用户名: 密码: 验证码:
疏水性阳离子聚合物PP80介导的抗肿瘤基因治疗
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
安全、有效的基因载体是实现肿瘤基因治疗的基础。近年来,脂质体类、脂类、聚合物类等纳米基因载体,以其副作用小、安全、容易获得的优点逐步取代了病毒类基因载体。对高分子聚合物类载体进行修饰、改造、以提高其转染效率与生物相容性是目前材料合成研究中首要考虑的问题。超支化的25kDa的聚乙烯亚胺(PEI)是目前较为广泛使用的核酸传递载体,但是其生物不可降解性、高电荷密度导致高的细胞毒性,限制了其临床应用。通过对PEI进行接枝改性,以增强其生物相容性及转染效率是使其能够得到进一步应用的前提。一些经亲水性基团修饰的PEI极大地增强了自身的生物相容性,但却由于亲水性导致粒径增大,降低了其转染效率。因此,以疏水性修饰的材料逐渐被人们重视起来。材料经疏水性的聚酯类以及一些疏水性的氨基酸修饰后会有效地降低复合物表面的电位,增强与脂类细胞膜的亲和力,更有利于进入细胞内。已有研究表明,疏水性的阳离子聚合物能够有效的介导药物、siRNA与DNA的传递,并且具有较高的传递效率及较低的细胞毒性。我们前期工作中,分别通过NCA开环聚合和单体接枝的方法,向PEI25K引入不同数量的苯丙氨酸,制备出PEI-Phe聚合物(PP80),由于引入苯丙氨酸数量与分布合理,致使PEI-Phe有良好的DNA担载能力,并且粒径较小、血清稳定、转染效率较高。为了验证PP80作为基因载体在肿瘤基因治疗上的潜在应用性,本研究从评价PP80的生物安全性以及基因传递有效性两个方面开展如下工作。
     首先,将带正电性的PP80与带负电性的报告基因加强型绿色荧光蛋白基因(pEGFPC1)通过静电吸引相复合,分别转染人宫颈癌、乳腺癌与肝癌细胞,结果显示,GFP在三种细胞内都有表达,说明PP80对三种比较难以转染的肿瘤细胞具有较好的亲和性,对HeLa细胞的转染效率约达到60%,而对MCF-7与HepG2的转染效率也分别为30%与20%。说明PP80是能够很好地靶向肿瘤细胞的一类基因载体。
     为了验证PP80作为基因载体在生物体内的安全性,将PP80与质粒DNA复合,对其生物安全性进行评价。通过WST-1实验显示,PP80-pDNA复合物转染NIH3T3细胞7天内,经与对照组相比没有显示出明显的抑制细胞活力的现象。随后,分别将PP80与PP80-pDNA复合物加入到兔红细胞悬液中,结果显示,单独的PP80由于表面阳离子电荷的存在破坏了红细胞膜,引起了溶血现象,而PP80与质粒DNA复合后,中和了表面电荷未导致红细胞溶血。将该纳米基因复合物、对照质粒DNA和PBS分别注射到HeLa移植瘤内,作用22天后仍没有显示出影响肿瘤生长的现象。分离小鼠血清,分别检测了血清中的白介素-12与干扰素的表达水平,结果显示,该纳米基因复合物没有引起小鼠的炎症反应。分析血清中代表心、肝、肾等脏器的功能指标,如肌酸,谷丙转氨酶,谷草转氨酶,乳酸脱氢酶,肌苷,尿素氮的水平,结果显示,实验鼠体内酶的水平均与对照组无显著性差异,说明纳米基因复合物不影响各脏器的功能。家兔的热原质检测也说明了PP80-pDNA复合物不引起家兔的发热反应。此外,还通过微核试验检测了PP80-pDNA是否能引起小鼠的急性遗传毒性,结果显示该复合物没有引起小鼠染色体畸变,初步判定不具有遗传毒性。以上结果表明,基因载体PP80具有较好的生物相容性并且能够很好地介导外源基因在肿瘤细胞内表达。
     为了进一步将PP80应用到肿瘤基因治疗水平,我们首先建立了HeLa裸鼠移植瘤模型,通过凝胶阻滞实验及粒径与电势分析,摸索了适用于肿瘤组织转染的最佳的纳米基因结合比例。结果显示,当PP80与质粒DNA质量比为0.5:1时,能够介导绿色荧光蛋白基因及荧光素酶报告基因在肿瘤内大量表达。随后,将PP80与持续诱导细胞凋亡的抗肿瘤基因rev-casp-3通过静电吸引相复合,通过实体瘤注射的方式,注射到肿瘤内,每2天治疗一次,共治疗4次,结果显示PP80介导的rev-casp-3能够有效的抑制HeLa移植瘤的生长。进一步分析了肿瘤组织内的Caspase3下游的靶基因核糖核酸聚合酶1(PARP1),发现该酶被切割成85kDa与25kDa两种形式,失去了修复受损DNA的能力,致使肿瘤走向凋亡。TUNEL实验进一步验证了PP80介导的rev-casp-3诱导了肿瘤细胞凋亡。同时,也检测了各肿瘤组织中细胞增殖的情况,发现过表达rev-casp-3组细胞增殖的Marker Ki-67阳性率明显降低,推测rev-casp-3是通过诱导肿瘤凋亡来抑制肿瘤细胞生长及肿瘤增殖。此外,该凋亡现象也在对体外培养的HeLa细胞中过表达rev-casp-3的实验中得到了进一步的验证。
     为了进一步验证PP80作为基因载体的广谱性与有效性,我们又将PP80与抗酸性成纤维细胞生长因子(FGF-1)的单链抗体基因scFv1C9相结合,检测PP80介导scFv1C9基因在肿瘤内表达并发挥作用。scFv1C9为本实验室通过基因工程的手段获得的特异性结合FGF-1的单链抗体基因,通过上调细胞周期负调控因子p21的表达,从而影响周期蛋白激酶CDK2的表达,引起细胞周期G0/G1期阻滞,抑制细胞增殖。将PP80与scFv1C9通过静电吸引相复合注射到裸鼠HepG2移植瘤内,结果显示,PP80介导的scFv1C9能够抑制肝癌移植瘤的生长。说明PP80是一个具有广谱性、有效性的基因传递载体。
     综上所述,本研究中通过对疏水性阳离子聚合物作为基因载体的安全性与有效性两个方面做出研究。通过生物安全性评价方法初步证明PP80具有较好的生物相容性,适用于体外及体内水平应用。此外,PP80能够介导抗肿瘤基因rev-casp-3与scFv1C9在肿瘤内表达并抑制小鼠移植瘤的生长。以上研究结果表明,阳离子聚合物PP80有望成为癌症基因治疗的传递载体。
Safety and efficacy of gene carriers were regarded as the basis for tumor gene therapy.Recently, liposomes, lipoid and polymer had been used as gene carries to substitute virusvector because of showing advantages such as lower adverse effect and easier obtaining.However, modification and alteration for the polymers to improve its transfection efficiencyand biocompatibility were primarily considered in material synthesis area. Branchedpolyethylenimine, especially PEI25kDa, has generally been accepted as gene carrier,howerver, its nonbiodegradability, high cytotoxicity from much charge density limited itsapplication in clinical trials. Through Modification of PEI to improve the biocompatibility andtransfection efficiency was regarded the foundation to further apply it. Some polymer graftedby hydrophilic segments showed favorable biocompatibility but its transfection efficiency wasreduced due to the increasing of particle size. Therefore, a series of hydrophobic modifiedpolymers were gradually pay noticed. The hydrophobic modified materials possessed betteraffinity to the lipid surface of cell membrane which promoted its entry into the cells. Studieshave shown that hydrophobic cationic polymers could effetively mediate the delivery of drug,siRNA and plasmid DNA with low cell toxicity. In our previous study, we synthesized PPhenby NCA ring opening polymerization and monomer grafting of phenylalanines (Phe) toPEI25K which possessed small particle size and good stability. In order to expore thepotential of PP80as a gene carrier for tumor treatment in vivo, it is necessary to assess thesafety and efficacy of gene carriers.
