用户名: 密码: 验证码:
蚁群算法在高光谱图像降维和分类中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高光谱遥感数据提供的丰富地表信息使得高光谱遥感的应用越来越广泛,如何充分地利用这大量的信息,以及如何在如此大量的信息中提取有用信息,并使这些信息能够为我们的应用服务,是摆在研究者面前的重要课题。降维和分类是高光谱图像处理中的两个关键技术。无论是高光谱图像的降维,还是高光谱图像的分类,其根本都是要从大量的高光谱数据中提取出能够满足人们需要的特定或要求的信息,而这些信息的提取综合起来都可以说是一个信息的组合优化处理过程。蚁群算法作为一种群智能仿生优化新技术,其突出特点是自组织性、鲁棒性、并行性,非常适合于求解非确定性的离散组合优化问题。本文在分析高光谱图像的光谱分辨率特性、空间相关性、谱间相关性、数据维、信息量等特性的基础上,重点分析了蚁群算法在高光谱图像处理中的应用,证明了蚁群算法完全适用于高光谱图像的降维和分类处理。
     高光谱图像的降维包括波段选择和特征提取两种方式。本文提出一种基于蚁群算法的高光谱图像波段选择方法,以解决最优波段选择算法复杂度高,计算量大的问题。将每个波段看作是蚂蚁觅食时所经过的节点,选取不同的评价函数作为蚂蚁选择路径的依据,应用蚁群算法选择出多次搜索中最优的一组波段组合。蚂蚁寻找最优路径的过程,就是最优波段组合的形成过程。通过蚁群算法从众多的光谱波段中挑选出能够反映地物光谱空间分布的特征波段,形成降维的波段子空间达到了降低高光谱图像数据维的目的。
     接着,利用高光谱图像高度相关的波段成组出现的特点,提出一种基于蚁群算法的高光谱图像子空间分解方法,在子空间中采用特征变换的方式降低高光谱特征空间的维数。该方法同样将波段作为蚂蚁觅食时经过的节点,蚂蚁依据波段之间的相关性来决定路径的选择,蚂蚁经过优化搜索之后将高维高光谱数据空间分解为几个较低维的数据子空间,再采用传统的主成分分析方法在子空间中提取有效特征,进而实现对高光谱图像的降维。
     高光谱图像的分类方法包括监督分类和非监督分类两种。本文提出一种基于蚁群算法的高光谱图像监督分类方法。该方法先依据图像的信息熵将高光谱图像各个波段的单幅图像中的灰度属性分段离散化,然后将这些离散化的灰度属性作为条件项并集合到一起形成一个备选条件项数据集。在训练样本中,将高光谱图像各个波段数据经过离散化后形成的条件项当作蚂蚁的候选路径节点,用条件项的信息熵作为蚂蚁路径转移的启发函数。经过蚂蚁的迭代搜索,每只蚂蚁都构造出一条分类规则,通过信息素浓度的调整,将蚂蚁们构造的规则中质量较好的规则保留下来,而质量不好的规则则在搜索过程中逐渐被淘汰。在所有训练用的地物类别都被归类之后,最终形成用于分类的分类规则。
     最后,提出一种基于蚂蚁化学识别系统的蚁群聚类算法。该聚类算法依据蚂蚁之间的相似程度来决定蚂蚁的类别归属,最终相似程度高的蚂蚁可以聚集成一类。在该算法中,遥感图像中的每个像素都被看作是一只蚂蚁,该蚂蚁所携带的信息除其所代表的像素点的各波段光谱信息外,还包括所属类别的标号,类别属性等信息。本文依据基于蚁群算法的高光谱图像波段选择方法获得的选择结果,从中提取若干个特征波段作为数据源,采用上述聚类方法进行实验,并与传统的k均值算法比较实验结果。为了客观地评价聚类结果的优劣,本文综合考虑了聚类算法本身的聚类性能,即类内距,类间距,以及聚类图像与标准图像的相关度,提出一种综合上述参数的聚类图像客观评价指标,并应用该指标对本文提出的聚类算法和传统的k均值算法所获得的图像作出了客观评价。
The applications of hyperspectral remote sensing data have become broader and broader for its providing the abundant surface information. It is an important issue for the researchers how to extract useful information from the observed data, how to fully utilize such large amount of information, and how to make them become availability to our applications. Dimensionality reduction and classification are two key techniques in the hyperspectral image processing. Whether in hyperspectral image dimensionality reduction or in classification, both of them are the extraction of required information from a large number of hyperspectral data. And the integration of the extracted information is a process of combinatorial optimization. Ant colony optimization algorithm (ACO) is a new type of bionic optimization algorithm developed in recent years. Its main characteristics are self-organization, robustness, parallelism, which are very suitable for solving non-deterministic discrete combinatorial optimization problem. Based on the hyperspectral image characteristics, such as spectral resolution, spatial correlation, spectrum correlation, data dimensionality, information capacity, etc, the applications of ant colony algorithm to the processing are researched, and it is proven that the ant colony algorithm is suitable for hyperspectral image dimensionality reduction and classification in this dissertation.
