用户名: 密码: 验证码:
块体、厚膜和薄膜NTC热敏电阻的制备与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有AB_2O_4尖晶石结构的Mn系过渡金属氧化物是NTC热敏电阻主要的材料体系;高性能膜状(厚膜和薄膜)NTC热敏电阻的制备是NTC热敏电阻领域的研究热点;多晶膜状NTC热敏电阻的导电机理研究是目前热敏电阻理论研究中的难点与重点。
     本文选择Mn系尖晶石NTC体系为主要研究对象;以实现NTC热敏电阻的膜状化和解决多晶膜状NTC热敏电阻导电机理中的难点为主要研究目标;在大量块体NTC热敏电阻的实验数据为基础上,以丝网印刷法制备厚膜NTC热敏电阻、溶胶-凝胶法制备薄膜NTC热敏电阻和变温复阻抗谱分析多晶膜状NTC热敏电阻的导电机理为主要技术途径,开展了一系列的研究工作。对块体、厚膜和薄膜NTC热敏电阻的制备工艺参数进行了较系统的研究;以小极化子跳跃导电理论为基础,采用复阻抗谱的方法分析了影响厚膜和薄膜NTC热敏电阻性能的主要工艺参数对其导电机理的影响。
     首先,研究了组分、烧结温度和粉体制备方法对Mn-Ni-O二元系、Mn-Co-Ni-O三元系和Mn-Co-Ni-Cu-O四元系块体热敏电阻的微结构和电性能的影响,结果表明:采用溶胶-凝胶法合成的粉体,烧结温度为1180oC,保温时间为3h,组分为Ni_(0.85)Co_(0.3)Mn_(1.85)O_4(MCN)的块体热敏电阻各项性能均较优异。
     其次,基于块体NTC热敏电阻实验数据,采用丝网印刷法在Al_2O_3基底上制备了MCN厚膜热敏电阻,讨论了固含量(50%、67%和75%)、烧结温度(1150、1180和1200oC)和电极形状(端电极和叉指电极)对MCN厚膜热敏电阻微结构和电性能的影响。结果表明:固含量为67%,烧结温度为1180oC时,制备有端电极和叉指电极的MCN厚膜热敏电阻的性能均较优异。采用端电极的MCN厚膜R-T关系满足指数关系(R=R0exp(B/T)),而采用叉指电极的厚膜热敏电阻的R-T关系为线性关系(R=R0+AT)。分析了电极形状对MCN厚膜热敏电阻R-T关系的影响:端电极MCN厚膜热敏电阻,端电极的宽度并不会影响其R-T关系的指数关系;叉指电极MCN厚膜热敏电阻,叉指间距离的改变不会影响其R-T关系的线性关系;叉指长度(a值)的大小是影响其R-T关系的主要原因;当a值变小时,厚膜热敏电阻的R-T关系由开始的线性关系慢慢过渡到指数关系。采用Ansoft maxwell12软件对MCN厚膜的电势能和电场分布进行了简单的分析。
     第三,采用溶胶-凝胶法在Al_2O_3基底上成功制备了MCN薄膜热敏电阻。研究了退火温度(650、700、750和800°C)和薄膜厚度(519.6、627.8和742.3nm)对MCN薄膜微结构和电性能的影响。对于MCN薄膜热敏电阻而言,750°C为最佳的退火温度。750°C下制备的MCN薄膜热敏电阻的室温电阻R_(25)=4.8MΩ,特征温度T_0=3720.6K,老化系数ΔR/R=3.7%。厚度对MCN薄膜热敏电阻的T_0值影响不大;样品R_(25)随着厚度的增加而减小,近似于线性减小;厚度对MCN薄膜热敏电阻的老化系数影响不大。为了达到减小电阻值的目的,采用溶胶-凝胶法在Al_2O_3基底上,700°C退火温度下,成功制备了Ni_(0.85)Co_(0.3)CuxMn_(1.85-x)O_4(MCCN,x=0,0.15,0.3和0.45)薄膜,研究了组分对MCCN薄膜热敏电阻的微观结构和电性能的影响。对于MCCN薄膜热敏电阻而言,当x=0.15,MCCN热敏电阻的R_(25)较小(0.56MΩ),灵敏度较高(T_0=4107.0K),老化系数较小(ΔR/R=5.7%),为较合适的组分。
     第四,通过对具有不同叉指长度(a值)的叉指电极MCN厚膜热敏电阻的变温复阻抗谱的分析,我们得到了具有不同a值的MCN厚膜热敏电阻中晶粒与晶界的R-T特性。样品中晶界电阻(R_(gb))均大于晶粒电阻(R_g);晶粒内部电子的输运为变程跳跃(VRH);a值越大,晶粒电阻和特征温度越小;当a值变小时,样品晶界的R_(gb)-T关系由开始的线性关系慢慢过渡到指数关系,这是引起厚膜热敏电阻R-T关系随a值大小发生变化的主要原因。
     第五,通过对不同晶粒尺寸的MCN薄膜热敏电阻变温复阻抗谱的分析,我们得到了:在不同晶粒尺寸的MCN薄膜热敏电阻中,晶粒与晶界处电子的导电均为跳跃导电; R_(gb)均大于R_g,这说明材料的电阻由晶界主导;而晶粒特征温度(T_0~g)均大于晶界特征温度(T_0gb),这说明材料中特征温度由晶粒主导。晶界的电子跳跃形式为最近邻跳跃(NNH),而晶粒内部电子的跳跃形式为由VRH向NNH过渡的跳跃方式,薄膜热敏电阻中电子跳跃形式为NNH主导的,VRH和NNH相结合的跳跃形式。
     NTC厚膜和薄膜热敏电阻制备工艺参数的研究以及内部导电机理的分析将为NTC厚膜和薄膜的工业应用提供有意义的指导。
Manganite based transition metal oxide ceramics with AB_2O_4spinel structure are themost important materials for negative temperature coefficient (NTC) thermistors. How toprepare the NTC thick film and thin film thermistors with high performance is the hot spot inNTC research area. The studies on the electronic conduction mechanism in polycrystallineNTC film thermistors are the difficult and key points in exploring the intrinsic mechanism.