     Firstly, PP80was complexed with GFP gene and separately added into different kinds ofadherent tumor cells grown on six-well plate. As the results showed GFP was expressed inHeLa, MCF-7and HepG2cells. The transfected efficiency was up to60%in HeLa cells but30%and20%separately in MCF-7and HepG2celles. It indicated that PP80possessed goodaffinity for tumor cell, especially for HeLa cells. These results demonstrated that PP80was aneffective gene carrier for targeting tumor cells.
     In order to verify the safety of PP80as gene carrier, the biocompatibility wasinvestigated in vitro and in vivo. As shown in WST-1experiments, there were no obviousinfluences on NIH3T3cell growth after7days incubation with PP80-pDNA complex.Subsequently, the complex was added into fresh rabbit blood incubating for30min, theresults showed that only PP80strongly induced hemolysis but not PP80-pDNA complex. Inaddition, this complex was also shown no inhibition on the tumor growth when injected intoHeLa xenograft compared with nude pDNA or PBS. To investigate the possible inflammatory reaction induced by PP80, the levels of cytokines were measured. The results showed thatthere were no significant increases in either mIL-12p70or IFN-g in any groups. Meanwhile,CK, LDH and CK-MB, ALT and AST, as well as Cr and BUN, were quantitatively examinedto evaluate the functions of heart, liver and kidney, respectively. As shown in Table1, none ofthese enzymes were significantly changes in all mice. Moreover, pyrogenetic reaction fromrabbit treating with complex was also not observed. Finally, the complex was injected intomice peritoneal cavity to examine its genetoxic by micronucleus tests, from the resultsverdicted that there was no inhibition chromosomal aberration. Taken together, the aboveresults demonstrated that PP80was safe for the delivery of pDNA in vitro and in vivo.
     The above study exhibited that PP80was well biocompatible with animals and effectivelymediated gene expression in tumor. To verify the further application in gene therapy, thecomplexed ratio of PP80and pDNA was optimized by assessing the gene expression in HeLaxenograft. From the gel retardation and size assay, the luciferase was abundantly expressed inthe tumor tissue which was injected PP80/pDNA complex at the ratio of0.5. Subsequently,tumor growth rate was decreased significantly by injecting PP80-pKH3-rev-casp-3complex.In the process of therapy, poly (ADP-ribose) polymerase (PARP1) was cleaved into twofragments of85kDa and25kDa, which lost the repaired function for the damaged DNA due tothe overexpression of rev-casp-3, and at last induced cell or tumor apoptosis. Meanwhile, thestatus of cell proliferation in tumor tissue was also detected, discovering that the Ki-67positive cells were strongly decreasded in rev-casp-3overexpressing group, it is supposed thatthe slow growth of tumor was possibly due to cell apoptosis inducing by rev-casp-3. TUNELanalysis also provided evidence that PP880deliveried rev-casp-3can effectively inhibit thetumoral growth mainly though apoptotic pawthway. This apoptosic phenomenon was furtherconfirmed by overexpressing rev-casp-3in HeLa cells.
     To further verify the extensive applicability of PP80as a gene vector, we also combinedPP80with a single-chain antibody gene (scFv1C9) against fibroblast growth factor1(FGF-1)to cure tumor. In our study, it was demonstrated that scFv1C9resulted in the G0/G1areest byregulation of the expression of p21and CDK2. Futhermore, PP880deliveried scFv1C9caneffectively inhibit HepG2xenograft growth.
     In summary, these work mainly foucus on developing the safety and effectiveness ofhydrophobic cationic as gene carrier. First of all, through biological safety evaluation, wedemonstrated PP80was safety and can be applied in vitro and in vivo. In addition, PP80caneffectively deliver rev-casp-3and scFv1C9expression in tumor and inhibit xenogaraft growth.These works have provided that PP80was a potential gene carrier for cancer gene therapy.