     Dimensionality reduction of hyperspectral images includes band selection and feature extraction. In this dissertation, an ant colony algorithm based band seclection method of hyperspectral image is proposed to solve the complication of optimal algorithm and the computation load. In the new method, each band is regard as a node that an ant passes through during its foraging, the different evaluation function is chosen as a measure that ants select the path, and the optimal combination of bands is searched and obtained by using ant colony algorithm. The process of ants searching optimal path is the process of forming the optimal band combination. By the ant colony algorithm, several signature bands reflecting the material spectral distribution are selected from the whole spectral bands, and the band subspaces of reduced dimensionality are formed, in which the purpose for the dimensionality reduction of hyperspectral data is reached.
     Then, according to the characteristics that highly correlated specral bands are presented in group, a method of subspace decomposition to hyperspectral image is proposed based on ant colony algorithm. The new method adopts the feature transform to reduce the dimensionality of hyperspectral feature space. Also every band is regarded as a node that an ant passes through during its foraging. The ant judges its path in terms of the correlation between the bands. High-dimensional hyperspectral data space is decomposed into several lower-dimensional data sub-space by ant optimal searching process. Then by using the principal component analysis to extract the effective features of subspace, the dimensionality reduction of hyperspectral images is achieved.
     There are two kinds of classification method of hyperspectral image, i.e. supervising classification and unsupervising classification. A hyperspectral image classification method based on ant colony algorithm is proposed in this dissertation. Firstly, in terms of the information entropy of image, the gray-scale of every band in hyperspectral image is dispersed in partition. Then these condition items of discrete gray-scale are combined and a data set of condition items is formed. In the training samples, the condition terms formed by dispersing the hyperspectral image data is regarded as the candidate nodes of ants. The information entropy of condition items is regarded as heuristic function of ant transferring path. After an iteration searching of ant, every ant can construct a classification rule, and the best rule is reserved while the worse rule is gradually eliminated by adjusting the concentration of pheromone. After all training samples is classified, the classification rule is formed.
     Finally, an ant colony clustering algorithm is proposed based on ant chemical recognition system in this clustering algorithm. According to the similarity between ants, the ownership of ants is decided, and the ants being a high degree of similarity can assembled into a class. Each pixel in the remote sensing images is considered as an ant, in which besides the spectral information of every pixel in every band, the category labels, category attributes and so on are also included. In this dissertation, adopting the results acquired by the band selection of hyperspectral image based on ACO, the feature bands are extracted as simulation data, and the clustering method experiment is performed. The experiment results are compared with the results of traditional k-means algorithm. In order to objectively evaluate the performance of the clustering results, the clustering performance of the new algorithm is taken into account in the dissertation, which is intra-class distance, inter-class distance, and the correlation between clustering image and standard image. An objectively comprehensive evaluation measure that integrates the above parameters is proposed. The objective assessment to the new clustering algorithm and traditional k-means algorithm are acquired.
引文
1.汤国安等.遥感数字图像处理.科学出版社. 2004: 1~7
