用户名: 密码: 验证码:
长期轮作施肥对棕壤氮素形态转化及其供氮特征的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤氮素是土壤肥力的重要组成部分和作物氮素营养的主要来源。多数土壤氮素不能满足作物的生长需求,要靠施肥来予以补充和调节。但盲目、不合理的施用肥料,不仅造成肥料的大量浪费、经济效益下降,还会带来一系列的环境问题。了解土壤的供氮能力,合理施肥则是提高氮肥利用率、减少环境污染、提高作物产量和品质的基本途径。本文从当前生产实际出发,结合沈阳农业大学棕壤长期定位试验,深入系统地研究经过29年长期轮作施肥,不同施肥处理对棕壤各形态氮素含量分布特征、有机氮矿化特征以及土壤供氮能力的影响,探讨长期轮作施肥条件下棕壤氮素的演变规律和供氮机理,为棕壤氮素养分资源的高效利用提供理论依据。主要研究结果如下:
     1.经过29年长期不同施肥,耕层(0~20 cm)土壤有机质、全氮、碱解氮、无机态氮(硝态氮、交换性铵、固定态铵)和微生物量氮含量变化明显。各指标总的变化趋势为高量有机肥区>低量有机肥区>化肥区>无肥区,其中高量有机肥和化肥配合施用效果最好。土壤有机质、全氮、碱解氮、无机态氮含量的剖面分布规律均为随土层的加深逐渐降低,而固定态铵的剖面分布则呈相反趋势。
     2.长期施肥能明显影响耕层土壤有机氮各组分的含量,尤对氨基酸态氮影响最为显著。总的分布趋势为氨基酸态氮>非酸解态氮>酸解氨态氮>酸解未知态氮>氨基糖态氮。其中酸解有机氮各组分含量随土层的加深而降低,各层次变化规律为有机无机肥配施处理>单施有机肥处理>单施化肥处理和CK处理,而非酸解态氮在各土层中则表现出无序性。
     3.在两个轮作周期中,土壤各氮素指标的含量均表现为玉米年份>大豆年份。
     4.一级动力学方程(One pool模型)能很好地描述棕壤(0~60 cm土层)有机氮的矿化过程,且由One pool模型拟合得出的矿化参数能够表达土壤有机氮的矿化特征。
     5.长期施肥能显著增加耕层(0~20 cm)土壤氮素矿化势值。其变化规律为高量有机肥区>低量有机肥区>化肥区>CK>试验前(1979年),以高量有机肥配施化肥的效果最好,土壤供氮潜能最大。不同施肥处理土壤氮矿化势随土层的加深而骤减,且各土层间差异显著。
     6.土壤氮矿化势(N_0)与土壤有机氮组分含量之间关系十分密切,其中以氨基酸态氮对土壤氮矿化势的直接贡献最大,其它有机氮组分则表现为通过氨基酸态氮的间接贡献。此外,土壤全氮也是影响土壤氮素矿化势的重要因素。
     7.土壤中各氮素指标与作物吸氮量、产量之间均达1%极显著水平,说明土壤中各形态氮在评价土壤供氮水平上均表现出一定的作用。其中以土壤氮素矿化势、可矿化氮、碱解氮三个指标能更好地评价土壤的供氮水平。
     8.土壤供氮量的大小顺序为高量有机肥区>低量有机肥区>化肥区>CK,以高量有机肥配施化肥的效果最好。且呈上高下低的特点,即随土层深度的增加而迅速降低。耕层(0~20 cm)土壤供氮能力较强,且深层土壤的供氮能力也不容忽视。
     总之,长期有机无机肥配施,尤其是高量有机肥配施化肥处理,是维持土壤肥力最优的施肥方式。它可以显著提高土壤各形态氮素含量,进而影响了土壤氮素矿化势,达到改善土壤供氮能力的目的。因此,农业生产中在重视有机物料投入的同时,还应注意其与无机肥料的搭配使用。
     本文首次对长期定位试验棕壤的供氮特性进行了全面系统地研究,其结果丰富了我国土壤氮素的研究,对于科学合理地制定施肥方案、保障环境及农产品安全具有特殊重要的意义。
The soil nitrogen is the important component of soil fertility and the main source of crop's nitrogen nutrition. Most soil nitrogen cannot meet the crop growth needs, it depends on fertilization to complement and adjust. But the unreasonable use of fertilizer not only cause the vast waste and the decline of economic benefit but also bring a series of environmental problems. The basic approach of improving the nitrogen use efficiency, decreasing environmental pollution and raising crop's yield is the understanding of the supplying nitrogen capacity and reasonable fertilization. According to the current actual situation, different fertilization treatments were used in a long-term fertilizer location experiment of Shenyang Agricultural University. After 29 years of long-term rotation and fertilization, the effect of different fertilization treatments on the distribution of N content, the mineralization of organic N and soil N supplying capacity were studied; The developing law and the supplying mechanism of soil N were discussed under long-term rotation and fertilization. They provide a theoretical basis for the utilization of N nutrient resource in brown soil. The main results as follows:
     1. After 29 years of long-term fertilization, the concentration of organic matter, total N, alkali hydrolyze N, inorganic N ( NO_3~--N, exchangeable NH_4~+-N, fixed ammonium ) and SMBN in topsoil ( 0~20 cm) differed significantly at P<0.01. The general trend of soil N indexes was high level of organic manure treatment >low level of organic manure treatment > fertilizer treatment > control, expecially applying the higher level organic manure and inorganic fertilizer has the best effect. With the soil layers deeper, the concentration of soil organic matter, total N, alkali hydrolyze N, inorganic N reduced gradually, but the distribution of soil fixed ammonium was contrary trend.