引文
[1] Recchia A, Mavilio F. Tracking gene-modified T cells in vivo. Methods Mol Biol,2009,506:391-401.
    [2] Check E. Gene-therapy trials to restart following cancer risk review. Nature,2005,434(7030):127.
    [3] Alici E, Sutlu T, Sirac Dilber M. Retroviral gene transfer into primary human natural killercells. Methods Mol Biol,2009,506:127-137.
    [4] Santoni de Sio F, Naldini L. Short-term culture of human CD34+cells for lentiviral genetransfer. Methods Mol Biol,2009,506:59-70.
    [5] Boutros M, Kiger AA, Armknecht S, et al. GenomeWide RNAi analysis of growth andviability in Drosophila cells. Science,2004,303(5659):832-835.
    [6] KimYO, Park SJ, Balaban RS, et al. Afunctional genomicscreen for cardiogenic genesusing RNA interference in developing Drosophila embryos[J]. ProcNatlAcadSciUSA,2004,101(1):159-164.
    [7] AshrafiK, ChangFY, Watts JL, et al. GenomewideRNAi analysis of Caenorhabditiselegans fat regulatory genes. Nature,2003,421(6920):268-272.
    [8] Pothof J, van Haaften G, Thijssen K, et al. Identification of genesthat protect the C.elegansgenome against mutations by genomewide RNAi. GenesDev,2003,17(4):443-448.
    [9] Berns K, Hijmans EM, Mullenders J, et al. Alargescale RNAiscreen in human cellsidentifies new components of the p53pathway. Nature,2004,428(6981):431-437.
    [10] P addisonPJ, SilvaJM, ConklinDS, et al. Aresourcefor largescaleRNAinterferencebasedscreensinmammals. Nature,2004,428(6981):427-431.
    [11] Science News Staff. Breakthrough of the year. The runners-up. Science,2009,326(5960):1600-1607.
    [12] Wu X S, Liu D P, Liang C C. Prospects of chimeric RNADNA oligonucleotides in genetherapy. J Biomed Sci,2001,8(6):439-445
    [13] Williams D A, Baum C. Gene therapy-new challenges ahead. Science,2003,302(5644):400-401.
    [14] Culver K W. Gene Therapy: A Primer for Physician. Larchmont: Mary Ann Liebert. Inc,1996.
    [15] Mahato R I, Smith L C. Rol1and A. Pharmaceutical perspective of nonviral gene therapy.Adv Genet.1999,4l:95-156.
    [16]张夏华,吴广通,李蓉.基因治疗现状与前景. Joumal of Pharmaceutical Practice,2009,27(1):4-9.
    [17]邓洪新,魏于全.肿瘤生物治疗研究进展.世界科技研究与发展.2004,26(2):1-6.
    [18] Anderson WF, Blaese RM, Culver K. The ADA human gene therapy clinical protocol:points to consider response with clinical protocol. Hum Gene Ther.1990,1(3):331-362.
    [19] Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, et al. Gene therapy of humansevere combined immunodeficiency (SCID)-X1disease. Science,2000,288(5466):669-672.
    [20] Pearson S, Jia H, Kandachi K. China approves first gene therapy. Nat Biotechnol,2004,22(1):3-4.
    [21] http://www.wiley.co.uk/genetherapy/clinical/. March2009.
    [22] Jia LT, Zhang LH, Yu CJ, et al. Specific tumoricidal activity of a secreted proapoptoticprotein consisting of HER2antibody and constitutively active caspase-3. Cancer Res,2003,63:3257-3262.
    [23] Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA Cancer J Clin,2011,61(2):69-90.
    [24]李兴玉.医学分子生物学.兰州大学出版社,1999.216-217.
    [25] Creenberger in optimizing radiation therapy for nonsmall cell lung cancer. Chest,1998,1131:46-52.
    [26] Kwong YL, Chen SH, Kosai K, et al. Combination therapy with suicide and cytokinegenes for hepatic metastases of lung cancer. Chest,1997,112:1332-1337.
    [27] Brenner MK.Clinical success of complex biological therapies:be careful what you wishfor.Mol Ther,2010,18(10):1737-1738.
    [28] Balwit JM, P Hwu, WJ Urba, et a1. The iSBTc/SITC primer on tumor immunology andbiological therapy of cancer: a summary of the2010program. J Transl Med,2011,9(1):18.
    [29] Cacheux W, Le Toumeau C, BarangerB, et al. Tar-geted biotherapy in metastaticcolorectal carcinoma: Current practice. J Visc Surg,2011,148(1):12-18.
    [30] Biological therapy for cancer. http://www.may-oclinic.org/biological-therapy-for-cancer/.
    [31] Rosenberg SA, Yang JC, Sherry RM, et al. Durable complete responses in heavilyretreated patients with metastatic melanoma using T-cell transfer immnunotherapy. ClinCancer Res,2011,17(13):4550-4557.
    [32]Nemunaitis JJ. PhaseII study of a TGF-β2antisense gene modified allogeneic tumor cellvaccine (Lucanix) in advanced NSCLC. J Clin Oncol,2006,24(29):4721-4730.
    [33] Ma J, Chen CS, Blute T, et al. Antiangiogenesis en-hances intratumoral drug retention.Cancer Res,2011,71(7):2675-2685.
    [34] Terao S, Shirakawa T, Goda K, et al. Recombinant interleukin-2enhanced the antitumoreffect of ADV/RSV-HSV-tk/ACV therapy in a murine bladder cancer model. Anticancer Res,2005,25(4):2757-2760.
    [35] Check E. Gene-therapy trials to restart following cancer risk review. Nature,2005,434(7030):127.