    2. Sen Jia, Zhen Ji, Yuntao Qian. Band selection for hyperspectral imagery using affinity propagation. Proc. DICTA, Dec. 2008: 137~141
    3. C. Ozkan, F. S.Erbek. Comparing Feature Extraction Techniques for Urban Land-use Classification. International Journal of Remote Sensing. 2005, 26(4): 747~757
    4. Thomas Kailath. The Divergence and Bhattacharyya Distance Measures in Signal Selection. IEEE Trans. on Communication Technology. 1967, 15(1): 52~60
    5. Rui Huang. Band Selection Based on Feature Weighting for Classification of Hyperspectral Data. IEEE Geoscience and Remote Sensing Letters. 2005, 2(2): 156~159
    6. L.Bruzzone, F.Roli, S.B.Serpico. An extension to multiclass cases of the Jeffreys-Matusita distance. IEEE Trans. on Geoscience and Remote Sensing. 1995, 33(11): 1318~1321
    7. R. R. Coifman, M. V. Wickerhauser. Entropy-based algorithms for best basis selection. IEEE Transaction on Information Theory. 1992, 38(2): 713~719
    8. P. S. Chavez, G. L. Berlin and L.B. Sowers. Statistical method for selecting Landsat MSS ratios. Journal of Applied Photographic Engineering. 1982, 8: 23~30
    9. S. D. Stearns. On selecting features for pattern classifiers. 3rd Int.Conf. Pattern Recognition. oronado, CA, 1976: 1~75
    10. P. Pudil, J. Novovicova, N. Choakjarernwanit, and J. Kittler. An analysis of the Max-Min approach to feature selection and ordering. Pattern Recognit. Lett. 1993, 14: 841~847
    11. M. Ichino and J. Sklansky. Optimum feature selection by zero-one integer programming. IEEE Trans, Syst., Man, Cybern. 1984, SMC-14: 737~746
    12. B. Serpico Sebastiano, Lorenzo Bruzzone, A New Search Algorithm for Feature Selection in Hyperspectral Remote Sensing Images, IEEE Transactions on Geoscience and Remote Sensing, Vol.39, NO.7, July 2001: 1360~1367
    13.刘颖,谷延锋,张晔.基于改进遗传算法的超光谱图像特征选择方法. 2005, 6: 733~735
    14. W. Siedlecki and J. Sklansky. A note on genetic algorithms for largescale feature selection. Pattern Recognit. Lett.. 1989, 10: 335~347
    15. F. Ferri, P. Pudil, M. Hatef, and J. Kittler. Comparative Study of Techniques for Large Scale Feature Selection. Pattern Recognition in Practice IV, E. Gelsema and L. Kanal, Eds. Amsterdam. The Netherlands: Elsevier. 1994: 403~413
    16.张连蓬.基于投影寻踪和非线性曲线的高光谱遥感图像特征提取及分类研究.山东科技大学博士学位论文. 2003, 4: 84~95
    17. Yang-Lang Chang, Jyh-Perng Fang, Jin-Nan Liu, Hsuan Ren, Wen-Yew Liang. A Simulated Annealing Feature Extraction approach for hyperspectral images. Geoscience and Remote Sensing Symposium. IGARSS 2007. IEEE International, 23-28 July 2007: 3190~3193
    18. W. Siedlecki and J. Sklansky. On automatic feature selection. Int.J.Pattern Recognit. Artif. Intell. 1988, 2: 197~220
    19. JoséA. Malpica, Juan G. Rejas, María C. Alonso. A projection pursuit algorithm for anomaly detection in hyperspectral imagery. Pattern Recognition. 2008, 41 (11): 3313~3327
    20. Maciel zortea, Victor Haertel. Feature Extraction in Remote Sensing High-Dimensional Image Data. IEEE Geoscience And Remote Sensing Letters. 2007, 4(1): 107~111
    21. Ye Zhang, Mita D. Desai, Junping Zhang. Adaptive Subspace Decomposition for Hyperspectral Data Dimensionality Reduction. ICIP, 1999: 326~329
    22. Yang-Lang Chang, Jyh-Perng Fang, Lena Chang, Hsuan Ren, Kun-Shan Chen. A parallel simulated annealing approach to band selection for hyperspectral imagery. Boston. IGARSS 2008(2): 994~997
    23. Jia Xiuping and J.A. Richards. Segmented Principal Components Transformation for Efficient Hyperspectral Remote-Sensing Image Display and Classification. IEEE Trans. on Geoscience and Remote Sensing. 1999, 37(1): 538~542
    24. F. Tsai, W. Philpot. Derivative analysis of hyperspectral data. Remote Sens. Environ. 1998, 66: 41~51
    25. Antonio Plaza, Pablo Martinez, Javier Plaza, Rosa Perez. Dimensionlity Reduction and Classification of Hyperspectral Image Data Using Sequences of Extended Morphological Transformations. IEEE Transactions on Geoscience and Remote Sensing. 2005, 43(3): 466~479
    26. C. Lee, and D.A. Landgrebe. Decision boundary feature extraction for neural networks. IEEE Transactions on Neural Networks, 1997, 8(1): 75~83.
