越南.Visual FORTRAN编程指南.北京:人民邮电出版社,2000
    [145]马瑞民,衣治安.FORTRAN90程序设计.哈尔滨:哈尔滨工程大学出版社,1998
    [146]徐仕良.FORTRAN常用算法程序集.北京:清华大学出版社,1995
    [147]彭国伦.FORTRAN95程序设计.北京:中国电力出版社,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700