     The main research targets of this thesis are the manganite based NTC thermistors withspinel structure. The main objectives of our work are to prepare NTC film thermistors andmake clear the electronic conduction mechanism in polycrystalline NTC film thermistors.Based on a large number of experimental data on NTC bulk thermistors, a series of workswere conducted by employing screen printing method to prepare NTC thin film thermistors,spin-coating method to prepare NTC thin films, and temperature-dependent ac impedancespectra to analyze the conduction mechasnism. We systematically studied the effects oftechnological parameters of NTC bulk, thick film and thin film thermistors on their propertiesand intrinsic conduction mechanism by taking the small-polaron hopping conduction astheoretical basis.
     The influences of chemical composition, sintering temperature and powder preparationmethod on the microstructure and electrical properties were studied on the Mn-Ni-O binary,Mn-Co-Ni-O ternary and Mn-Co-Ni-Cu-O quaternion systems. The results showed that theNi_(0.85)Co_(0.3)Mn_(1.85)O_4(MCN) bulk thermistors fabricated with powder by sol-gel method andsintered at1180oC for3h had much better performances than those with powder bytraditional solid-state reaction method.
     Based on the experimental results of bulk thermistors, the MCN thick film thermistorswere prepared on Al_2O_3substrates by screen printing method. The effects of solid content(50%,67%and75%), sintering temperature (1150,1180and1200oC) and the shape ofelectrodes (terminal and interdigital) on the microstructure and electrical properties werediscussed in detail. The results demonstrated that the best performance could be obtained forMCN thick film thermistors with67%solid content and sintered at1180oC. The R-T relationof MCN thick film thermistors with terminal electrodes seemed to follow an exponential law(R=R0exp(B/T)), however, the R-T relation of MCN thick film thermistors with interdigitatedelectrodes seemed to follow linear relation (R=R0+AT). To further investigate the influence ofelectrode shape on the R-T relation, it was known that the exponential R-T relation forterminal electrodes was not affect by the breadth of terminal electrodes, and the linear R-T relation with interdigitated electrodes was not affect by the interval of fingers. Evidently, thelinear R-T relation should be attributed to the length of finger (a value). To decrease the avalue, it was seen clearly that the R-T relation of MCN thick film thermistors evolvedgradually from linear to exponential. The electric potential and field distribution in MCNthick films with different shape electrodes were analyzed simply by using the software Ansoftmaxwell12.
     For MCN thin film thermistors prepared by spin-coating method on Al_2O_3substrates, theeffects of annealing temperature and thickness on the microstructure and electrical propertieswere studied. It was found that the MCN thin film thermistor annealed at750°C had lowerresistance (R_(25)=4.8MΩ), higher characteristic temperature (T_0=3720.6K), and small agingcoefficient (ΔR/R=3.7%) after aging at150°C for360h. The T_0and aging coefficient wasnot affected by the thickness of the thin film. The R_(25)was linearly decreasing with theincreasing of thickness. In order to reduce the R_(25), the Ni_(0.85)Co_(0.3)CuxMn_(1.85-x)O_4(MCCN,x=0,0.15,0.3and0.45) thin film thermistors were prepared on Al_2O_3substrates by sol-gel methodat700°C, and the effects of chemical composition on the microstructure and electricalproperties were studied. Ni0.85Co0.3Cu0.15Mn1.7O4seemed to be the optimum composition forthe MCCN thin films with R_(25) of0.56MΩ, T_0of4107.0K and Δ R/R of5.7%.
     Through the analysis of temperature-dependent ac impedances of the NTC thick filmthermistors with different interdigitated electrode length (a value), the R-T behaviors of grainboundary (GB) and grain were obtained. The resistance of GB (R_(gb)) was higher than thate ofgrain (R_g); the hopping type of electrons in the grain is Variable-Range-Hopping (VRH); theR_gand T_0gare decreasing with the increasing of the a value. With the decreasing of the a value,the R_(gb)-T relation will evolve gradually from linear to exponential, which is the main reasonfor the changes of R-T relation of MCN thick film thermistors.
     By the analysis of temperature-dependent ac impedances of MCN thin film thermistors,the grain size influence on the conductions of grain and GB was obtained. The conductionmechanisms of grain and GB both followed the small-polaron hopping model. In all samples,the R_(gb)was greater than the R_g, indicating the GB was of dominated resistance. The T_0gwaslarger than T_0gbimplying that the grain was of dominated characteristic temperature. Thehopping type of GBs was probably by Nearest-Neighbor-Hopping (NNH), and that of grainmight be a transition from VRH to NNH. We suggest that the samples are the systems withmixed NNH and VRH, and the electrical conductions of the samples are dominated by NNH.
     These studies on the technological parameters and the electronic conduction mechanisms of NTC thick and thin film thermistors will be beneficial for the component design andindustrial applications.