    27. L. M. Bruce, H. K. Cliff, and J. Li. Dimensionality Reduction of Hyperspectral Data Using Discrete Wavelet Transform Feature Extraction. IEEE Trans. on Geoscience and Remote Sensing. 2002, 40(10): 2331~2338
    28. Pai-Hui Hsu and Yi-Hsing Tseng. Feature Extraction of Hyperspectral Data Using the Best Wavelet Packet Basis. IEEE International Geoscience and Remote Sensing Symposium, IGARSS'02, Toronto, Canada, 2002, 3: 1667~1669
    29. L. M. Bruce, C. H. Koger, J. Li. Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction. IEEE Trans. Geosci. Remote Sens. 2002, 40(10): 2331~2338
    30. J. Li, L. M. Bruce, J. Byrd, and J. Barnett. Automated detection of Pueraria Montana (kudzu) through Haar analysis of hyperspectral reflectance data. IEEE International Geoscience and Remote Sensing Symposium. IGARSS’01, Sydney, Australia. 2001, 5: 2247~249
    31. C. A. Shah, M. K. Arora, S. A. Robila, and P. K. Varshney. ICA Mixture Model based Unsupervised Classification of Hyperspectral Imagery, Proceedings of the 31st Applied Imagery Pattern Recognition Workshop (AIPR.02). 2002: 481~487
    32.杨国鹏,余旭初.高光谱遥感影像的广义判别分析特征提取.测绘科学技术学报. 2007, 24(2): 29~33
    33. B-C.Kuo, D. A. Landgrebe. Hyperspectral Data Classification Using Nonparametric Weighted Feature Extraction. International Geoscience and Remote Sensing Symposium. Toronto. 2002: 1457~1463
    34. X. Jia. Segmented principal components transformation for efficient hyperspectral remote sensing image display and classification. IEEE Transactions on Geoscience and Remote Sensing. 1999, 37(1): 538~542
    35. X. Jia, J. A. Richards. Progressive two-class decision classifier for optimizationclass discriminations. Remote Sensing of Environment. 1998, 63(3): 289~297
    36. Tu Te-ming, Chen Chin-Hsing, Wu Jiumnn-Lin, Chang Chein-I. A fast two-stage classification method for high-dimensional remote sensing data. IEEE Transactions on Geosicience and Remote Sensing. 1998, 36(1): 182~191
    37. E. Jayantha. Hierarchical maximum-likelihood classification for improved accuracies. IEEE Transactions on Geoscience and Remote Sensing. 1999, 37: 1073~1079
    38.宋江红,冯燕.基于独立成分分析和神经网络的高光谱遥感数据分类.遥感技术与应用. 2006, 2: 115~119
    39.谌德荣,陶鹏,张立燕,范宁军.基于区域特征光谱的自组织特征映射神经网络高光谱图像主成分提取方法.宇航学报. 2007, 6: 1689~1692
    40. L. Bruzzone. Multisource classivication of complex rural areas by statistical and neural network approaches. Photogrammetric Engineering and Remote Sensing. 1997, 63(5): 523~533
    41. G. A. Carpenter, S. Grossberg, N. Markuzon, et al. Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps Neural Networks, IEEE Transactions on Geoscience and Remote Sensing. 1992, 3(5): 689~713
    42. Thomas Villmann, Erzsebet Merenyi, Barbara Hammer. Neural maps in remote sensing image analysis. Neural Networks. 2003, 16: 389~403
    43. Gustavo Camps-Valls, Lorenzo Bruzzone. Kernel-Based Methods for Hyperspectral Image Classification. IEEE Transactions on Geoscience and Remote Sensing. 2005, 43(6): 1351~1362
    44. Farid Melgani, Lorenzo Bruzzone. Classification of Hyperspectral Remote Sensing Images With Support Vector Machines. IEEE Transactions on Geoscience and Remote Sensing. 2004, 42(8): 1778~1790
    45. Begum Demir, Sarp Erturk. Hyperspectral Image Classification Using Relevance Vector Machines. IEEE Geoscience and Remote Sensing Letters. 2007, 4(4): 586~590
    46. E. Binaghi, P. Madella, M. G. Montesano, et al. Fuzzy contextual classification of multisource remote sensing images. IEEE Transactions on Geoscience and Remote Sensing. 1997, 35(2): 326~339
    47.高尚,杨静宇.群智能算法及其应用.中国水利水电出版社. 2006: 51~13
    48. Marco Dorigo, Vittorio Maniezzo, Alberto Colorni. Ant system: optimization by a colony of cooperating agents. IEEE transactions on systems, man, and cybernetics-part B: cybernetics, 1996, 26(1): 32~47
    49. M. Dorigo, V. Maniezzo, A. Colorni. Ant System: Optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybernet Part B 1996, 26(1): 29~41
    50. E. Bonabeau, G. Theraulaz, J. L. Deneubourg, S. Aron and S. Camazine. Self-organization in social insects. Tree. 1997, 12: 188~193
