用户名: 密码: 验证码:
寒地水稻对碱胁迫的响应及鉴定指标评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
试验于2010-2011年在黑龙江省农业科学院佳木斯水稻研究所内进行。共选择173份国内外适合黑龙江省种植的水稻种质资源,进行芽期、苗期和成熟期的耐碱研究和鉴定指标评价。试验从对水稻各个生育期的生理形态、产量和超微结构观察等入手,探讨了寒地水稻对苏打碱胁迫的响应机理,对部分参试品种进行了苗期耐碱分级,从微观角度阐述了胁迫后水稻根细胞的形态变化,揭示了不同基因型品种叶片细胞超微结构变化差异和不同伤害机制的形成,通过试验提出了以下结论和观点:
     1.芽期碱胁迫,胚根反应最敏感。芽鞘变化与耐碱性无关。影响耐碱级别判定的主要指标为相对芽长、相对胚根长、相对根条数、相对芽干重、相对根干重,依其建立胁迫7天的耐碱级别判定方程为:Y=11.251-3.6747X1-1.641X2-1.179X3-3.900X4-1.973X5,其中相对芽长、相对芽干重和相对根干重是水稻芽期耐碱的三大指标,依其建立的耐碱级别判定方程为:Y=9.234-4.506X1-2.167X2-2.621X3。
     2.0.20%混合碱处理后,苗长和根系长度均有下降趋势,对根系的伸长生长抑制作用最显著,但地上和地下部位对碱胁迫敏感性不相关。碱胁迫延迟水稻的叶龄进程,降低叶面积、绿叶数、根系干质量、冠层干物质积累及根冠比,刺激水稻分蘖提前发生,以及主茎同一叶龄叶片伸长、宽度下降、叶面积增大。单株叶面积的变化、绿叶数、根冠比和根冠长度比的相对值可作为水稻苗期耐碱性鉴定的形态指标;碱处理对水稻叶片色素合成影响显著,影响最大的是叶绿素A,其次是叶绿素B,类胡萝卜素受到的影响相对最小。各色素成分之间存在极显著相关性。胁迫后,茎叶脯氨酸含量相对根系脯氨酸含量增加显著。胁迫10天能够激发部分品种SOD保护酶的活性,也会造成部分品种SOD合成系统的功能受阻或者酶本身的活性受阻;碱胁迫会提高水稻苗期叶片POD活性。
     3.碱胁迫致使水稻根细胞排列的整齐性和紧凑性降低,抑制水稻根毛的生长、根细胞纵向伸长、大维管束的形成,胁迫会产生部分未发育完全的维管束,同时促进根系木质化和枝根形成;皮层薄壁细胞、中柱鞘部分细胞会因胁迫坏死,表皮细胞相对对照脱落早,立体感会因胁迫而降低。通过对4个基因型品种的超微结构观察,发现碱胁迫对不同基因型水稻品种伤害机制有差异。龙粳27主要伤害叶绿体和线粒体,同时淀粉体数量变少,体积变小;绥粳5号线粒体和叶绿体伤害相对较小,淀粉体体积变大;藤系138叶绿体所受影响较大,线粒体受影响较小,内含淀粉体颗粒减少;越光叶绿体结构变化明显,线粒体数量明显下降,结构模糊,内脊不清晰,淀粉体数量增多,体积明显增大。处理后所有品种嗜锇颗粒明显增多,且程度较深。
     4.随处理浓度增加水稻株高和顶端第一片展开叶相对含水量呈先增后降趋势;叶片色素含量、叶绿素A/B值、SOD活性、维生素C含量、伤流量均随处理浓度升高呈直线下降趋势,回归曲线为一次方程;脯氨酸含量、可溶性糖含量、过氧化物酶(POD)活性、过氧化氢酶(CAT)活性随处理浓度呈先降后升或逐渐升高的趋势,与处理浓度之间均存在二次回归关系;丙二醛(MDA)含量随处理浓度升高呈直线上升趋势,可溶性糖含量随脯氨酸含量的增加亦呈逐渐上升趋势;POD与SOD活性呈线性负相关;随碱处理浓度升高,水稻叶片相对电导率呈上升趋势,两者呈显著二次回归关系。
     5.每穴收获穗数和结实率随处理浓度呈先升高后降低趋势。低浓度处理增加有效穗数和结实率,处理浓度达到和超过0.10%,水稻有效穗数和结实率会显著降低。处理浓度增加,穗颍花量、千粒重、根干质量、茎叶干质量、穗干质量与单株干质量呈显著下降趋势。在一定浓度范围内,茎叶物质转化均优先向穗部积累。低浓度处理对水稻穗长影响不显著,处理浓度达0.15%,穗长显著降低。碱胁迫对水稻二次枝梗抑制作用明显大于一次枝梗,但空秕率无显著差异。高浓度处理显著降低籽粒饱满度。0.05%碱处理对一次枝梗千粒重影响小,高于此浓度对枝梗数的影响较大。二次枝梗千粒重与二次枝梗数比值变化则与之相反。敏感系数受浓度干扰因素较低,可将其作为水稻耐碱鉴定指标之一,经济系数、生物耐碱系数、耐碱系数和耐碱指数等指标可作为参考指标。水稻营养生长期和生殖生长期耐碱性会有差异。
The experiment is carried out in Jiamusi rice research institute of Heilongjiang academyof agricultural sciences in2010-2011.173varieties which are suitable for the cultivation ofHeilongjiang Province are collected from domestic and foreign country. Research of Alkaliresistance and assessment of identification index are proceed in buds period, seeding stageand mature stage. In this paper the response mechanism of soda alkali stress and classificationof some test material are discussed from aspect of morphology, physiology, yield trait andultrastructure. Changes of root-cells-morphological and ultrastructure and formation of thedifferent damage mechanisms among different genotype varieties are evaluated after stressfrom the microscopic point of view. The main conclusion and views are as follow:
     1. The radicle is the most sensitive to the alkali stress at germinating stage. There is nocorrelation between the changes of coleoptiles and alkali resistance. The main indexes whichdefined alkali resistance level are relative shoot length, relative radicle length, relative radiclenumber, relative shoot dry weight and relative radicle dry weight. Based on that, thedetermine equation of alkali resistance isY=11.251-3.6747X1-1.641X2-1.179X3-3.900X4-1.973X5during that7days, and thedetermine equation of alkali resistance is Y=9.234-4.506X1-2.167X2-2.621X3which is builtbased on three key index, relative shoot length, relative shoot dry weight and relative rootsdry weight.
     2. After0.20%mixed alkali treatment, the length of shoot and root length are showed adownward trend and significant inhibition to root elongation and growth, but there is nocorrelation in susceptibility for alkali stress between aboveground and underground parts.Many physiological indicators changed during the alkali stress treatment such as the leaf ageprocess delayed, the reduction of leaf area, green leaf number, root dry weight, canopy drymatter accumulation and root-shoot ratio, meanwhile the leaf length and area are increasedand the leaf width is declined. Some indexes can serve as indicator of alkali resistance at ricegerminating stage, such as the changes of leaf area per plant and relative value of green leafnumber, root shoot ratio and root shoot length ratio. A significant effect is occurred on the leafpigment synthesis, descending order is chlorophyll A, chlorophyll B and carotenoid minimally.The proline content in stems and leaves are increased significantly than that in root underalkali stress. Alkali stress could simulate the activity of protective enzyme of SOD in somevarieties, and also block the functions of SOD synthetic system or the activity of SOD insome varieties. Alkali stress could improve the activity of leaves POD in rice at germinatingstage.
     3. The regularity and tenseness of root cell is descended, the longitudinal elongation ofroot cell and formation of great vascular bundles are restrained by alkali stress, and also someimmature vascular bundles are formed and roots lignification and branch roots formation arepromoted. Cortex parenchyma cells and part of pericycle cells became necrosis because ofalkali stress; epidermic cells dropped earlier than CK, the stereoscopic impression wouldlower because of the alkali stress. The damage mechanism of alkali stress to rice varieties isdifference based on the observation of the4varieties’ ultrastructure. The damage inchloroplasts and mitochondria are serious and the quantity and size of starch descended InLongjing27, however Suijing5is on the contrary part. Tengxi138’s chloroplasts are moresensitive to Alkali Stress than mitochondria, and the quantity of starch became less. The effects on Koshihikari are complex: the structure of chloroplasts changed obviously, thequantity of anyloplast descended significantly, the structure indistincted, and the inner ridge isnot clear, the quantity of anyloplast became more, and the volume became bigger. Under thealkali stress, the granular osmophilic materials (GOM) of all varieties became more anddarker.