引文
[1] Park K., Han I.H., Effect of Al2O3addition on the microstructure and electricalproperties of (Mn0.37Ni0.3Co0.33xAlx)O4(0≤x≤0.03) NTC thermistors [J]. MaterialsScience and Engineering B.2005,119:55–60
    [2] Park K., Structural and electrical properties of FeMg0.7Cr0.6Co0.7xAlxO4(0≤x≤0.3) thickfilm NTC thermistors [J]. Journal of the European Ceramic Society.2006,26:909–914
    [3] Park K., Lee J. K., Mn-Ni-Co-Cu-Zn-O NTC thermistors with high thermal stability forlow resistance applications [J]. Scripta Materialia.2007,20:329-332
    [4] Dmitry A. K., Jerome G. M., and Fumio S. O., Improved aging characteristics of NTCthermistor thin films fabricated by a hybrid Sol–Gel–MOD process [J]. Journal of theAmerican Ceramic Society,2006,89:189–192
    [5] Park K., Fabrication and electrical properties of Mn–Ni–Co–Cu–Si oxides negativetemperature coefficient thermistors [J]. Journal of the American Ceramic Society.2005,88:862–866
    [6]王卫民, Mn-Co-Ni-O基NTC热敏半导体陶瓷的低温烧结与电性能研究[D].西安:西北工业大学,2006
    [7]王忠兵, Fe-Mn-Ni-O尖晶石型负温度系数热敏陶瓷的制备与老化性能研究[D].合肥:中国科技大学,2005
    [8]高俊峰,负温度系数热敏电阻的制备和电性能研究[D].合肥:中国科技大学,2006
    [9]赵春花,负温度系数热敏陶瓷的电性能和稳定性研究[D].合肥:中国科技大学,2007
    [10]周仲建,掺氧化硼对Mn-Ni-Cu系NTC热敏电阻器的影响[D].成都:电子科技大学,2011
    [11] Wu J., Huang Z. M., Hou Y., et al. Variation in hopping conduction across the magnetictransition in spinel Mn1.56Co0.96Ni0.48O4films [J]. Applied Physics Letters.2010,96:082103
    [12] Chen X. J, Zhang C. L. and Almasan C. C., Small-polaron hopping conduction inbilayer manganite La12Sr18Mn2O7[J]. Physical Review B,2003,67:094426
    [13] Hou Y., Huang Z., Gao Y. Q. et al. Characterization of Mn1.56Co0.96Ni0.48O4films forinfrared detection[J]. Applied Physics Letters,2008,92:202115
    [14] Schmidt R., Basu A. and Brinkman A. W. Small polaron hopping in spinel manganates[J]. Physical Review B,2005,72:115101
    [15] Schmidt R. and Andrew W. B., Studies of the temperature and frequency dependentimpedance of an electroceramic functional oxide NTC thermistor [J]. AdvancedFunction Materials.2007,17:3170–3174
    [16] Schmidt R., Basu A. A. and Brinkman A. W., et al. Electron-hopping modes inNiMn2O4+δmaterials [J]. Applied Physics Letters,2005,86:073501
    [17] He L. and Ling Z. Y., Studies of temperature dependent ac impedance of a negativetemperature coefficient Mn-Co-Ni-O thin film thermistor [J]. Applied Physics Letters,2011,98:242112
    [18] He L., Ling Z. Y., Huang Y.T. et al. Effects of annealing temperature on microstructureand electrical properties of Mn–Co–Ni–O thin films [J]. Materials Letters,2011,65:1632–1635
    [19] He L. and Ling Z. Y. Electrical conduction of intrinsic grain and grain boundary inMn-Co-Ni-O thin film thermistors: Grain size influence [J]. Journal of Applied Physics,2011,110:093708
    [20] Schmidta R. and Andrew W. B., Ac hopping admittance in spinel manganate negativetemperature coefficient thermistor electroceramics [J]. Journal of Applied Physics,2008,103:113710
    [21]莫尔桑,赫贝尔,电子陶瓷材料、性能、应用[M].武汉:武汉工业大学出版社,1993:20-52
    [22]徐廷献,电子陶瓷材料[M].天津:天津大学出版社,1993:17-84
    [23]周东样,半导体陶瓷及应用[M].上海:华中理工大学出版社,1991:33-56
    [24] Metz R., Caffin J. P., Legros R., et al. The preparation characterization and electricalproperties of copper mangnaite spinels CuxMn3-xO4(0    [25] Vakiv M., Shpotyuk O., Mrooz O., et al. Controlled thermistor effect in the systemCuxNi1-x-yCoyMn2-yO4[J]. Journal of the European Ceramic Society,2001,21:1783-1785
    [26] Gyorgyfalva C. D., Reaney I. M., Decomposition of NiMn2O4spinel: an NTCthermistor material [J]. Journal of the European Ceramic Society,2001,21:2145-2148
    [27] Wang Z. B., Zhao C. H., Yang P. H., et al. Effect of annealing in O2or N2on the agingof Fe0.5Mn1.84Ni0.66O4NTC-ceramics [J]. Solid State Ionics,2006,177:2191-2194
    [28] Zhao C. H., Wang B. Y., Yang P. H., et al. Effects of Cu and Zn co-doping on theelectrical properties of Ni0.5Mn2.5O4NTC ceramics [J]. Journal of the EuropeanCeramic Society,2008,28:35-40
    [29] Kanade S. A., Puri, V., Electrical properties of thick-film NTC thermistor composed ofNi0.8Co0.2Mn2O4ceramic: effect of inorganic oxide binder [J]. Materials ResearchBulletin,2008,43:819-824
    [30] Ge Y. J., Huang Z. M., Hou Y., et al. Low temperature growth of manganese cobaltnickelate films by chemical deposition [J]. Thin Solid Films,2008,516:5931-5934
    [31]范福康,吴红忠.电子陶瓷材料发展现状、展望与思考[J].电子元件与材料,2005,24:58-60
    [32] Feteira A., Negative temperature coefficient resistance (NTCR) ceramic thermistors: anindustrial perspective [J]. Journal of the American Ceramic Society,2009,92:967–983
    [33]瞿继卫,杨文,沈波,等.抑制涌浪电流用NTC热敏电阻器[J].电子元件与材料,1996,15:33–35.