    [36] Alici E, Sutlu T, Sirac Dilber M. Retroviral gene transfer into primary human naturalkiller cells. Methods Mol Biol.2009,506:127-137.
    [37] Santoni de Sio F, Naldini L. Short-term culture of human CD34+cells for lentiviral genetransfer. Methods Mol Biol.2009,506:59-70.
    [38]毛建平.基因治疗20年. China Biotechnology,2010,39(9):124-129.
    [39] Armstrong AC, Eaton D, Ewing JC. Cellular vaccine therapy for cancer. Expert Reviewof Vaccines,2002,1(3):303-316.
    [40] Viewog J, Dannull J. Tumor vaccines: from gene therapy toden-dritic cells-the emergingfrontier. Urol Clin North Am,2003,30(3):633-643.
    [41] Opalka B, Dickopp A, Kirch HC. Apoptotic genes in cancer therapy. Cells TissuesOrgans,2002,172(2):126-132.
    [42] Chen HX. Clinical development of antisense oligonucleotides as anti-cancer therapeutics.Methods Mol Med,2003,75:621-636.
    [43] Kirn D, Niculescu-Duvaz I, Hallden G, et al. The emerging fields of suicide gene therapyand virotherapy. Trends Mol Med,2002,8(4):68-73.
    [44] Soappaticci FA. The therapeutic potential of novel antiangiogenic therapies. Expert OpinInvestig Drugs,2003,12(6):923-932.
    [45] Mcnally VA, Patterson AV, Williams KJ, et al. Antiangiogenic, bioreductive and genetherapy approaches to the treatment of hypoxic tumours. Curr Pharm Des,2002,8(15):1319-1333.
    [46] Guo SY, Gu QL, Zhu ZG, et al. TK gene combined with mIL-2and mGM-CSF genes intreatment of gastric cancer. World J Gastroenterol,2003,9(2):233-237.
    [47] Verma IM, Somia N. Gene therapy--promises, problems and prospects. Nature,1997,389:239-242.
    [48] Díez S, Navarro G, de ILarduya CT. In vivo targeted gene delivery by cationicnanoparticles for treatment of hepatocellular carcinoma. J Gene Med,2009,11(1):38-45.
    [49] Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference bydouble-stranded RNA in Caenorhabditis elegans. Nature,1998,391(6669):806-811.
    [50] Ma J, He X, Wang W, et al. E2F promoter-regulated oncolyt-ic adenovirus with p16gene induces cell apoptosis and exerts antitumor effect on gastric cancer. Dig Dis Sci,2009,54(7):1425-1431.
    [51] Hillman GG, Slos P, Wang Y, et al. Tumor irradiation followed by intratumoral cytokinegene therapy for murine renal adenocarcinoma. Cancer Gene Ther,2004,11(1):61-72.
    [52]杨永岗,陈成猛,温月芳,等.氧化石墨烯及其与聚合物的复合.新型炭材料,2008,23(3):193-200.
    [53] Seol JY, Park KH, Hwang CI, et al. Adenovirus-TRAIL can overcome TRAIL resistanceand induce a bystander effect. Cancer Gene Ther.2003,10(7):540–548.
    [54] Shi J, Zheng D, Liu Y, et al. Overexpression of soluble TRAIL induces apoptosis inhuman lung adenocarcinoma and inhibits growth of tumor xenografts in nude mice. CancerRes.2005,65(5):1687-1692.
    [55] Wang Y, Canine BF, Hatefi A. HSV-TK/GCV cancer suicide gene therapy by a designedrecombinant multifunctional vector. Nanomedicine,2011,7(2):193-200.
    [56] Ferrari G, Rossini S, Giavazzi R, et al. An in vivo model of somatic cell gene therapy forhuman severe combined immunodeficiency. Science,1991,251(4999):1363-6.
    [57] Hacein-Bey-Abina S, von Kalle C, Schmidt M, et al. A serious adverse event aftersuccessful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med,2003,348(3):255-6.
    [58] Lehrman S. Virus treatment questioned after gene therapy death. Nature, l999,40l:5l7-5l8.
    [59] Mashall E. Gene therapy death promotes review of adenovirus vectors. Science,1999,286:2244-2245.
    [60] Lu W, Zhang Y, Tan YZ, et al. Cationic albumin-conjugated pegylated nanoparticles asnovel drug carrier for brain delivery. J Control Release,2005,107(3):428-448.
    [61] Pardridge WM. The blood-brain barrier: bottleneck in brain drug development. NeuroRx,2005,2(1):3-14.
    [62] Dewey RA, Morrissey G, Cowsil CM, et al. Chronic brain inflammation and persistentherpes simplex virus1thymidine kinase expression in survivors of syngeneic glioma treatedby adenovirus-mediated gene therapy: implications for clinical trials. Nat Med.1999,5(11):1256-1263.
    [63] McMenamin MM, ByrnesAP, Charlton HM, et al. A gamma34.5mutant of herpessimple1causes severe inflammation in the brain. Neuroscience,1998,83(4):1225-1237.
    [64] Torchilin VP. Micellar nanocarriers: pharmaceutical perspectives. Pharm Res.2007,24(1):1-16.
    [65] Molnar MJ, Gilbert R, Lu Y, et al. Factors influencing the efficacy, longevity, and safetyof electroporation-assisted plasmid-based gene transfer into mouse muscles. Mol Ther,2004,10(3):447-55.
    [66] Cemazar M, Sersa G, Wilson J, et al. Effective gene transfer to solid tumors usingdifferent nonviral gene delivery techniques: Electroporation,liposomes, and integrin-targetedvector. Cancer Gene Therapy,2002,9(4):399-406.
    [67] Lohr F, Lo DY, Zaharoff DA, et al. Effective tumor therapy with plasmid-encodedcytokines combined with in vivo electro-poration. Cancer Res,2001,61(8):3281-3284.