     4. The effects of alkali stress on plant height and the relative water content of the firstunfold leaf present a trend of fluctuations (increase first then descend) with the treatmentconcentration increasing. A linear downward trend is present at leave pigments content, thevalue of Chlorophyll A/Chlorophyll B, the activity of SOD, the content of vitamin C and thebleeding, regression curve is first-order equation. There are quadratic regression relationshipbetween treatment concentration and many physiological indexes that is the content of proline,soluble sugar, the activity of SOD and CAT. The tendency showed firstly descend thenincrease trend with the treatment concentration increasing. The content of MDA is present astraight line upward trend within the increasing of treatment concentration. The increment ofthe soluble sugar is present gradual upward trend within the increasing of proline. The activityof POD and SOD shows negative linear correlation. With the increasing of alkaliconcentration, relative conductivity in rice leaf present a significant upward trend, besides, asignificant quadratic regression appeared between them.
     5. The number of panicles per hole and seed setting rate present a floating trend with thechanging of concentration. The number of panicles per hole and seed setting rate increasingwhen treatment are in low concentration level, once the concentration reach or exceed0.10%,the two indicators begin to decrease significantly. The root dry weights, stems and leaves,panicles and plant of rice begin to significantly descend with the concentration increasing.The substance of stems and leaves is primary accumulated in panicles within a certainconcentration range. There is no significant effect when treatment of concentration at lowlevel. However, panicle length descended significantly when the concentration rose to0.15%.The inhibitory action of alkali stress on secondary branches is more effective than that of onprimary branches. However, fail to detect significant difference on grain empty rate.Plumpness of grains descend significantly when treatment of concentration at high level. Thelittle effect is present in thousand grains weight of primary branches when treatmentconcentration of alkali is lower than0.05%. However, a greater impact is present once theconcentration beyond0.05%. The changes of thousand grains weight ratio of secondarybranches and number of secondary branches are on the contrary part. Interference ofsensitivity coefficient is low to the concentration which could be used for evaluating the alkaliresistance of rice. The other index could be considered as reference, such as economiccoefficient, biological alkali resistance coefficient, alkali resistance index and alkali resistancecoefficient. There would be difference in alkali resistance of rice between vegetative growthstage and reproductive growth stage.
引文
1.陈温福,潘文博,徐正进.2001.我国粳稻生产现状及发展趋势[J].沈阳农业大学学报,37(6):801-805.
    2.陈月艳,孙国荣,李景信.1997.Na2CO3胁迫对星星草种子萌发过程中水分吸收及膜透性的影响.草业科学,4:27-30.
    3.陈月艳,孙国荣,李景信.1997.碳酸钠胁迫对星星草种子萌发的影响.黑龙江畜牧科技,1:4-7.
    4.陈志德,仲维功,杨杰,等.2004.水稻新种质资源的耐盐性鉴定评价.植物遗传资源学报,5(4):351-355.
    5.程大友,张义,陈丽.1996.氯化钠胁迫下甜菜种子的萌发.中国糖料,2:21-23.
    6.程广有,许文会,黄永秀,等.1996.植物耐盐碱性的研究(一):水稻耐盐性与耐碱性相关分析[J].吉林林学院学报,12(4):214-217.
    7.程广有,许文会,黄永秀,等.1995.水稻品种耐盐碱性的研究.延边农学院学报,17(4):195-201.
    8.程广有,许文会,黄永秀.1994.关于水稻苗期Na2CO3筛选浓度和鉴定指标的研究.延边农学院学报,26(1):42-51.
    9.程海涛,姜华,薛大伟,等.2008.水稻芽期与幼苗前期耐碱性状QTL定位[J].作物学报,34(10):1719-1727.
    10.程海涛,苏展,曹萍,等.2010.NaCl和Na2CO3胁迫对水稻籼粳杂交后代群体发芽与幼苗生育的影响[J].沈阳农业大学学报,41(1):73-77.
    11.范亚文.2001.种植耐盐植物改良盐碱土的研究[D].哈尔滨:东北林业大学.
    12.方先文,汤陵华,王艳平.2004.耐盐水稻种质资源的筛选.植物遗传资源学报,5(3):295-298
    13.符秀梅,朱红林,李小靖,等.2010.盐胁迫对水稻幼苗生长及生理生化的影响[J].广东农业科学,37(4):19-21.