     2. Long-term fertilization could increase the contents of soil organic N forms, especially the content of amino acid N. The general trend of organic N forms was amino acid N >non-hydrolysable N > ammonia N > hydrolysable unidentified N > amino sugar N. The distributions of acid hydrolysable organic N forms decreased with layers' depth. The basic rule was organic-inorganic fertilizer treatment > single organic manure fertilizer treatment > single inorganic fertilizer treatment and the control. Non-hydrolysable N in each soil layers appeared out-of-order.
     3. In two rotation cycles, the concentration of each soil nitrogen indexes always showed the corn year >the soybean year.
     4. First-order kinetic equation (One pool model) could preferably described the mineralized process of brown soil ( 0~60 cm soil layer) organic N, and the parameters which were fitted by one pool model expressed the mineralization characteristics of soil organic N.
     5. Long-term fertilization could significantly increase the N mineralization potential of topsoil. The trend of soil N mineralization potential was high level of organic manure treatment >low level of organic manure treatment >fertilizer treatment >control >soil before the trial, expecially applying the higher level organic manure and inorganic fertilizer had the best effect and the biggest capacity on N supplying. With the soil layers deeper, the concentration of soil N mineralization potential had a sudden decrease and the different soil layers differed significantly.
     6. Soil N mineralization potential was correlated with soil organic N forms intimately. Amino acid N had the biggest direct contribution to N mineralization potential, and other components made indirect contribution through amino acid N. In addition, soil total N was also an important effect factor for soil N mineralization potential.
     7. Every soil N indexes were significantly correlated with crop yield and sorption contents of crop at P<0.01. It indicated that soil N forms had certain effects on assessing the N supplying level, especially N mineralization potential, mineralized N, alkali hydrolyze N.
     8. The sequence of soil N supplying amount was high level of organic manure treatment >low level of organic manure treatment > fertilizer treatment >control,expecially applying the higher level organic manure and inorganic fertilizer had the best effect. With the soil layers deeper, the amount of soil N supplying dropped fast. The topsoil had the stronger N supplying capacity, and that of the subsoil should not be ignored.
     In short, long-term fertilization of organic and inorganic, expecially applying the higher level organic manure and inorganic fertilizer, is considered the best way for maintaining the soil fertility. It can significantly improve the concentration of soil N forms, which affects soil N mineralization potential, in order to improve the capacity of soil N supplying. Therefore, we should attach importance to applying organic manure in agricultural production and pay attention to the combination of organic manure and inorganic fertilizer.
     It is the first time to study roundly N supplying characteristics of brown soil under long-term location experiment. The results enrich the theoretical study of soil N, and have great significance for forming fertilization programs, protecting environment and products safety.
引文
[1]艾娜,周建斌,杨学云,等.2008.长期施肥及撂荒对土壤氮素矿化特征及外源硝态氮转化的影响[J].应用生态学报,19(9):1937-1943.
    [2]艾应伟.2008.土壤生态系统氮素循环[M].北京:化学工业出版社.
    [3]陈安磊,王凯荣,谢小立,等.2007.长期有机养分循环利用对红壤稻田土壤供氮能力的影响[J].植物营养与肥料学报,13(5):838-843.