    [68] Khan A, Benboubetra M, Sayyed PZ, et al. Sustained polymeric delivery of genesilencing antisense ODNs, siRNA, DNAzymes and ribozymes: in vitro and in vivo studies. JDrug Target,2004,12(6):393-404.
    [69] Kim MH, Kim JC, Lee HY, et al. Release property of temperature-sensitive alginatebeads containing poly(N-isopropylacrylamide). Colloids Surf B Biointerfaces,2005,46(1):57-61.
    [70] Tanimoto A, Oshio K, Suematsu M, et al. Relaxation effects of clustered particles. JMagn Reson Imaging,2001,14(1):72-7.
    [71] Lübbe AS, Bergemann C, Riess H, et al. Clinical experiences with magnetic drugtargeting: a phase I study with4'-epidoxorubicin in14patients with advanced solid tumors.Cancer Res,1996,56(20):4686-93.
    [72] Kubo T, Sugita T, Shimose S, et al. Targeted delivery of anticancer drugs withintravenously administered magnetic liposomes in osteosarcoma-bearing hamsters. Int JOncol,2000,17(2):309-15.
    [73] Scherer F, Anton M, Schillinger U, et al. Magnetofection: enhancing and targeting genedelivery by magnetic force in vitro and in vivo. Gene Therapy,2002,9(2):102-109.
    [74] Lampela P, Elomaa M, Ruponen M, et al. Different synergistic roles of smallpolyethylenimine and Dosper in gene delivery. J Control Release,2003,88(1):173-183.
    [75] Rosi NL, Giljohann DA, Thaxton CS, et al. Oligonucleotide-modified gold nanoparticlesfor intracellular gene regulation. Science,2006,312(5776):1027-1030.
    [76] Aldawsari H, Edrada-Ebel R, Blatchford DR, et al. Enhanced gene expression in tumorsafter intravenous administration of arginine-, lysine-and leucine-bearing polypropyleniminepolyplex.. Biomaterials,2011,32(25):5889-5899.
    [77] Chang DK, Chiu CY, Kuo SY, et al. Antiangiogenic targeting liposomes increasetherapeutic efficacy for solid tumors. J Biol Chem,2009,284(19):12905-12916.
    [78] Lu W, Sun Q, Wan J, et al. Cationic albumin-conjugated pegylated nanoparticles allowgene delivery into brain tumors via intravenous administration. Cancer Res,2006,66(24):11878-11887.
    [79] Park TG, Jeong JH, Kim SW. Current status of polymeric gene delivery systems. AdvDrug Deliv Rev,2006,58(4):467-486.
    [80] Dincer S, Turk M, Piskin E. Intelligent polymers as nonviral vectors. Gene Ther,2005,12(suplp1):S139–S145.
    [81] Alshamsan A, Hamdy S, Samuel J, et al. The induction of tumor apoptosis in B16melanoma following STAT3siRNA delivery with a lipid-substituted polyethylenimine.Biomaterials,2010,31(6):1420-1428.
    [82] Kim TH, Jin H, Kim HW, et al. Mannosylated chitosan nanoparticle-based cytokine genetherapy suppressed cancer growth in BALB/c mice bearing CT-26carcinoma cells. MolCancer Ther,2006,5(7):1723-1732.
    [83] Zuber G, Dauty E, Nothjsen M, et a1. Towards synthetic viruses. AdV Drug Del Review,2001,52:245-253.
    [84] Ferber B. Gene therapy: saferand virus-free? Sciences,2001,294:l638-l642.
    [85] Blaese R M. The ADA human gene therapy clinical protocol. Hum Gene Ther,1990,1(3):327-62.
    [86] Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, et al. Gene therapy of humansevere combined immunodeficiency (SCID)-X1disease. Science,2000,288(5466):669-672.
    [87] Pearson S, Jia H, Kandachi K. China Approves First Gene Therapy. Nat Biotechnol,2004,22(1):3-4.
    [88] Lehrman S. Virus treatment questioned after gene therapy death. Nature,1999,401(6753):517-518.
    [89] Niidome T, Huang L. Gene therapy progress and prospects: nonviral vectors. Gene Ther,2002,9(24):1647-1652.
    [90] Tian H, Xiong W, Wei J, et al. Gene transfection of hyperbranched PEI grafted byhydrophobic amino acid segment PBLG. Biomaterials,2007,28(18):2899-2907.
    [91] Shi S, Wang XH, Guo G, et al. P Preparation and characterization of microporouspoly(D,L-lactic acid) film for tissue engineering scaffold. Int J Nanomedicine,2010,5:1049-1055.
    [92] Yockman JW, M aheshwari A, Han SO, et al. Tumor regression by repeated intratumoraldelivery of water soluble lipopolymers/p2CMVmIL-12complex. J Control Release,2003,87(1-3):177-186.
    [93] Liu ZH, Zhang ZY, Zhou CG, et al. Hydrophobic modifications of cationic polymers forgene delivery. Prog Polym Sci,2010,35(9):1144-1162.
    [94] Petersen H, Fechner PM, Martin AL, et al. Polyethylenimine-graft-poly(ethylene glycol)copolymers: influence of copolymer block structure on DNA complexation and biologicalactivities as gene delivery system. Bioconjug Chem,2002,13(4):845-854.
    [95] Shuai X T, Merdan T, Unger F, et al. Novel biodegradable ternary copolymershy-PEI-g-PCL-b-PEG: synthesis, characterization, and potential as efficient nonviral genedelivery vectors. Macromolecules,2003,36(15):5751-5759.
    [96] Park YM, Shin BA, Oh IJ. Poly(L-lactic acid)/polyethylenimine nanoparticles as plasmidDNA carriers. Arch Pharm Res,2008,31(1):96-102.
    [97] Wang DA, Narang AS, Kotb M, et al. Novel branched poly(ethylenimine)-cholesterolwater-soluble lipopolymers for gene delivery. Biomacromolecules,2002,3(6):1197-1207.
    [98] Service RF. Nanomaterials show signs of toxicity. Science,2003,300(5617):243.