    14.龚明,丁念诚,贺子义,等.1989.盐胁迫下大麦和小麦叶片脂质过氧化伤害与超微结构变化的关系[J].植物学报,31(11):841-846.
    15.龚明,刘友良,丁念诚,等.1994.大麦不同生育时期的耐盐性差异.西北植物学报,14(1):l-7.
    16.郭望模,傅亚萍,孙宗修,等.2004.水稻芽期和苗期耐盐指标的选择研究[J].浙江农业科学(,1):30-33
    17.郭望模,傅亚萍,孙宗修.2004.水稻芽期和苗期耐盐指标的选择研究.浙江农业科学,1:30-33.
    18.韩朝红,孙谷畴,林植芳.2004.NaCl对吸胀后的水稻种子发芽和幼苗生长的影响.植物生理学通讯,34(5):339-342.
    19.贺军民,佘小平,张键.2000.番茄种子吸湿-回干处理对盐胁迫伤害的缓解效应.园艺学报,27(2):123-126.
    20.华春,王仁雷.2004.水稻幼苗叶绿体保护系统对盐胁迫的反应[J].西北植物学报,24(1):136-140.
    21.华春,王仁雷.2004.盐胁迫对水稻叶片光合效率和叶绿体超显微结构的影响[J].山东农业大学学报(自然科学版),35(1):27-31.
    22.柯玉琴,潘廷国,艾育芳.2002.盐胁迫对发芽水稻种子质膜透性及物质转化的影响[J].中国生态农业学报,10(4):10-12.
    23.柯玉琴,潘廷国.2002.NaCl胁迫对甘薯叶片叶绿体超微结构及一些酶活性的影响[J].植物生理学报,25(3):229-233.
    24.李常健,林清华,张楚富,等.1999.NaCl对水稻谷氨酰胺合成酶活性及同工酶的影响[J].武汉大学学报(自然科学版),45(4):497-500.
    25.李海波,陈温福,李全英.2006.盐胁迫下水稻叶片光合参数对光强的响应[J].应用生态学报,17(9):1588-1592.
    26.李红梅,金素荣.2003.盐碱对水稻生产的危害及防治措施.垦殖与稻作,5:35~36
    27.李景鹏.2011.苏打盐碱胁迫对北方粳稻小抱子发生发育的影响.吉林农业大学硕士论文.
    28.李取生,李秀军,李晓军,等.2003.松嫩平原苏打盐碱地治理与利用[J].资源科学,25(1):15-20
    29.李合生.植物生理生化实验原理和技术.2000.北京,高等教育出版社
    30.梁正伟,杨富,王志春,等.2004.盐碱胁迫对水稻主要生育性状的影响.生态环境,13(1):43-46.
    31.刘小京,刘孟雨.2002.盐生植物利用与区域农业可持续发展[M].北京:气象出版社.
    32.卢元芳,冯立田.1999.NaCl胁迫对菠菜叶片中水分和光合气体交换的影响(简报)[J].植物生理学通讯,35(4):290-292.
    33.秘彩莉,黄占景,邵素霞,等.2001.近似等位基因系小麦盐胁迫下叶绿体超微结构的比较研究[J].电子显微学报,20(2):98-101.
    34.牛东玲,王启基.2002.盐碱地治理研究进展.土壤通报,33(2):449-455.
    35.牛冬玲,王启基.2002.盐碱地治理研究进展[J].土壤通报,33(6):449-455.
    36.潘保原,宫伟光,张子峰,等.2006.大庆苏打盐渍土壤的分类与评价[J].东北林业大学学报,34(2):57-59.
    37.潘晓玲,姜孝成.郭新红,等.2000.梭梭和水稻种子萌发初期对渗透胁迫和外源ABA反应敏感性研究.种子,109(3):15-18.
    38.祁栋灵,韩龙植,张三元.2005.水稻耐盐/碱性鉴定评价方法.植物遗传资源学报,6(2):226-230.
    39.祁栋灵,张三元,曹桂兰等.2006.水稻发芽期和幼苗前期耐碱性的鉴定方法研究.植物遗传资源报,7(1):74-80.
    40.祁栋灵.2006.水稻耐碱性数量性状座位(QTLs)初步分析.四川农业大学硕士论文.
    41.曲元刚,赵可夫.2003.NaCl和Na2CO3对碱蓬胁迫效应的比较[J].植物生理与分子生物学报,29(5):387-394.