    [34]宋秀娟,杨传仁,张继华,等. NTC热敏薄膜的研究进展[J].电子元件与材料,2008,27:13-15
    [35] Jadhav R., Kulkarni D. and Puri V. Structural and electrical properties of fritlessNi1-xCuxMn2O4(0    [36] Kanadea S. A., Purib V. Properties of thick film Ni0.6Co0.4FeyMn2-yO4:(0≤y≤0.5) NTCceramic [J]. Journal of Alloys and Compounds,2009,475:352–355
    [37] Hrovat M., Belavic D., Kita J., et al. Thick-film NTC thermistors and LTCC materials:the dependence of the electrical and microstructural characteristics on the firingtemperature [J]. Journal of the European Ceramic Society,2009,29:3265–3271
    [38] Jagtap S., Rane S., Gosavi S., et al. Low temperature synthesis and characterization ofNTC powder and its ‘lead free’ thick film thermistors [J]. Microelectronic Engineering,2010,87:104–107
    [39]朱金波,周继承. NTC电阻器热敏功能薄膜材料研究进展[J].材料导报,2006,20:28-31
    [40] Lee M. H., Yoo M. N., Detectivity of thin film NTC thermal sensors [J]. Sensor andActuators A: physical,2002,96:97-104
    [41] Park K., Han I. H., Effect of partial substitution of Mg for Co in Mn1.4Ni1.2Co0.4O4NTC thermistors on electrical stability [J]. Journal of Electroceramics,2006,17:1079-1082
    [42] Park K., Lee J. K., Kim J. G., et al. Improvement in the electrical stability ofMn–Ni–Co–O NTC thermistors by substituting Cr2O3for Co3O4[J]. Journal of Alloysand Compounds,2007,437:211–214
    [43] Fang D. L., Zheng C. H., Chen C. S., et al. Aging of nickel manganite NTC ceramics[J]. Journal of Electroceramics,2009,22:421–427
    [44]王疆瑛,陶明德,韩英. NiFeAlO系宽温区热敏元件的研制[J].电子元件与材料,1997,16:9-12
    [45]苏树兵,宋世庚,郑应智,等. CoMnCuO系NTC热敏电阻的复阻抗分析[J].材料科学与工程,2002,20:386-389
    [46] Hosseini M. and Yasaei B., Effect of grain size and microstruetures on resistivity ofMn-Co-Ni thermistor [J]. Ceramics Intemational,1998,24:543-545
    [47] Elbadraoui E., Baudour J. L., Bouree F., et al. Cation distribution and mechanism ofelectrical conduction in nickel–copper manganite spinels [J]. Solid State Ionics,1997,93:219–225
    [48] Gillot B., Buguet S., Kester E., et al. Cation valencies and distribution in the spinelsCoxCuyMnzFeuO4+δ(δ≥0) thin films studied by X-ray photoelectron spectroscopy [J].Thin Solid Films,1999,357:223–231
    [49]李言荣,挥正中.电子材料导论[M].北京:清华大学出版,2001:384-388.
    [50] Zhu Y., Minura K. and Isshiki M. Oxidation mechanism of Cu2O to CuO at600–1050oC [J]. Oxidation of Metals,2004,62:207–222
    [51] Legros R., Metz R. and Rousset A., The preparation characterization and electricalproperties of electroceramics made of copper–cobalt manganite spinel:Mn2.6-xCo0.4CuxO4,0≤x≤1[J]. Journal of the European Ceramic Society,1995,15:463–468
    [52] Basua A., Brinkmana A. W., Schmidta R., et al. A study of the electronic states ofNixMn3-xO4+δthin films using scanning tunneling microscopy and current imagingtunneling spectroscopy [J]. Journal of the European Ceramic Society,2004,24:1149–1152
    [53] Macklen E. D., Electrical conductivity and cation distribution in nickel manganite [J].Journal of Physics and Chemistry of Solids,1986,47:1073–1079
    [54] Basu A., Brinkman A. W., Klusek Z., et al. In situ study of the effect of temperature onthe electronic structure of NixMn3-xO4+δthin films using scanning tunnelingspectroscopy [J]. Journal of Applied Physics,2002,92:4123-4127
    [55]杨文,杨邦朝.阳离子分布对尖晶石型热敏陶瓷电性能的影响[J].功能材料,2000,31:513–515
    [56] Battualt T.,Legros R. and Rousset A., Aging of iron mnagnaite negative temperaturecoefficient thermistors [J]. Journal of Materials Research,1998,13:1238-1241
    [57] Groen W. A., Metmzacher C., Hpertz P., et al. Aging of NTC Ceramic in the systemMn-Ni-Fe-O [J]. Journal of Electroceramics,2001,7:77-82
    [58] Laiho R., Lisunov K. G., Lahderanta E., et al. Variable-range hopping conductivity inLa1-xCaxMn1-yFeyO3: evidence of a complex gap in density of states near the Fermilevel [J]. Journal of Physics: Condensed Matter,2002,14:8043–8055
    [59] Laiho R., Lisunov K. G., Lahderanta E., et al. Lattice distortions, magnetoresistanceand hopping conductivity in LaMnO3+δ[J]. Journal of Physics: Condensed Matter,2005,17:105–118
    [60] Laiho R., Lisunov K. G., Lahderanta E. et al. Mechanisms of hopping conductivity inweakly doped La1-xBaxMnO3[J]. Journal of Physics: Condensed Matter,2005,17:3429–3444
    [61] Laiho R., Lisunov K. G., Lahderanta E., et al. Variable-range hopping conductivity andstructure of density of localized states in LaMnO3+δunder pressure [J]. Journal ofPhysics: Condensed Matter,2006,18:10291–10302
    [62] Zakhvalinskii V. S., Laiho R., Lashkul A. V., Hopping conductivity ofLa1-xSrxMn1-yFeyO3[J]. Journal of Physics: Conference Series,2011,303:012066