    [99] Guo ZP, Tian HY, Xia JL, et al. Bioreducible crosslinked low molecular weight branchedPEI-PBLG as an efficient gene carrier. Science China Chemistry,2010,53(12):2490-2496.
    [100] Tian H, Lin L, Chen J, et al. RGD targeting hyaluronic acid coating system forPEI-PBLG polycation gene carriers. J Control Release,2011,155(1):47-53.
    [101] Dong X, Tian H, Chen L, et al. Biodegradable mPEG-b-P(MCC-g-OEI) copolymers forefficient gene delivery. J Control Release,2011,152(1):135-142.
    [102] Venkatesan P, Puvvada N, Dash R, et al. The potential of celecoxib-loadedhydroxyapatite-chitosan nanocomposite for the treatment of colon cancer. Biomaterials,2011,32(15):3794-3806.
    [103] Wang P, Zhao XH, Wang ZY, et al. Generation4poly-amidoamine dendrimers is anovel candidate of nano-carrier for gene delivery agents in breast cancer treatment. CancerLett,2010,298(1):34-49.
    [104] Gao X, Wang B, Wei X, et al. Preparation, characterization and application ofstar-shaped PCL/PEG micelles for the delivery of doxorubicin in the treatment of coloncancer. Int J Nanomedicine.,2013,8:971-82.
    [105] Tanaka T, Godin B, Bhavane R, et al. In vivo evaluation of safety of nanoporous siliconcarriers following single and multiple dose intravenous administrations in mice. Int J Pharm,2010,402(1-2):190-197.
    [106] Semete B, Booysen L, Lemmer Y, et al. In vivo evaluation of the biodistribution andsafety of PLGA nanoparticles as drug delivery systems. Nanomedicine,2010,6(5):662-671.
    [107] Avery-Kiejda KA, Bowden NA, Croft AJ, et al. P53in human melanoma fails toregulate target genes associated with apoptosis and the cell cycle and may contribute toproliferation. BMC Cancer,2011,11:203-219.
    [108] Buttgereit P, Schakowski F, Marten A, et al. Effects of adenoviral wild-type p53genetransfer in p53-mutated lymphoma cells. Cancer Gene Ther,2001,8(6):430-439.
    [109] Carroll JL, Nielsen LL, Pruett SB, et al. The role of natural killer cells inadenovirus-mediated p53gene therapy. Mol Cancer Ther,2001,1(1):49-60.
    [110] Spandidos DA, lommthe A, Field JK, et al. Multiple transcriptional activation ofcellular incigenes in human head and neck solid tumors. Anticander-Res,1985,5(2):221-227.
    [111] Zhao Y, Jian W, Gao W, et al. RNAi silencing of c-Myc inhibits cell migration, invasion,and proliferation in HepG2human hepatocellular carcinoma cell line: c-Myc silencing inhepatocellular carcinoma cell. Cancer Cell Int.2013,13(1):23.
    [112] Goldenberg DM, Goldenberg H, Sharkey RM, et al. Clinical studies of cancerradioimmunodetection with carcinoembryonic antigen monoclonal antibody fragmentslabeled with123I or99mTc. Cancer Res,1990,50(3Suppl):909s-921s.
    [113] Colcher D, Bird R, Roselli M, et al. In vivo tumor targeting of a recombinantsingle-chain antigen-binding protein. J Natl Cancer Inst,1990,82(14):1191-1197.
    [114] Yokota T, Milenic DE, Whitlow M, et al. Rapid tumor penetration of a single-chain Fvand comparison with other immunoglobulin forms. Cancer Res,1992,52(12):3402-3408.
    [115] Adams GP, Shaller CC, Chappell LL, et al. Delivery of the alpha-emitting radioisotopebismuth-213to solid tumors via single-chain Fv and diabody molecules. Nucl Med Biol2000,27(4):339-346.
    [116] Napier MP, Sharma SK, Springer CJ, et al. Antibody-directed enzyme prodrug therapy:efficacy and mechanism of action in colorectal carcinoma. Clin Cancer Res,2000,6(3):765-772.
    [117] Kramer K, Fiedler M, Skerra A, et al. A generic strategy for subcloning antibodyvariable regions from the scFv phage display vector pCANTAB5E into pASK85permits theeconomical production of F(ab) fragments and leads to improved recombinantimmunoglobulin stability. Biosens Bioelectron2002,17(4):305-313.
    [118] Helguera G, Penichet ML. Antibody-cytokine fusion proteins for the therapy of cancer.Methods Mol Med,2005,109:347-374.
    [119] Schmidt M, Maurer GM, Groner B, et al. Suppres-sion of metastasis formation by arecombinant single chain antibody-toxin targeted to full-length and onco-genic variant EGFreceptors. Oncogene,1999,18(9):1711-1721.
    [120] Vitaliti A, Wittmer M, Steiner R, et al. Inhibition of tumor angiogenesis by asingle-chain antibody direct-ed against vascular endothelial growth factor. Cancer Res,2000,60(16):4311-4314.
    [121] Li SL, Liang SJ, Guo N, et al. Single chainantibod-ies against humaninsulin-like growthfactor I recep-tor: expression, purification, and effect on tumor growth. Cancer ImmunolImmunother,2000,49(4-5):243-252.
    [122] Xia J, Chen L, Chen J, et al. Hydrophobic Polyphenylalanine-Grafted HyperbranchedPolyethylenimine and its in vitro Gene Transfection. Macromol Biosci,2011,11(2):211-218.
    [123] Srinivasula SM, Ahmad M, MacFarlane M, et al. Generation of constitutively activerecombinant caspases-3and-6by rearrangement of their subunits. J Biol Chem1998,273(17):10107-10111.