    42.任红旭,陈雄,吴冬秀.coZ浓度升高对干早胁迫下蚕豆光合作用和抗氧化能力的影响.作物学报,2001,27(6):729一736.
    43.阮松林,薛庆中.2002.盐胁迫条件下杂交水稻种子发芽特性和幼苗耐盐生理基础.中国水稻科学,16(3):281-284.
    44.盛彦敏,石德成,肖红兴等.1999.不同程度中碱性复合盐对向日葵生长的影响[J].东北师大学报自然科学版,(4):65-69.
    45.石德成,殷立娟.1992.Na2CO3胁迫下羊草幼苗的胁变反应及其数学分析[J].植物学报,34(5):386-393.
    46.石德成,殷立娟.1993.NaCl和Na2CO3对星星草胁迫作用的差异[J].植物学报,35(2):144-149.
    47.石德成,盛彦敏,赵可夫.2002.复杂盐碱条件对向日葵胁迫作用主导因素的实验确定[J].作物学报,(4):461-467.
    48.石德成,盛彦敏.1998.不同浓度的混合盐对羊草幼苗的胁迫效应[J].植物学报,40(12):1136-1142.
    49.石德成.1995.磷酸中和缓解Na2CO3对星星草的胁迫作用[J].草业学报,(4):34-38.
    50.石玉林.1991.《中国1:100万土地资源图》土地资源数据集[M].北京:中国人民大学出版社.
    51.司振江,张忠学,李芳花,等.2009.松嫩平原盐碱土集成治理技术的研究[J].灌溉排水学报,29(3):80-84
    52.宋景芝.1983.水稻品种资源耐盐(碱)性田间鉴定方法的探讨[J].作物品种资源,(3):26-28
    53.佟立纯,谷音.2006.盐碱对水稻生产的危害及防治对策[J].垦殖与稻作,(2):45-46.
    54.汪斌,兰涛,吴为人.2007.盐胁迫下水稻苗期Na+含量的QTL定位[J].中国水稻科学(ChineseJ RiceSci),21(6):585-590
    55.汪月霞,索标,赵会杰等.2010.碳酸钠胁迫对芦荟幼苗叶片叶绿体保护酶和渗透调节物质的影响,西北植物学报,30(11):2184-2190
    56.王聪.2007.Na2CO3、NaCL和PEG对星星草幼苗K+、Na+代谢的影响,扬州大学硕士论文.
    57.王波,宋凤斌,任长忠.2005.盐碱胁迫对燕麦叶绿体超微结构及一些生理指标的影响,吉林农业大学学报,27(5):473-477,485
    58.王春娜,宫伟光.2004.盐碱地改良的研究进展[J].防护林科技,5:38-41.
    59.王贺政.2007.水稻抗旱性研究及其鉴定指标的筛选[D].四川:四川农业大学
    60.王苗,齐树亭,葛美丽.2008.盐生植物对滨海盐渍土生物改良的研究进展[J].安徽农业科学,36(7):2898-2899.
    61.王志春,孙长占,李秀军.2003.苏打盐碱地水稻开发综合技术模式[J].农业系统科学与综合研究,(1):56-59
    62.王志春,杨福,陈渊,等.2008.苏打盐碱胁迫下水稻体内的Na+、 K+响应[J].生态环境,17(3):1198-1203
    63.王志春,杨福,齐春艳,等.2010.盐碱胁迫对水稻花粉扫描特征和生活力的影响[J].应用与环境生物学报,16(1):063-066
    64.王志春,杨福,齐春艳,等.2010.盐碱胁迫水稻渗透调节的生理相应[J].干旱地区农业研究,28(6):153-157
    65.王遵亲,祝寿泉,俞仁培,等.1993.中国盐渍土[M].北京:科学出版社.
    66.吴家梅,刘兆普,陈铭达,等.2003.不同浓度的海水处理对库拉索芦荟叶绿素含量及其超微结构的影响[J]·南京农业大学学报,26(3):113-116·
    67.郗金标,邢尚军,张建锋,等.2003.几种重盐碱地土壤改良利用模式的比较[J].东北林业大学学报,31(6):99-101.
    68.席承藩,章士炎.1994.全国土壤普查科研项目成果简介[J].土壤学报,31(3):330-335.