    [63] Konezny S. J., Bussac M. N. and Zuppiroli L., Hopping and trapping mechanisms inorganic field-effect transistors [J]. Physical Review B,2010,81:045313
    [64] Ciuchi S. and Fratini S., Hopping dynamics of interacting polarons [J]. PhysicalReview B,2009,79:035113
    [65] Douin M., Liliane G. D., Michel M., Effect of thermal treatment on the electronicconductivity properties of cobalt spinel phases synthesized by electro-oxidation internary alkaline electrolyte (KOH, LiOH, NaOH)[J]. Journal of Physics: CondensedMatter,2008,20:6880–6888
    [66] Wei W. F., Chen W. X. and Douglas G. I., Rock Salt-spinel structural transformation inanodically electrodeposited Mn-Co-O nanocrystals [J]. Journal of Physics: CondensedMatter,2008,20:1941–1947
    [67]蒋朝伦,陶明德.多晶氧化物半导体中晶界对电导的影响[J].电子材料与器件,2003,6:11-13
    [68]翟继卫,杨文,沈波,等.相界势垒对高B值高电导率NTC热敏材料电特性的影响[J].功能材料,1997,28:174-176
    [69] Park K., Improvement in electrical stability by addition of SiO2inMn1.2Ni0.78Co0.87-xCu0.15SixO4NTC thermistors [J]. Scripta Materiallia,2004,50:551-554
    [70] Metz R. Electrical properties of NTC thermistors made of mangiantie ceramics ofgeneral spinel structure: Mn3-x-yMxNy(0≤x+y≤1; M and N being Ni, Co or Cu) agingphenomenon study [J]. Journal of Materials Science.2000,5:4705-4711
    [71] Mott N. F., Electronic processes in noncrystalline materials [M]. Clarendon. Press,1979:101-114
    [72]宋伟璞,无序体系电子跳跃导电机理研究[D].长沙:中南大学,2007
    [73]马松山,无序体系电子输运中无序作用机理研究[D].长沙:中南大学,2004
    [74]潘葳,新型半导体材料的电输运特性研究[D].上海:上海交通大学,2007
    [75]刘小良,低维无序系统电子局域性质研究[D].长沙:中南大学,2006
    [76]叶红兵,新型半导体材料和红外器件的输运性质研究[D].上海:上海交通大学,2008
    [77]宋招权,一维及准一维无序体系电子输运性质研究[D].长沙:中南大学,2011
    [78] Sun Y., Xu X. J. and Zhang Y. H., Variable-range hopping of small polarons inmixed-valence manganites [J]. Journal of Physics: Condensed Matter,2000,12:10475–10480
    [79]方悼, BaTiO3陶瓷晶粒结构及尺寸效应的理论研究[D].武汉:华中科技大学,2010
    [80] Muthuselvam I. P. and Bhowmik R. N., Connectivity between electrical conductionand thermally activated grain size evolution in Ho-doped CoFe2O4ferrite [J]. Journal ofPhysics D: Applied Physics,2010,43:465002
    [81] Sivakumar N., Narayanasamy A. and Ponpandian N., Grain size effect on the dielectricbehavior of nanostructured Ni0.5Zn0.5Fe2O4[J]. Journal of Applied Physics,2007,101:084116
    [82] Park J. S., Kim C. O., and Leea Y. P., Influence of grain size on the electronic and themagnetic properties of La0.7Ca0.3MnO3-d[J]. Journal of Applied Physics,2004,96:2033-2036
    [83] Durá O. J., López M. A., Torre D. L., et al. Ionic conductivity of nanocrystallineyttria-stabilized zirconia: Grain boundary and size effects [J]. Physical Review B,2010,81:184301
    [84]王芸,电化学阻抗谱在复合材料结构和性能研究中的应用[D].武汉:华中科技大学,2011
    [85]刘兴阶,胡用时,李佐宜.新型热NTC敏电阻材料.传感器技术[J],1993,3:46-48
    [86]李言荣,挥正中.电子材料导论[M].北京:清华大学,2001,9:384-388
    [87]孙才生.常温NTC热敏电阻的几种材料[D].传感器技术,1991,5:9-77
    [88]杜以强. NTC热敏电阻R-T特性探讨[D].航天返回与遥感,2002,23:26–28
    [89] Nobrea M. A. L. and Lanfredia S. Grain boundary electric characterization ofZn7Sb2O12semiconduction ceramic: A negative temperature coefficient thermistor [J].Journal of Applied Physics,2003,93:5576-5582
    [90] Shweta J., Rane S., Aiyer R., Gosavi S., et al. Study of microstructure, impedance anddc electrical properties of RuO2–spinel based screen printed ‘green’ NTC thermistor [J].Journal of Applied Physics,2010,10:1156–1163
    [91] Rivera A., Santamaria J. and Leon C., Temperature dependence of the ionicconductivity in Li3xLa2-xTiO3Arrhenius versus non-Arrhenius [J]. Applied PhysicsLetters,2003,82:14
    [92] Sinclair D. C. and West A. R., Impedance and modulus spectroscopy ofsemiconducting BaTiO3showing positive temperature coefficient of resistance [J].Journal of Applied Physics,1989,66:3850-3856
    [93] Lua H. B., Zhang X. Y. and Zhang H., Influence of the relaxation ofMaxwell-Wagner-Sillars polarization and dc conductivity on the dielectric behaviors ofnylon1010[J]. Journal of Applied Physics,2006,100:054104
    [94] Karmakar A., Majumdar S. and Giri S. Polaron relaxation and hopping conductivity inLaMn1-xFexO3[J]. Physical Review B,2009,79:094406
    [95] Ortega N., Kumar A., Bhattacharya P. et al. Impedance spectroscopy of multiferroicPbZrxTi1-xO3CoFe2O4layered thin films [J]. Physical Review B,2008,77:014111
    [96] Sidebottom D. L., Roling B. and Funke K. Ionic conduction in solids: Comparingconductivity and modulus representations with regard to scaling properties [J]. PhysicalReview B,2007,63:024301
    [97] Ngai K. L. and Leo′n C. Relating macroscopic electrical relaxation to microscopicmovements of the ions in ionically conducting materials by theory and experiment [J].Physical Review B,1999,60:9396-9405