    [124] Boulares AH, Zoltoski AJ, Sherif ZA, et al. The poly (ADP-ribose)polymerase-1-regulated endonuclease DNAS1L3is required for etoposide-inducedinternucleosomal DNA fragmentation and increases eto-poside cytotoxicity in transfectedosteosarcoma cells. Cancer Res,2002,62(15):154439-154444.
    [125] Bai D, Xia X, Yow CM, et al. Hypocrellin B-encapsulated nanoparticle-mediatedrev-caspase-3gene transfection and photodynamic therapy on tumor cells. Eur J Pharmacol2011,650(2-3):496-500.
    [126] Jia LT, Zhang LH, Yu CJ, et al. Specific tumoricidal activity of a secreted proapoptoticprotein consisting of HER2antibody and constitutively active caspase-3. Cancer Res2003,63(12):3257-3262.
    [127] Shi HL, Yang T, Deffar K, et al. A novel single-chain variable fragment antibody againstFGF-1inhibits the growth of breast carcinoma cells by blocking the intracrine pathway ofFGF-1. IUBMB Life,2011,63(2):129-137.
    [128] Mao CQ, Du JZ, Sun TM, et al. A biodegradable amphiphilic and cationic triblockcopolymer for the delivery of siRNA targeting the acid ceramidase gene for cancer therapy.Biomaterials,2011,32(11):3124-3233.
    [129] Iwashita Y, Ogawa T, Goto S, et al. Effective transfer of interleukin-12gene to solidtumors using a novel gene delivery system, poly [D, L-2,4-diaminobutyric acid]. Cancer GeneTher,2004,11(2):103-108.
    [130] Jalava P, Kuopio T, Juntti-Patinen L, Kotkansalo T, et al. Ki67immunohistochemistry: avaluable marker in prognostication but with a risk of misclassification: proliferationsubgroups formed based on Ki67immunoreactivity and standardized mitotic index.Histopathology,2006,48(6):674-682.
    [131] Chai N, Patel Y, Jacobson K, et al. FGF is an essential regulator of the fifth cell divisionin preimplantation mouse embryos. Dev Biol,1998,198:105–115.
    [132] Vasiliauskas D, Stern CD. Patterning the embryonic axis: FGF signaling and howvertebrate embryos measure time. Cell,2001,106:133–136.
    [133] Sekine K, Ohuchi H, Fujiwara M, et al. Fgf10is essential for limb and lung formation.Nat Genet,1999,21:138–141.
    [134] Represa J, Leon Y, Miner C, et al. The int-2proto-oncogene is responsible for inductionof the inner ear. Nature,1991,353:561–563.
    [135] Crossley PH, Minowada G, MacArthur CA, et al. Roles for FGF8in the induction,initiation, and maintenance of chick limb development. Cell,1996,84:127–136.
    [136] Basilico C, Moscatelli D. The FGF family of growth factors and oncogenes. AdvCancer Res,1992,59:115–165.
    [137] Rieck P, Hartmann C, Jacob C, et al. Human recombinant bFGF stimulatescornealendothelial wound healing in rabbits. Curr Eye Res,1992,11:1161-1172.
    [138] Werner S, Peters KG, Longaker MT, et al. Large induction of keratinocyte growth factorexpression in the dermis during wound healing. Proc Natl Acad Sci USA,1992,89:6896–6900.
    [139] Friesel RE, Maciag T. Molecularmechanisms of angiogenesis: fibroblast growth factorsignal transduction. FASEB J,1995,9:919–925.
    [140] Jouanneau J, Moens G, Bourgeois Y, et al. A minority of carcinoma cells producingacidic fibroblast growth factor induces a community effect for tumor progression. Proc NatlAcad Sci USA,1994,91:286-290.
    [141] Jouanneau J, Plouet J, Moens G, et al. FGF-2and FGF-1expressed in rat bladdercarcinoma cells have similar angiogenic potential but different tumorigenic properties in vivo.Oncogene,1997,14:671-676.
    [142] Hu Z, Evarts RP, Fujio K et al. Expression of transforming growth factoralpha/epidermal growth factor receptor, hepatocyte growth factor/c-mef and acidic fibroblastgrowth factor/fibroblast growth factor receptors during hepatocarcinogenesis. Carcinogenesis,1996,17:931-938.
    [143]Chow NH, Cheng KS, Lin, PW et al. Expression of fibroblast growth factor-1andfibroblast growth factor-2in normal liver and hepatocellular carcinoma. Dig Dis Sci,1998,43:2261-2266.
    [144] Yamanaka Y, Friess H, Buchler M et al. Overexpression of Acidic and Basic FibroblastGrowth Factors in Human Pancreatic Cancer Correlates with Advanced Tumor Stage. CancerRes,1993,53:5289-5296.
    [145] Zhang L, Kharbanda S, McLeskey SW, et al. Overexpression of Fibroblast GrowthFactor1in MCF-7Breast Cancer Cells Facilitates Tumor Cell Dissemination but Does NotSupport the Development of Macrometastases in the Lungs or Lymph Nodes. Cancer Res,1999,59:5023-5029.
    [146] Zhang L, Kharbanda S, Chen D, et al. MCF-7breast carcinoma cells overexpressingFGF-1form vascularized, metastatic tumors in ovariectomized or tamoxifen-treated nudemice. Oncogene,1997,15:2093-2108.
    [147] Ortiz R, Melguizo C, Prados J, et al. New gene therapy strategies for cancer treatment: areview of recent patents. Recent Pat Anticancer Drug Discov,2012,7(3):297-312.
    [148] Gomez-Manzano C, Jiang H, Alonso M, et al. Gene therapy. Handb Clin Neurol,2012,104:331-8.
    [149] Bodor A, Kutas J. Liposomes in gene therapy. Acta Pharm Hung,2003,73(2):115-122.
    [150] Oku N, Yamazaki Y, Matsuura M, et al. A Novel Non-Viral Gene Transfer SystemPolycation Liposomes. Adv Drug Deliv Rev.2001,52(3):209-218.