    [4]陈新平,周金池,王兴仁,等.1997.应用土壤无机氮测试进行冬小麦氮肥推荐的研究[J].土壤肥料,(5):19-21.
    [5]蔡贵信,张绍林,朱兆良.1979.测定稻田土壤氮素矿化过程的淹水密闭培养法的条件试验[J].土壤,(6):234-240.
    [6]党亚爱,李世清,王国栋.2007.黄土高原典型土壤矿物固定态铵变化的南北差异[J].植物营养与肥料学报,13(5):831-837.
    [7]董炳友,高淑英,吕正文.2002.不同施肥措施对连作大豆的产量及土壤pH值的影响[J].黑龙江八一农垦大学学报,14(4):19-21.
    [8]杜建军,李生秀.1998.不同肥水条件对旱地土壤供氮能力的影响[J].西北农业大学学报,26(6):1-5.
    [9]杜建军,王新爱,王夏晖,等.2005.旱地土壤氮素、有机质状况及与作物吸氮量的关系[J].华南农业大学学报,26(1):11-15.
    [10]富东英,田秀平,薛菁芳,等.2005.长期施肥与耕作对白浆土有机态氮组分的影响[J].农业环境科学学报,24(6):1127-1131.
    [11]付会芳,李生秀.1992.土壤氮素矿化与土壤供氮能力II矿化氮量与作物吸氮量的关系[J].西北农业大学学报(增刊),20:53-58.
    [12]付会芳,张兴昌.1997.旱地土壤氮素矿化的动力学研究[J].干旱区资源与环境,11(1):53-57.
    [13]高亚军,黄东迈,朱培立,等.2000.稻麦轮作条件下长期不同土壤管理对氮素肥力影响[J].土壤学报,37(4):456-463.
    [14]葛旦之,苏国栋,严民建.1991.红黄泥土壤供氮特性的研究.Ⅲ土壤供氮量的预测[J].湖南农学院学报(增刊),17:282-287.
    [15]古巧珍,杨学云,孙本华,等.2003.旱地塿土长期定位施肥土壤剖面硝态氮分布与累积研究[J].干旱地区农业研究,21(4):48-52.
    [16]韩晓日,陈恩凤,郭鹏程.1995.长期施肥对作物产量及土壤氮素肥力的影响[J].土壤通报,26(60):244-246.
    [17]韩晓日,邹德乙,郭鹏程,等.1996.长期施肥条件下土壤微生物量氮的动态及其调控氮素营养的作用[J].植物营养与肥料学报,2(1):17-23.
    [18]韩晓日,郭鹏程,陈恩凤,等.1997.长期不同施肥对氮肥利用率的影响[J]_土壤肥料,(5):12-15.
    [19]韩晓日,郭鹏程,陈恩凤,等.1998a.土壤微生物对施入肥料氮的固持及其动态研究[J].土壤学报,35(3):412-419.
    [20]韩晓日,郭鹏程,陈恩凤,等.1998b.长期施肥对土壤固定态铵含量及其有效性影响[J].植物营养与肥料学报,4(1):29-36.
    [21]郝金菊,陈钦华,周卫军,等.2007.红壤丘陵坡地不同利用方式的土壤氮矿化特征[J].土壤通报,38(1):29-33.
    [22]郝晓晖,肖宏宇,苏以荣,等.2007.长期不同施肥稻田土壤的氮素形态及矿化作用特征[J].浙江大学学报(农业与生命科学版),33(5):544-550.
    [23]贺发云,尹斌,蔡贵信,等.2005.菜地和旱作粮地土壤氮素矿化和硝化作用的比较[J].土壤通报,36(1):41-44.
    [24]胡道龙,崔骁勇,王艳杰,等.2008.京郊保护地土壤氮素矿化研究[J].华北农学报,23(5):214-218.
    [25]胡田田,李生秀,郝乾坤.2000.早地土壤矿质氮和可矿化氮与土壤供氮能力的关系[J].水土保持学报,14(4):83-86,103.
    [26]黄东迈,朱培立.1986.有机氮各化学组分在土壤中的转化[J].江苏农业学报,2(2):17-25.
    [27]黄东迈,朱培立,王志明.2002.耕作土壤有机态氮内循环中几个问题的商榷[J].土壤学报,39:100-108
    [28]黄顺红,张杨珠,吴明宇,等.2005.湖南省主要稻田土壤的固定态铵含量与最大固铵容量[J].土壤,37(5):500-505.