    51. S. Goss, S. Aron, J. L. Deneubourg and J. M. Pasteels. Self-organised short cuts in the argentine ant. Naturwissenchaften. 1989, 76: 579~581
    52. M. Dorigo, G. Di Caro, L. M. Gambardella. Ant algorithms for discrete optimization. Artificial Life. 1999, 5(2): 137~172
    53. M. Dorigo, L. M. Gambardella. Ant Colony System: A cooperating learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation. 1991, 1(1): 53~66
    54. L. M. Gambardella , M. Dorigo. Solving symmetric and asymmetric TSPs by ant colonies. Proceedings of the 1996 IEEE international conference on evolutionary computation (ICEC’96). 1996: 622~627
    55. B. Bullnheimer, R. F. Hartl,, C. Strauss. A new rank-based version of the Ant System: A computational study. Central European Journal for Operations Research and Economics. 1999, 7(1): 25~38
    56. L. Gambardella and M. Dorigo. Ant-Q: A Reinforcement Learning approach to the traveling salesman problem. Proceedings of ML-95, Twelfth International Conference on Machine Learning, Tahoe City, CA, A. Prieditis and S. Russell (Eds.), Morgan Kaufmann. 1995: 252~260
    57. Marco Dorigo, Luca Maria Gambardella. Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem. IEEE Transactions on Evolutionary Computation. 1997, 1(1): 53~66
    58.吴庆洪,张纪会,徐心和.具有变异特征的蚁群算法.计算机研究与发展. 1999, 10: 1240~1245
    59. P. S. Ow, T. E. Morton. Filtered beam search in scheduling. Internat J Production Res 1988, 26: 297~307
    60.郑肇葆,叶志伟.基于蚁群行为仿真的影响纹理分类.武汉大学学报(信息科学版). 2004, 8: 669~673
    61. S. R. Jangma, N. Chakraborti. A novel method for alignment of two nucleic acid sequences using ant colony optimization and genetic algorithms. Applied Soft Computing. 2007, 7: 1121~1130
    62. Zne-Jung Lee, Shun-Feng Su, Chen-Chia Chuang, Kuan-Hung Liu. Genetic algorithm with ant colony optimization (GA-ACO) for multiple sequence alignment, Applied Soft Computing. 2008, 8: 55~78
    63. Surendra Kumar, C. S. P. Rao. Application of ant colony, genetic algorithm and data mining-based techniques for scheduling. Robotics and Computer-Integrated Manufacturing. 2009, 25:901~908
    64.苗京,黄红星,程卫生,袁启勋.基于蚁群模糊聚类算法的图像边缘检测. 2005, 10: 124~127
    65. Sebastian Sitarz. Ant algorithms and simulated annealing for multicriteria dynamic programming. Computers & Operations Research. 2009, 36: 433~441
    66.张晓婧,高慧敏.基于模拟退火的蚁群算法求解Job-Shop问题.计算机应用与软件. 2008(5): 77~79
    67.傅鹏,张德运,马兆丰,孙钦东, MdJahangir Alam Ad. Hoc网络中基于模拟退火-蚁群算法的Qos路由发现方法.西安交通大学学报. 2006, 2: 179~182
    68.阮仁俊,陈烨,刘天琪.基于混沌理论和排序选择的蚁群无功优化算法.电网技术. 2009, 33(11): 49~54
    69. M. Dorigo, V. Maniezzo, A. Colorni. Positive feedback as a search strategy. Technical Report 91-016. Dipartimento di Elettronica, Politecnicodi Milano, Italy. 1991: 134~142
    70. V. Maniezzo. Exact and approximate nondeterministic tree-search procedures for the quadratic assignment problem. INFORMS J Comput 1999, 11(4): 358~69;
    71. T. Stützle. An ant approach to the flow shop problem. Proceedings of the 6th european congress on intelligent techniques & soft computing (EUFIT’98). Aachen: Verlag Mainz. 1998: 1560~1564.
    72. C. Gagné, W. L. Price, M. Gravel. Comparing an ACO algorithm with other heuristics for the single machine scheduling problem with sequence dependent setup times. J Oper Res Soc. 2002, 53: 895~906
    73. D. Merkle, M. Middendorf, H. Schmeck. Ant colony optimization for resource-constrained project scheduling. IEEE Trans Evolutionary Comput. 2002, 6(4):333~346
    74. C. Blum, M. Sampels. An ant colony optimization algorithm for shop scheduling problems. J Math Modelling Algorithms. 2004, 3(3): 285~308.
    75. D. Costa, A. Hertz. Ants can color graphs. J Oper Res Soc. 1997, 48: 295~305
    76. T. N. Bui, J. R. Rizzo. Finding maximum cliques with distributed ants. Deb K, et al., editors. Proceedings of the genetic and evolutionary computation conference (GECCO 2004). Lecture Notes in Comput Sci. Berlin: Springer. 2004, 3102: 24~35
    77. L. M. Gambardella,é. D. Taillard, G. Agazzi. MACS-VRPTW: A multiple ant colony system for vehicle routing problems with time windows. Corne D, Dorigo M, Glover F, editors. New ideas in optimization. London: McGraw-Hill. 1999: 63~76.