    [98] Gareev R. R., Petukhov A., Schlapps M. et al. Giant anisotropic magnetoresistance ininsulating ultrathin (Ga, Mn)As [J]. Applied Physica Letters,2010,96:052114
    [99] Moyer J. G., Kukuruznyak D. A., Nguyen N. et al. Thermopower and electricalconductivity of Mn1.68-xCu0.6+x+y+zCo0.24-yNi0.48-zthin film oxides obtained through metalorganic decomposition processing [J]. Journal of Applied Physics,2006,100:083504
    [100] Singh J., Kalghatgi A. T., Parui J., et al. High-temperature dielectric response in pulsedlaser deposited Bi1.5Zn1.0Nb1.5O7thin films [J]. Journal of Applied Physics,2010,108:054106
    [101] Malshukov A. G., Chao K. A., Willander M., Magnetoresistance of a weaklydisordered III-V semiconductor quantum well in a magnetic field parallel to interfaces[J]. Physical Review B,1997,56:6436-6439
    [102] Ponpandian N., Balaya P. and Narayanasamy A., Electrical conductivity and dielectricbehaviour of nanocrystalline NiFe2O4spine [J]. Journal of Physics: Condensed Matter,2002,14:3221–3237
    [103] Devan R. S., Dkolekar Y. and Chougule B. K., Effect of cobalt substitution on theproperties of nickel–copper ferrite [J]. Journal of Physics: Condensed Matter,2006,18:9809–9821
    [104] Sivakumar N., Narayanasamy A., Chinnasamy C. N., et al. Influence of thermalannealing on the dielectric properties and electrical relaxation behaviour innanostructured CoFe2O4ferrite [J]. Journal of Physics: Condensed Matter,2007,19:386201
    [105] Kumar S., Alimuddin, Kumar R., et al. Electrical transport, magnetic, and electronicstructure studies of Mg0.95Mn0.05Fe2-2xTi2xO4±δ(0≤x≤0.5) ferrites [J]. Journal of Physics:Condensed Matter,2007,19:476210
    [106] K rner W. and Els sser C., First-principles density functional study of dopant elementsat grain boundaries in ZnO [J]. Physical Review B,2010,81:08532
    [107] Rybchenko S. I., Fujishiro Y., Takagi H., et al. Effect of grain boundaries on themagnetoresistance of magnetite [J]. Physical Review B,2005,72:054424
    [108] Schmidt R. and Andrew W., Brinkman ac hopping admittance in spinel manganatenegative temperature coefficient thermistor electroceramics [J]. Journal of AppliedPhysics,2008,103:113710
    [109] Ravaine D., Souquet J. L., A thermodynamic approach to ionic conductivity glass Part1:Correlation of the ionic conductivity with the chemical potential of alkali oxide inoxide glasses [J]. Physics and Chemistry of Glasses,1977,18(2):27-31
    [110] Hari N. S., Padmini P., Kutty T. R. N., Complex impedance analyses of n-BaTiO3ceramics showing positive temperature coefficient of resistance [J]. Journal ofMaterials Science,1997,8:15-22
    [111]简家文等,交流阻抗谱测试技术在固体电解质氧传感器研究中的应用[J].功能材料,2004,4:464-465
    [112]刘莹.高分子电阻型湿敏元件的复阻抗谱测试与分析[J].中国测试技术,2003,5:34
    [113]张立新.钙钛矿稀土锰氧化物的复阻抗谱分析[D].烟台:烟台大学,2011
    [114]刘剑.电子型高温超导体Nd2-xCexCuO4单晶及热电材料Bi2-xPbxSr2Co2Oy和BixTiS2多晶的热电性质研究[D].合肥:中国科技大学,2007
    [115] Gao Y. Q., Huang Z. M., Hou Y., et al. Optical properties of Mn1.56Co0.96Ni0.48O4filmsstudied by spectroscopic ellipsometry [J]. Applied Physics Letters,2009,94:011106
    [116] Varghese J. M., Seema A., Dayas K. R., Microstructural electrical and reliabilityaspects of chromium doped Ni–Mn–Fe–O NTC thermistor materials [J]. MaterialsScience and Engineering B,2008,149:47–52
    [117] Kosova N.V., Devyatkina E.T., Kaichev V.V., Mixed layered Ni–Mn–Co hydroxides:Crystal structure, electronic state of ions, and thermal decomposition [J]. Journal ofPower Sources,2007,174:735–740
    [118] Wang S. G., Chang A. M., Zhang H. M., Preparation and characterization ofMn0.43Ni0.9CuFe0.67O4by a polymerized complex method [J]. Materials Chemistry andPhysics,2008,110:83–88
    [119] Takahashi J., Miura A., Itoh H., et al. Phase change and electrical resistivity ofZn–Mn–Ni–O-based NTC thermistors produced using IZC powder recycled from useddry batteries [J]. Ceramics International,2008,34:853–857
    [120] Gao J. F., Fang D. L., Wang Z. B., et al. Preparation and electrical properties ofcopper–nickel manganite ceramic derived from mixed oxalate [J]. Sensors andActuators A,2007,135:472–475
    [121]赵肃莹.共沉淀法制备Ni-Mn-O系负温度系数热敏陶瓷及烧结工艺研究[D].合肥:合肥工业大学,2009
    [122]陈文仿,片式热敏元件流延成型及其共烧技术研究[D].武汉:华中科技大学,2006
    [123] Fang D. L., Chen C. S., Winnubst A. J. A., Preparation and electrical properties ofFexCu0.10Ni0.66Mn2.24-xO4(0≤x≤0.90) NTC ceramics [J]. Journal of Alloys andCompounds,2008,454:286–291
    [124] Hoffman L. C., Overview of thick film hybrid materials [J]. American Ceramic SocietyBulletin.1984,63:572-576.