    69.徐长营,杨春刚,郭桂珍,等.2011.粳稻种质资源的苗期耐碱性鉴定评价[J].植物遗传资源学报,12(1):131-137
    70.许祥明,和春,国风.2000.物抗盐机理的研究进展.用与环境生物学报,6(4):79-87.
    71.薛庆林,李广敏.1991.不同品种水稻幼苗对盐胁迫的反应[J].河北农业大学学报,14(4):110-112.
    72.乙引,汤章程.1996.渗透胁迫对高粱根部K+吸收的影响[J].植物生理学报,22(2):191-196.
    73.殷立娟,石德成,王萍.1993.盐化草地羊草生长适应性及耐盐性机理的研究[J].植物学报,(8):619-625.
    74.殷立娟,石德成.1993.碱性盐Na2CO3对羊草的胁迫作用因素分析[J].草业学报,2(1):1-5.
    75.殷秀杰,胡宝忠,等.2011.盐胁迫对白三叶叶肉细胞超微结构的影响,东北农业大学学报,42(4):125-128
    76.应存山.1993.中国稻种资源.北京:中国农业科技出版社,79-80
    77.张慧,周骏马,郭岩,等.1997.水稻突变体M-20的耐盐生理特性[J].植物生理学报,23(2):181-186.
    78.张建锋,邢尚军,郗金标.2004.黄河三角洲重盐碱地白刺造林技术的研究[J].水土保持学报,18(6):144-147.
    79.张建锋,张旭东,周金星,等.2005.世界盐碱资源及其改良利用的基本措施.水土保持研究,(12),6:28-30.
    80.张建锋,等.2003.流苏和香椿种子在盐分胁迫下的发芽研究[J].北京林业大学学报,25(4):88-90.
    81.张建锋,等.1997.盐碱地改良利用研究进展[J].山东林业科技,(3):25-28.
    82.张瑞珍,邵玺文,童淑媛,等.2006.盐碱胁迫对水稻源库与产量的影响[J].中国水稻科学,20(1):116-118.
    83.张逸帆,倪沙,邓双丽,等.2009.超级杂交稻国稻6号盐胁迫下的农艺生理变化[J].中国稻米,(3):7-9.
    84.赵海新.2010.碱胁迫对水稻SOD和POD活性及MDA含量的影响[J].黑龙江农业科学(,8):22-23.
    85.赵骥民,辛树权,何正飚,等.2007.碱胁迫下PGPR菌株对水稻萌发及水稻幼苗生长的促生作用---具ACC脱氨酶活性的PGPR在盐碱逆境下的应用初探[J].安徽农业科学,35(34):11060-11062.
    86.赵可夫,范海.2005.盐生植物及其对盐渍生境的适应生理[M].北京:科学出版社,1-10.
    87.赵可夫.1993.植物抗盐生理[M].北京:中国科技教育出版社,1-35.
    88.赵可夫.1993.植物抗盐生理[M].北京:中国科学技术出版社,136-138.
    89.郑文菊,王勋陵,沈禹颖,等.1999.几种盐地生植物同化器官的超微结构研究[J]·电子显微学报,5(18):507-512.
    90.周政,李宏,孙勇,等.高产、抗旱和耐盐选择对水稻产量相关性状的影响[J].作物学报,2010,36(10):1725-1735.
    91.朱新广,王强,张其德,等.2002.冬小麦光合功能对盐胁迫的响应[J].植物营养与肥料学报,8(2):177-180.
    92.朱宇旌,张勇.2000.盐胁迫下小花碱茅超微结构的研究[J].中国草地,(4):30-32,58.
    93.左志锐,高俊平,穆鼎,等.2006.盐胁迫下百合两个品种的叶绿体和线粒体超微结构比较,园艺学报,33(2):429-432.
    94. Akhter J, Mahmood K, Malik K A, et al.2003.Amelioration of a SalineSodic Soil through Cultivationof a Salt-Tolerant Grass Leptochloafusca. Environmental Conservtation,30(2):168-174.
    95. Amezketa E.2006. An integrated methodology for assessing soilsalinization, a pre-condition for landdesertification[J]. Journal ofArid Environments,67(4):594-606.
    96. Ashraf M, McNeilly T, Bradshaw A D.1987. Selection and heritability of tolerance to sodium chloridein four orage species.Crop Sci,26:232-234
    97. Boivin P, Favre F, Hammecker C, et al.2002. Processes driving soilsolution chemistry in a floodedrice-cropped vertisol: analysis oflong-time monitoring data. Geoderma,110(1-2):87-107.