    [151] von Harpe A, Petersen H, Li Y, et al. Characterization of Commercially Available andSynthesized Polyethylenimines for Gene Delivery. J Control Release,2000,69(2):309-322.
    [152] H bel S, Koburger I, John M, et al. Polyethylenimine/small interfering RNA-mediatedknockdown of vascular endothelial growth factor in vivo exerts anti-tumor effectssynergistically with Bevacizumab. J Gene Med,2010,12(3):287-300.
    [153] Charoensit P, Kawakami S, Higuchi Y, et al. Enhanced growth inhibition of metastaticlung tumors by intravenous injection of ATRA-cationic liposome/IL-12pDNA complexes inmice. Cancer Gene Ther,2010,17(7):512-522.
    [154] Díez S, Navarro G, de ILarduya CT. In vivo targeted gene delivery by cationicnanoparticles for treatment of hepatocellular carcinoma. J Gene Med.2009,11(1):38-45.
    [155] Haag R, Kratz F. Polymer Therapeutics: Concepts and Applications. Angew Chem IntEd Engl,2006,45(8):1198-1215.
    [156] Behr J P. The Proton Sponge: A Trick to Enter Cells the Viruses Did Not Exploit.Chimia,1997,51(1-2):34-36.
    [157] Maeda H. The link between infection and cancer: Tumor vasculature, free radicals, anddrug delivery to tumors via the EPR effect. Cancer Sci,2013.
    [158] Prabhakar U, Blakey DC, Maeda H, et al. Challenges and key considerations of theenhanced permeability and retention effect (EPR) for nanomedicine drug delivery in oncology.Cancer Res,2013.
    [159] Dhimitruka I, Bobko AA, Eubank TD, et al. Phosphonated Trityl Probes for ConcurrentIn Vivo Tissue Oxygen and pH Monitoring Using EPR-based Techniques. J Am Chem Soc,2013.
    [160] Ofek P, Fischer W, Calderón M, et al. In vivo delivery of small interfering RNA totumors and their vasculature by novel dendritic nanocarriers. FASEB J,2010,24(9):3122-3134.
    [161] Maeda H, Wu J, Sawa T, et al. Tumor vascular permeability and the EPR effect inmacromolecular therapeutics: a review. J Control Release,2000,65(1-2):271-284.
    [162] Lammers T, Peschke P, Kühnlein R, et al. Effect of intratumoral injection on thebiodistribution and the therapeutic potential of HPMA copolymer-based drug deliverysystems. Neoplasia,2006,8(10):788–795.
    [163] Kovár L, Strohalm J, Chytil P, et al. The same drug but a different mechanism of action:comparison of free doxorubicin with two different N-(2-hydroxypropyl)methacrylamidecopolymer-bound doxorubicin conjugates in EL-4cancer cell line. Bioconjug Chem,2007,18(3):894-902.
    [164] Koziara JM, Whisman TR, Tseng MT, et al. In-vivo efficacy of novel paclitaxelnanoparticles in paclitaxel-resistant human colorectal tumors. J Control Release,2006,112(3):312-319.
    [165] Farokhzad OC, Cheng J, Teply BA, et al. Targeted nanoparticle-aptamer bioconjugatesfor cancer chemotherapy in vivo. Proc Natl Acad Sci USA,2006,103(16):6315-6320.
    [166] Konishi M, Tabata Y, Kariya M, In vivo anti-tumor effect through the controlled releaseof cisplatin from biodegradable gelatin hydrogel. J Control Release,2003,92(3):301-313.
    [167] Weinberg BD, Blanco E, Gao J. Polymer implants for intratumoral drug delivery andcancer therapy. J Pharm Sci,2008,97(5):1681-1702.
    [168] Rodrigo-Garzón M, Berraondo P, Ochoa L, et al. Antitumoral efficacy of DNAnanoparticles in murine models of lung cancer and pulmonary metastasis. Cancer Gene Ther,2010,17(1):20-27.
    [169] Yagi N, Manabe I, Tottori T, et al. A nanoparticle system specifically designed to delivershort interfering RNA inhibits tumor growth in vivo. Cancer Res,2009,69(16):6531-6538.
    [170] Saleh AF, Aojula HS, Pluen A. Enhancement of gene transfer using YIGSR analog ofTat-derived peptide. Biopolymers,200889(1):62-71.
    [171] Johnson LN, Cashman SM, Kumar-Singh R. Cell-penetrating peptide for enhanceddelivery of nucleic acids and drugs to ocular tissues including retina and cornea. Mol Ther,2008,16(1):107-114.
    [172] Hattori Y, Maitani Y. Folate-linked nanoparticle-mediated suicide gene therapy inhuman prostate cancer and nasopharyngeal cancer with herpes simplex virus thymidine kinase.Cancer Gene Ther,2005,12(10):796-809.
    [173] Ulbrich K, Hekmatara T, Herbert E, et al. Transferrin-andtransferrin-receptor-antibody-modified nanoparticles enable drug delivery across theblood-brain barrier (BBB). Eur J Pharm Biopharm.2009,71(2):251-256.
    [174] Kim JH, Kim YS, Park K, et al. Self-assembled glycol chitosan nanoparticles for thesustained and prolonged delivery of antiangiogenic small peptide drugs in cancer therapy.Biomaterials,2008,29(12):1920-1930.
    [175] Tian H, Lin L, Chen J, et al. RGD targeting hyaluronic acid coating system forPEI-PBLG polycation gene carriers. J Control Release,2011,155(1):47-53.
    [176] Pirollo KF, Rait A, Zhou Q, et al. Materializing the potential of small interfering RNAvia a tumor-targeting nanodelivery system. Cancer Res.2007,67(7):2938-2943.
    [177] Leng Q, Scaria P, Lu P, et al. Systemic delivery of HK Raf-1siRNA polyplexes inhibitsMDA-MB-435xenografts. Cancer Gene Ther,2008,15(8):485-495.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700