    [125] Ahn J. P., Kim J. H., Park J. K., et al. Microstructure and gas-sensing properties ofthick film sensor using nanophase SnO2powder [J]. Sensors and Actuators B: Chemical.2004,99(1)18-24
    [126] Qu W., Meyer J. U. Novel thick-film ceramic humidity sensor [J]. Sensors andActuators B:Chemical.1997,40:175-182
    [127] Dziedzic A., Golonka L. J., Kozlowski J. et al. Thick-film resistive temperature sensors[J]. Measurement Science and Technology,1997,8:78-85
    [128]周东祥,龚树萍. PTC材料及应用(第一版)[M].武汉:华中理工大学出版社,1989,156-165
    [129] Yamagata K., Hayashi N., Maeji Y., et al. Characteristics of a thick high-criticaltemperature superconductor film used as a highly sensitive magnetic sensor [J]. IEEETransactions on Applied Superconductivity,2004,14:1689-1692
    [130]邱杰.锰酸锶镧薄膜的复合溶胶-凝胶法制备工艺研究[D].济南:山东大学,2008
    [131]刘同军.溶胶-凝胶法制备的透明导电氧化物(TCO)薄膜[D].天津:天津大学,2008
    [132]周进.氧化钒热敏薄膜的制备和性质研究[D].上海:复旦大学,2000
    [133]张海波.钛酸铋钠钾压电厚膜的制备与性能研究[D].武汉:华中科技大学,2008
    [134] Bayramli E., Van D. V. Experimental study of liquid bridges between spheres in agravitational field [J]. Journal of Colloid and Interface Science,1987,116:503-510
    [135] Horn R.G. Surface forces and their action in ceramic materials [J]. Journal of AmericanCeramic Society,1990,73:1117-1135
    [136] Kivelson S. Electron hopping conduction in the soliton model of polyacetylene [J].Molecular crystals and Liquid Crystals,1981,77:65-79
    [137] Ambegaokar V. Halperin B. I., Langer J. S., Hopping conductivity in disorderedsystems [J]. Physical Review B.1971,4:2612–2620
    [138] Gill W. D., Drift mobilities in amorphous charge-transfer complexes of trinitrofluorenone and poly-n-vinylcarbazole [J]. Journal of Applied Physics,1972,43:5033–5040
    [139] Emin D., Hart C. F. Phonon-assisted hopping of an electron on a Wannier-Starkladder in a strong electric field [J]. Physical Review B,1987,36:2530–2546
    [140] Castro E. V., Novoselov K. S., Morozov S. V., Biased bilayer graphene: semiconductorwith a gap tunable by the electric field effect [J]. Physical Review Letters,2007,99:216802
    [141] Warta W. and Karl N., Hot holes in naphthalene: High electric-field-dependentmobilities [J]. Physical Review B,1985,32:1172–1182
    [142] Zvyagin I. P. On the Theory of hopping transport in disordered semiconductors [J].Physica Status Solidi (b),1973,58:443–449
    [143] Buck R. P., Electron hopping in one dimension: mixed conductor membranes [J]. TheJournal of Physical Chemistry,1988,92:4196–4200
    [144] Saveant J. M., Electron hopping between localized sites: coupling with electroin activecounterion transport [J]. The Journal of Physical Chemistry,1988,92:1011–1013
    [145] Rakhmanova S. V. and Conwell E. M. Electric-field dependence of mobility inconjugated polymer films [J]. Applied Physics Letters,2000,76:3822
    [146] Gu R. Y., Wang Z. D. and Ting C. S., Theory of electric-field-induced metal-insulatortransition in doped manganites [J]. Physical Review B,2003,67:153101
    [147] Zheng X. J., He L., Zhou Y. C., et al. Effects of europium content on themicrostructural and ferroelectric properties of Bi4-xEuxTi3O12thin films [J]. AppliedPhysics Letters,2006,89:252908
    [148] Liu X. Y., Xu W., Foiles S. M., et al. Atomistic studies of segregation and diffusion inAl-Cu grain boundaries [J]. Applied Physics Letters,1998,72:1578
    [149] Foiles S. M., Calculation of grain-boundary segregation in Ni-Cu alloys [J]. PhysicalReview B,1989,40:11502–11506
    [150] Chmielarz L., Ku trowski P., Rafalska-asocha A., et al. Influence of Cu, Co and Nications incorporated in brucite-type layers on thermal behaviour of hydrotalcites andreducibility of the derived mixed oxide systems [J]. Thermochimica Acta,2002,395:225–236
    [151] Petitto S. C., Langell M. A.,Cu2O(110) formation on Co3O4(110) induced by copperimpurity segregation [J]. Surface Science,2005,599:27–40
    [152] Stefanov P., Avramova I., Stoichev D. Characterization and catalytic activity ofCu–Co spinel thin films catalysts [J]. Applied Surface Science,2005,245:65–72
    [153] Kin O. L., Frank R. S., Electromagnetic properties of gel-derived Ni-Cu-Zn ferrites [J].Journal of Magnetism and Magnetic Materials,2002,246:30–35
    [154] Nobre M. A. L. and Lanfredi S., New evidence of grain boundary phenomenon inZn7Sb2O12ceramic: an analysis by impedance spectroscopy [J]. Materials Letters,2001,50:322–327
    [155] Song S. G., Ling Z., Placido F., Impedance analysis of Mn-Co-Cu-O NTC ceramic [J].Materials Research Bulletin,2005,40:1081–1093
    [156] Groen W.A., Metzmacher C., Huppertz P., et al. Aging of NTC Ceramics in the SystemMn-Ni-Fe-O [J]. Journal of Electroceramics,2001,7:77-87
    [157] Yuan C. L., Liu X. Y., Yang Y., et al. Negative temperature coefficient thermistor basedon BaFexSn1-xO3-εsolid solutions [J]. Journal of Materials Science,2010,45:2681–2687
    [158] Zhang H. M., Chang A. M., Peng C.W., Preparation and characterization of Fe3+dopedNi0.9Co0.8Mn1.3-xFexO4(0≤x≤0.7) negative temperature coefficient ceramic materials[J]. Microelectronic Engineering,2011,88:2934-2940
    [159] Khandale A.P., Bhoga S.S., Combustion synthesized Nd2-xCexCuO4(x=0–0.25) cathodematerials for intermediate temperature solid oxide fuel cell applications [J]. Journal ofPower Sources,2010,195:7974-7982
    [160] Nobre M. A. L., Lanfredi S., Negative temperature coefficient thermistor based onBi3Zn2Sb3O14ceramic: An oxide semiconductor at high temperature [J]. AppliedPhysics Letters,2003,82:2284-2286
    [161] Moure C., Fernandez J.F., Villegas M., et al. Non-Ohmic Behaviour and SwitchingPhenomena in YMnO3Based Ceramic Materials [J]. Journal of the European CeramicSociety,1999,19:131-137