    78. M. Reimann, K. Doerner, R. F. Hartl. D-ants: Savings based ants divide and conquer the vehicle routing problems. Comput Oper Res. 2004, 31(4): 563~91
    79. A. Colrni, M. Dorigo, V. Maniezzo, M. Trubian. Ant system for job shop scheduling. Belgian J. Oper. Res. 1994, 34: 39~53
    80. R. Schoonderwoerd, O. Holland, J. Bruten, L. Rothkrantz. Ant-based load balancing in telecommunication networks. Adaptive Behavior. 1996, 5(2): 169~207
    81. G.D. Caro, M. Dorigo. AntNet: distributed stigmergic control for communication networks. J. Artif. Intell. Res.. 1998, 9: 317~355
    82. C. R. Cube, H. Zhang. Task modeling in collective robotics. Auton Robots. 1997, 4: 53~72
    83. A. Shmygelska, R. Aguirre-Hernández, H. H. Hoos. An ant colony optimization algorithm for the 2D HP protein folding problem. Dorigo M, Di Caro G, Sampels M, editors. Ant algorithms-Proceedings of ANTS 2002-Third international workshop. Lecture Notes in Comput Sci. Berlin: Springer. 2002, 2463: 40~52
    84. J. D. Moss, C. G. Johnson. An ant colony algorithm for multiple sequence alignment in bioinformatics. Pearson DW, Steele NC, Albrecht RF, editors. Artificial neural networks and genetic algorithms. Berlin: Springer. 2003: 182~186
    85. O. Karpenko, J. Shi, Y. Dai. Prediction of MHC class II binders using the antcolony search strategy. Artificial Intelligence in Medicine. 2005, 35(1–2): 147~156
    86. A. Shmygelska, H. H. Hoos. An ant colony optimization algorithm for the 2D and 3D hydrophobic polar protein folding problem. BMC Bioinformatics. 2005, 6(30): 1~22
    87. P. Korosec, J. Silc, B. Robic. Solving the mesh-partitioning problem with an ant-colony algorithm. Parallel Comput. 2004, 30: 785~801
    88. M. Guntsch, M. Middendorf. Pheromone modification strategies for ant algorithms applied to dynamic TSP. Applications of evolutionary computing: Proceedings of EvoWorkshops. 2001. Lecture Notes in Comput Sci. Berlin: Springer. 2001, 2037: 213~22
    89. L. Bianchi, L. M. Gambardella, M. Dorigo. An ant colony optimization approach to the probabilistic traveling salesman problem. Proceedings of PPSN-VII. seventh international conference on parallel problem solving from nature. Lecture Notes in Comput Sci. Berlin: Springer. 2002, 2439: 883~92
    90. P. S. Shelokar, V. K. Jayaraman, B. D. Kulkarni. An ant colony approach for clustering. Analytica Chimica Acta. 2004, 509: 187~195
    91. A. Strehl, J. Ghosh. Cluster ensembles-a knowledge reuse framework for combining partitionings. Proceedings of Artificial Intelligence. 2002: 93~98
    92. Yan Yang, Mohamel S.Kamel. An aggregated clustering approach using multi-ant colonies algorithm. Pattern Recognition. 2006, 39: 1278~1289
    93. R. J. Kuo, H. S. Wang, Tung-Lai Hu, S. H. Chou. Application of ant k-means on clustering analysis. Computers and mathematics with application. 2005, 50: 1709~1724
    94. Wenbing Tao, Hai Jin, Liman Liu. Object segmentation using ant colony optimization algorithm and fuzzy entropy. Pattern Recognition Letters. 2007, 28: 788~796
    95. R. J. Kuo, H. S. Wang, Tung-Lai Hu, S. H. Chou. Application of ant k-means on clustering analysis. Computers and Mathematics with Application. 2005, 50: 1709~1724
    96. J. L. Deneubourg, S. Goss, N. Franks, A. Sendova Franks, C. Detrain, L. Chretien. The dynamics of collective sorting: robot-like ant and ant-like robot. Proceedings of the First Conference on Simulation of Adaptive Behavior: FromAnimals to Animals. MIT Press, Cambridge, MA. 1991: 356~365
    97. Zahra Sadeghi, Mohammad Teshnehlab. Ant colony clustering by expert ants. Proceedings of International Workshop on Data Mining and Artificial Intelligence (DMAI’08) 24 December, 2008, Khulna, Bangladesh. 2008: 94~100
    98. E. Lumer, B. Faieta. Diversity and adaptation in populations of clustering ants. Proceedings of the Third International Conference on Simulation of Adaptive Behavior: From Animals to Animals, MIT Press, Cambridge, MA. 1994, 3: 499~508