    98. Campbell S A, Nishio J N.2000. Iron deficiency studies of sugar beet using an improved sodiumbicarbonate buffered hydroponic growth system. J Plant Nutr,23(6):741-757.
    99. Carmina G, Ana M R,Carmen M B, et al.2000. The yeast HALL gene improves salt tolerance oftransgenic tomato. Plant Physiol,123:393-402.
    100.Darwish T, Atallah T, EI Moujabber M, et al.2005. Salinity evolution andcrop response to secondarysoil salinity in two agro-climatic zonesin Lebanon. Agricutural Water Management,78(1-2):152-164.
    101.Degenhardt B, Gmmler H, Hose E, et al.2000. Effect of alkaline and saline substrates on ABAcontents, distribution and transport in plant roots. Plant Soil,225(12):83-89.
    102.Diem H G, Duhoux E, Zaid H, et al.2000. Culuster roots in Casuarinaceae: Role and relationship tosoil nutrient facters. Ann Bot,85(6):929-936.
    103.Doran, John C, Turnbull J W.1997. Australian Trees and Shrubs: species for land rehabilitation andfarm planting in the tropics. Canberra: Australian Centre for International Agricultural Research.
    104.Feng G.1999. Effects of salinity on VA mycorrhiza formation and of inoculation with VAM fungi onsaline tolerance of plants. Chin J Appl Ecol,10(1):79-82.
    105.Gargan K S, Abrol I P, Bhumbla D R.1974. Performance of rice varieties in a highly saline sodic soilsas influenced by plant population. Agronomy Jouranal,66:279-280.
    106.Gibson G, Dworkin I.2004. Uncovering cryptic genetic variation.Nat Rev: Genet,5:681-690.
    107.Girdhar I K.1992. Effect of sodic water irrigating on thegrowth development product and chemistrysystem ofrice on the salt soil. Salt-alkaline Soil Use,(1):45-50.
    108.González-Núez L M, Tóth T, García D.2004. Integrated management forthe sustainable use ofsalt-affected soils in Cuba. Universidad yCiencia,20(40):85-102.
    109.Horemans N, Foyer C H, Asard H.2000. Transport and ac-tion of ascorbate at the plant plasmamembrane. Trends in Plant Science,5(6):263-267.
    110.Hussan N, Ali A, Sarwar G, Mujeeb F, Tahir M.2003. Mechanism of salt tolerance in rice. Pedosphere,13(3):233-238.
    111.Jones M P.1985. Genetic analysis of salt tolerance in mangrove swamp rice//Rice Genetics Proceedingof International RiceGenetics Symposium.IRRI,5:41-122.
    112.Kawasaki S, Borchert C, Deyholos M, et al.2001. Gene expression profiles during the initial phase ofsalt stress in rice. Plant. Cell,13:889-905.
    113.Khan M G.1994. Effect of salt stress on nitrate reductase activity in some leguminous crops. Indian JPlant Physiol,37(3):185-187.
    114.Kjell O H, Susanne S, Abul M, et al.2000. Improved tolerance to salinity and low temperature intransgenic tobacco producing glycinebetaine. J Exp Bot,51(343):177-185.
    115.Kvoda V A.1983. Loss of productive Land due to Salinization. Ambio,12(2):91-93.
    116.Lauter N, Doebley J.2002. Genetic variation for phenotypically invariant traits detected inteosinte:Implications for the evolution of novel forms.Genetics,160:333-342
    117.Lee C K,Yoon Y H,Shin J,et al.2002. Growth and yieldof rice as affected by saline water treatment atdifferent growth stages.Korean Journal of CropScience,47(6):402-408.
    118.Luchli A, James R A, Huang C X, et al.2008. Cell specific localizationof Na+in roots of durum wheatand possible control points for saltexclusion. Plant Cell Environ,31(11):1565-1574.
    119.Maclean J L, Dawe C, B Hardy P Hettel.编著(杨仁崔,汤圣祥等译).2003.水稻知识大全.福州:福建科学技术出版社.
    120.Mishra A, Sharma S D, Khan G H.2003. Improvement in physical andchemical properties of sodic soilby3,6and9years old plantationof Eucalyptus tereticornis: biorejuvenation of sodic soil. ForestEcol.Manage.184(1-3):115-124.