    [162] Zhang B., Zhao Q., Chang A. I., et al. Complex impedance analysis of (Y2O3+CeO2)–YCr0.5Mn0.5O3composite NTC ceramics [J]. Journal of Alloys and Compounds,2012,512:132-139
    [163] Philip J., Kutty T. R. N., Colossal magnetoresistance of oxide spinels, CoxMn3-xO4[J].Materials Letters,1999,39:311-317
    [164] Gutierreza D., Pe ab O., Durana P., et al. Crystal structure, electrical conductivity andSeebeck coefficient of Y(Mn Ni)O3solid solution [J]. Journal of the European CeramicSociety,2002,22:567-572
    [165] Moeckly B. H., Lathrop D. K. and Buhrman R. A. Electromigration study of oxygendisorder and grain-boundary effects in YBa2Cu3O7-δthin films [J]. Physical Review B,1993,47:400–417
    [166] Dimos D., Chaudhari P., Mannhart J. et al. Orientation dependence of grain-boundarycritical currents in YBa2Cu3O7-δbicrystals [J]. Physical Review Letter,1988,61:219–222
    [167] Palumbo G., Lehockey E. M. and Lin P., Applications for grain boundary engineeredmaterials [J]. Jomjournal of the Minerals, Metals and Materials Society,1998,50:40-43
    [168] Forsythp. J. E., KING R., Metcalfe G. J., et al. Grain boundaries in metals [J].Nature,1946,158:875-876
    [169] Monzen R., Sumi Y. J., Determination of activation energy for nanometre-scalegrain-boundary sliding in copper [J]. Philosophical Magazine A,1994,70:805-817
    [170] Monzen R., Futakuchi M., Kitagawa K. et al. Measurement of grainboundary sliding of
    [011] twist boundaries in copper by electron microscopy [J]. Acta Metallurgica etMaterialia,1993,41:1643-1646
    [171] Tan X. L., Shang J. K., In-situ transmission electron microscopy study ofelectric-field-induced grain-boundary cracking in lead zirconate titanate [J].Philosophical Magazine A,2002,82:1463-1478
    [172] Chiang Y.M., Kingery W. D., Levinson L. M., Compositional changes adjacent to grainboundaries during electrical degradation of a ZnO varistor [J]. Journal of AppliedPhysics,1982,53:1765-1768
    [173] Adams T. B., Derek C., Sinclair, et al. Characterization of grain boundary impedancesin fine-and coarse-grained CaCu3Ti4O12ceramics [J]. Physical Review B,2006,73:094124
    [174] Vojta A., Wen Q.Z., Clarke D. R. Influence of microstructural disorder on the currenttransport behavior of varistor ceramics [J]. Computational Materials Science,1996,6:51–62
    [175] Iribarren A., Castro-Rodríguez R., Sosa V., et al. Modeling of the disorder contributionto the band-tail parameter in semiconductor materials [J]. Physical Review B,1999,60:4758–4762
    [176] Rulis P., Chen J., Ching W. Y. et al. Electronic structure and bonding of intergranularglassy films in polycrystalline Si3N4: Ab initio studies and classical moleculardynamics simulations [J]. Physical Review B,2005,71:235317
    [177] Roy B., Das S., Magnetic cluster glass behavior and grain boundary effectinNd0.7Ba0.3MnO3nanoparticles [J]. Journal of Applied Physics,2008,104:103915
    [178] Chirgui A. M., Zouaoui M., Azzouz F. B., et al. Electron localization induced bygrainboundarydisorder in the normal state of high-Tcsuperconductors [J]. Solid StateCommunications,2003,25:71–76
    [179] Liu X. D., Jiao Z. K., Nakamura K. K. C., et al. The grain size dependence of theresistance behaviors in doped lanthanum manganite polycrystalline films [J]. Journal ofApplied Physics,2000,87:2431
    [180] Harusa G. I., Ponomareva A. I., Charikovaa T. B., et al. The interplay ofsuperconductivity and localization in Nd2xCexCuO4+δsingle crystal films [J]. PhysicaC: Superconductivity,2002,383:207–213
    [181] Siegrist T., Jost P., Volker H. et al. Disorder-induced localization in crystallinephase-change materials [J]. Nature Materials,2011,10:202-208
    [182] Gritsynaa V. T, Afanasyev-Charkin I. V., Kobyakov V. A., et al. Neutron irradiationeffects in magnesium-aluminate spinel doped with transition metals [J]. Journal ofNuclear Materials,2000,283-287(2):927–931
    [183] Gasperin M., Saine M.C., Kahn A., et al. Influence of M2+ions substitution on thestructure of lanthanum hexaaluminates with magnetoplumbite structure [J]. Journal ofSolid State Chemistry,1984,54:61-69
    [184] Gritsyna V.T., Afanasyev-Charkin I.V., Kobyakov V.A., et al. Charge carrierrearrangement in spinel crystals irradiated at low temperatures [J]. Nuclear Instrumentsand Methods in Physics Research Section B: Beam Interactions with Materials andAtoms,2000,166-167:244-249
    [185] Singh D. J., Gupta M., Gupta R., First-principles investigation of MnFe2O4[J]. PhysicalReview B,2002,65:064432
    [186] Millis A. J., Shraiman B. I., and Mueller R., Dynamic Jahn-Teller effect and colossalmagnetoresistance in La1-2xSrxMnO3[J]. Physical Review Letters,1996,77:75-178
    [187] Kim K. H., Gu J. Y., Choi H. S., et al. Frequency shifts of the internal phonon modes inLa0.7Ca0.3MnO3[J]. Physical Review Letters,1996,77:1877-1880
    [188] Jaime M., Hardner H. T., Salamon M. B., et al. Hall-effect sign anomaly andsmall-polaron conduction in La1-xGdx+0.67Ca0.33MnO3[J]. Physical Review Letters,1997,78:951-954
    [189] Sage M. H., Blake G. R., and Palstra T. T. M., Insulator-to-metal transition in(R,Ca)VO3[J]. Physical Review B,2008,77:155121
    [190] Lanzara A., Saini N. L., Brunelli M., et al.Crossover from Large to Small polaronsacross the metal-insulator transition in manganites [J]. Physical Review Letters,1998,81:878-881
    [191] Viret M., Ranno L., and Coey J. M. D., Magnetic localization in mixed-valencemanganites [J]. Physical Review B,1997,55:8067-8070

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700