    99. J. Handl, B. Meyer. Improved ant- based clustering and sorting in a document retrieval interface. Proceedings of the Seventh International Conference on Parallel Problem Solving from Nature (PPSNVII). Springer- Verlag, Berlin, Germany. 2002, 2439: 913~923
    100. V. Ramos, J. J. Merelo. Self-organized stigmergic document maps: environment as a mechanism for context learning. E. Alba, F. Herrera, J.J. Merelo et al. (Eds.), AEB’2002-First Spanish Conference on Evolutionary and Bio-Inspired Algorithms, Centro Univ. de Mérida, Mérida, Spain. February 2002: 284~293
    101.蒋志为,陶宏才,白学祥.基于模糊集的蚁群聚类算法的改进.计算机应用. 2006, 8: 1950~1952
    102. V. Ramos and J. Merelo. Self-organized stigmergic document maps: environment as a mechanism for context learning. E. Alba, F. Herrera, J.J. Merelo, et al. (Eds.). The 1st Spanish Conf. on Evolutionary and Bio-Inspired Algorithms. Merida, Spain. 2002: 284~293
    103. N. Labroche, N. Monmarche, G. Venturini. A new clustering algorithm based on the chemical recognition system of ants. Harmelen, F. van (Ed.) Proc. of the 15th European Conference on Artificial Intelligence, Lyon, France: 345~349
    104. H. Azzag, N. Monmarche, M.; Slimane, G. Venturini. AntTree: a new model for clustering with artificial ants. Evolutionary Computation. 2003. CEC '03. The 2003 Congress on. 8-12 Dec, 2003. 2003, 4: 2642~2647
    105. Hanene Azzag, Gilles Venturini, Antoine Oliver, Christiane Guinot. A hierarchical ant based clustering algorithm and its use in three real-world applications. European Journal of Operational Research. 2007, 179(3):906~922
    106. J. Lavergne, H. Azzag, C. Guinot, G. Venturini. On data clustering with a flock of artificial agents. Tools with Artificial Intelligence. 2007. ICTAI 2007. 19th IEEE International Conference on 29~31 Oct. 2007. 2007, 1: 399~406
    107. Xiaochun Yang, Weidong Zhao, Li Pan. An Improved Clustering Algorithm Based on Ant-Tree. Bioinformatics and Biomedical Engineering. 2008. ICBBE 2008. The 2nd International Conference on, 16~18 May 2008. 2008:1855~1858
    108. Lotfi Admane, Karima Benatchba, Mouloud Koudi, Lamri Siad, Said Maziz. AntPart: an algorithm for the unsupervised classification problem using ants. Applied Mathematics and Computation. 2006, 180: 16~28
    109. Zhe Yan, Han-ming Gu. Research of the image segmentation based on ant colony algorithm. Software Engineering, Artificial Intelligences, Networking and Parallel/Distributed Computing, 2009, SNPD’09, 10th ACIS International Conference on Digital Object Indentifier, 2009: 106-109
    110. Fernandes C., Ramos,V.,Rosa A.C.. Self-regulated artificial ant colonies on digital image habitats. International Journal of Lateral Computing, 2005, 2(1): 1~8
    111. H. Nezamabadi-pour, S. Saryazdi, E. Rashedi. Edge detection using ant algorithms. Soft Computing. 2006, 10: 623~628
    112. A. H. Channa, N. M. Rajpoot, K. M. Rajpoot. Texture segmentation using ant tree clustering. 2006 IEEE international conference on engineering of intelligent systems: 1~6
    113.郑肇葆等.基于蚁群行为仿真的影响纹理分类.武汉大学学报(信息科学版). 2004, 8: 669~673
    114.韩彦芳,施鹏飞.基于蚁群算法的图像分割方法.计算机工程与应用. 2004, 18: 5~7
    115. Wenbing Tao, Hai Jin, Liman Liu. Object segmentation using ant colony optimization algorithm and fuzzy entropy. Pattern Recognition Letters. 2007, 28: 788~796
    116. R. J. Mullen, D. Monekosso, S. Barman, P. Remagnino. A review of ant algorithms. Expert Systems with Applications. 2009, 36: 9608~9617
    117. R. S. Parpinelli, H. S. Lopes, A. A. Freitas. Data mining with an ant colony optimization algorithm. IEEE Trans Evolutionary Comput. 2002, 6(4): 321~332
    118. V. K. Panchal, Poonam Singh, Appoorv Narula, Ashutosh Mishra. Review on Ant Miners. 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC 2009): 1641~1644
    119. L. Admane, K. Benatchba, M. Koudil, et al. Using ant colonies to solve data-mining problems. Proceedings of the 2004 IEEE International Conference on Systems. Man and Cybernetics. 2004, 4: 3151~3157