    121.Muhammad S, Mueller T, Joergensen R G.2008. Relationships betweensoil biological and other soilproperties in saline and alkaline arablesoils from the Pakistani Punjab. Journal of Arid Environments,72(4):448-457.
    122.Neue H U.1994. Rice and problem soils in south and Southeast Asia. IRRI, Manila, Philippines115-143.
    123.Nguyen T T H, Ie Sung Shim, KatsuichiroKobayashi, et al.2003. Accumulation of somenitrogencompounds in response to salt stress and their re-lationships with salt tolerance in rice(OryzasativaL) seedling. Plant Growth Regulation,41(2):159-164.
    124.Paul M H,Ray A B.2000. Plant cellular and molecular responses to high sality. Annu Rev Plant Physioland Plant Mol Biol,51:463-499.
    125.Qadar A.1998. Alleviation of sodicty stress on rice genotypes by phos-phorus fertilization. Plant andSoil,203:269-277.
    126.Qadar A.1985. Salinity and sodicity tolerance in rice. International Rice Research Newsletter,10:7-8.
    127.Qadir M, Noble A D, Oster J D, et al.2005. Driving forces for sodiumremoval duringphytoremediation of calcareous sodic andsaline-sodic soils:a review. Soil Use and Management,21(2):173-180.
    128.Qadir M, Oster J D, Schubert S, et al.2006.Vegetative bioremediation ofsodic and saline-sodic soils forproductivity enhancement andenvironment conservation//ztürk M,Waisel Y, Khan M A, etal.Biosaline agriculture and salinity tolerance in plants. Basel,Swizerland: Birkhuser Verlag,137-146.
    129.Ren Z H, Gao J P,Li L G, et al.2005. A rice quantitative trait locus for salt tolerance encodes a sodiumtransporter.Nat Gene,37(10):1141-1146
    130.SABU A, SHEEJATE,NAM BISON P.1995. Comparison of Proline aceumulation in eallus andseedlings of two cultivation of Oryza sativa L.diffring in salt toleranee.Indian J. Exp. Biol,33(2):139-141.
    131.Serran R, Mulet J, Rois G, et al.1999. A glimpse of the mechanisms of ion homeostasis during saltstress. J Exp Bot,50:1023-1036.
    132.Sharma S K.1986. Mechanism of tolerance in rice varieties differing in sodicty tolerance. Plant andSoil,93:141-145.
    133.Sigh R K,Mishra B,Chauhan M S,et al.2002. Solution culture for screening rice varieties for sodicitytolerance.Journal of Agricul tural Science,139:327-333.
    134.Singh R B, Ran P C, Singh B B.1990. Genetic variability in rice geno-types planted in sodic soils.International Rice Research Newsletter,15:13.
    135.Srivastava O P, Singh B, Pathak A N.1984. Varietal differences in Puptake of rice on sodic soils.International Rice Research Newsletter,9:11.
    136.Sultana N, Ikeda T,Itoh R.1999. Effect of NaClsalinity on photo synthesis and dry matter accumulation in developing rice grains.Environonmental and Experimental Botany,42(3):211-220.
    137.Tang C, Turner N C.1999. The influence of alkalinity and water stress on the stomatal conductance,photosynthetic rate and growth of Lupinus angustifolius L and Lupinus pilosus Murr. Aust Exp Agric,39(4):457-464.
    138.Tewary P K, Sharma A, Raghunath M K, et al.2000. In vitro response of promising mulberrygenotypes for tolerance to salt and osmotic stresses. Plant Growth Regul,30(1):17-21.
    139.Vorob'eva L A, Pankova E I.2008. Saline-Alkali soils of Russia.Eurasian Soil Science,41(5):457-470.
    140.Yang J C, Zhang S W, Li Y, et al.2010. Dynamics of saline-alkali landand its ecologicalregionalization in western Songnen Plain, China. Chinese Geographical Science,20(2):159-166.
    141.Zhou W, Sun Q J, Zhang C F.2004. Effect of Salt Stress on Ammonium Assimilation Enzymes of theRoots of Rice (Oryza sativa) Cultivars Differing in Salinity Resistance. Acta Botanica Sinica,46(8):921-927.
    142.Zhu J K.2001. Plant salt tolerance. Trends in Plant Science,6(2):66-71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700