    120. Bo Liu, Hussein A. Abbass, Bob Mckay. Density-based Heuristic for Rule Discovery with Ant-Miner. The 6th Australia-Japan Joint Workshop on Intelligent and Evolutionary System. 2002: 180~184
    121. Xiaoping Liu, Xia Li, Lin Liu, Jingqiang He, and Bin Ai. An Innovative Method to Classify Remote-Sensing Images Using Ant Colony Optimization. IEEE Transactions on Geoscience and Remote sensing. 2008, 46(12): 4198~4270
    122. J. A. Yaraman, B. D. Kulkarni, K. Sachin. Ant colony framework for optimal design and scheduling of bath plants. Computer and Chemical Engineer. 2000, 24(8): 1901~1912
    123. M. Dorigo, E. Bonabeau, G. Theraulaz. Ant algorithms ant stigmergy. Future Generation Computer Systems. 2000, 16(9): 851~871
    124. Lee M. A., Prasad S., Bruce L. M., West T. R., Reynolds D., Irby T., Kalluri H.. Sensitivity of hyperspectral classification algorithms to training sample size. Hyperspectral Image and Signal Processing: Evolution in Remote Sensing. 2009. WHISPERS’09. First Workshop on 26-28. 2009, 8:1 - 4
    125.童庆禧,张兵,郑兰芬.高光谱遥感的多学科应用.电子工业出版社. 2006, 5: 38~65
    126. Amit Mukherjee, Miguel Velez-Reyes, Badrinath Roysam. Interest Points for Hyperspectral Image Data. IEEE Transactions on Geoscience and Remote Sensing. 2009, 3(3): 748~760
    127. M. Dorigo, L. M. Cambasrdella. Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evolut. Comput. 1997, 1: 53~66
    128. Mehdi Hosseinzadeh Aghdam, Nasser Ghasem-Aghaee, Mohammad Ehsan Basiri. Text feature selection using ant colony optimization. Expert Systems with Applications 2009, 36: 6843~6853
    129. W. J. Gutjahr. ACO algorithms with guaranteed convergence to the optimal solution. Informat Process Lett 2002, 82(3): 145~153
    130. R. M. Silva, G. L. Ramalho. Ant system for the set covering problem, Systems. Man, and Cybernetics, 2001 IEEE International Conference, 7-10 Oct. 2001. 2001, 5: 3129~3133
    131. T. Stutzle, M. Dorigo. A short convergence proof for a class of ACO algorithms. IEEE Trans Evolutionary Comput. 2002, 6(4): 358~365
    132. T. Warner and M. Shank. Spatial Autocorrelation Analysis of Hyperspectral Imagery for Feature Selection. Remote Sensing of the Environment. 1997, 60: 58~70
    133.杨哲海,李之歆,韩建峰,宫大鹏.高光谱中的Hughes现象与低通滤波器的运用.测绘学院学报. 2004, 12: 253~255
    134.张晔,张钧萍,谷延锋,陈浩.遥感数字图像分析.电子工业出版社. 2009, 6: 228~230
    135. Gordon F Hughes. On the mean accuracy of statistical pattern recognizers. IEEE Trans. on Information Theory. 1968, 14(1): 55~63
    136.孙即祥等.现代模式识别.国防科技大学出版社. 2003, 8: 190~234
    137. Anil Jain, Douglas Zongker. Feature selection: evaluation, application, and small sample performance. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1997, 19(2): 153~158
    138. K. Kira , L. A. Rendell. The Feature Selection Problem: Traditional Methods and a New Algorithm. Proc of 9th National Conf on AI. 1992: 129~134
    139.赵春晖,刘春红.超谱遥感图像降维方法研究现状与分析.中国空间科学技术. 2004, 5: 28~36
    140. Choen Kim, Seonghoon Cho. Spectral angle mapper classification and vegetation indices analysis for winter cover monitoring using JERS-1 OPS data. Geoscience and Remote Sensing Symposium. 1996. IGARSS '96, Lincoln, Nebraska, U.S.A. 1996, 4: 1977~1979
    141. R. S. Parpinelli, H. S. Lopes, A. A. Freitas. Data mining with an ant colony optimization algorithm. IEEE Transactions on Evolutionary Computation. 2002, 6(4): 321~332
    142.沈永红,王发兴.基于信息熵的粗糙集属性离散化方法及应用.计算机工程与应用. 2008, 44(5): 221~224
    143.刘业政,焦宁,姜元春.连续属性离散化算法比较研究.计算机应用研究. 2007, 24(9): 28~33
    144. U. M. FAYYAD, K. B. IRANI. Multi-interval discretization of continuous-valued attributes for classification learnint. Proce of the 13th Int Joint Conf on Artificial Intelligence. San Francisco, Morgan Kaufman. 1993: 1022~1027
    145.谢宏,程浩忠,牛东晓.基于信息熵的粗糙及连续属性离散化算法.计算机学报. 2005, 9(28): 1570~1574

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700