    [29]姬景红.2008.不同灌溉方法灌溉对保护地土壤供氮特征影响的研究[D].沈阳:沈阳农业大学,博士学位论文.
    [30]金发会,李世清,卢红玲,等.2008.黄土高原不同土壤微生物量碳氮与氮素矿化势的差异[J].生态学报,28(1):227-236.
    [31]巨晓棠,李生秀.1993.旱地土壤供氮能力研究的进展[J].干旱地区农业研究,11(3):43-48.
    [32]巨晓棠,李生秀.1997.培养条件对土壤氮素矿化的影响[J].西北农业学报,6(2):64-67.
    [33]巨晓棠,边秀举,刘学军,等.2000.旱地土壤氮素矿化参数与氮素形态的关系[J].植物营养与肥料学报,6(3):251-259.
    [34]巨晓棠,刘学军,张福锁.2003.冬小麦/夏玉米轮作体系中土壤氮素矿化及预测[J].应用生态学报,14(12):2241-2245.
    [35]巨晓棠,刘学军,张福锁.2004.长期施肥对土壤有机氮组成的影响[J].中国农业科学,37(1):87-91.
    [36]孔宏敏.2003.退化红壤旱地肥力重建的研究[D].南京:中国科学院南京土壤研究所,硕士学位论文
    [37]李东坡,陈利军,武志杰,等.2004.不同施肥黑土微生物量氮变化特征及相关因素[J].应用生态学报,15(10):1891-1896.
    [38]李海波,韩晓增,王风.2007.长期施肥条件下土壤碳氮循环过程研究进展[J].土壤通报,38(2):384-388.
    [39]李慧琳,韩勇,蔡祖聪.2004.上海地区水稻土氮素矿化及其模拟[J].土壤学报,41(4):503-510.
    [40]李菊梅.2001.土壤氮素矿化特征的研究[D].杨凌:西北农林科技大学,博士学位论文.
    [41]李菊梅,王朝辉,李生秀.2003a.有机质、全氮和可矿化氮在反映土壤供氮能力方面的意义[J].土壤学报,40(2):232-238.
    [42]李菊梅,李生秀.2003b.可矿化氮与各有机氮组分的关系[J].植物营养与肥料学报,9(2):158-164.
    [43]李丽霞,郝明德,彭令发.2003.黄土区人工牧草地有机氮组分变化的研究[J].水土保持研究,10(1):55-57,84.
    [44]李生秀,K.A.Smith.1988.关于土壤氮素矿化势作为有效氮指标的研究[J].西北农业大学学报,16(3):29-35.
    [45]李生秀,付会芳,哀虎林,等.1990a.几种反映旱地土壤供氮能力的方法的比较[J].土壤,22(4):194-197.
    [46]李生秀.1990b.关于土壤供氮指标的研究.Ⅰ对几种测定土壤供氮能力方法的评价[J].土壤学报,27(3):233-240.
    [47]李生秀,付会芳,肖俊璋,等.1992.几种测氮方法在反映旱地土壤供氮能力方面的效果[J].干旱地区农业研究,10(2):72-81.
    [48]李生秀,高亚军,胡田田,等.1993.旱地土壤的合理施肥.Ⅶ旱地土壤起始矿质氮与玉米对氮肥的反应[J].干旱地区农业研究,11(增刊):35-39.
    [49]李世清,李生秀,邵明安,等.2004.半干旱农田生态系统长期施肥对土壤有机氮组分和微生物体氮的影响[J].中国农业科学,37(6):859-864.
    [50]李晓欣,胡春胜,程一松.2003.不同施肥处理对作物产量及土壤中硝态氮累积的影响[J].干旱地区农业研究,21(3):38-42.
    [51]李忠佩,程励励,文启孝.1992.黄淮海平原土壤中的固定态铵[J].土壤通报,23(5):200-202.
    [52]林葆,林继雄,李家康.1994.长期施肥的作物产量和土壤肥力变化[J].植物营养与肥料学报,(1):6-18.
    [53]林葆.1998.中国农业资源与环境可持续发展的探讨[M].沈阳:辽宁科技出版社,197-120.
    [54]林家芬,李子驰,张爱华,等.1973.长期连用同样肥料对于土壤化学性质与稻谷数量影响[J].台湾农业,22:241-262.
    [55]梁国庆,林葆,林继雄,等.2000.长期施肥对石灰性潮土氮素形态的影响[J].植物营养与肥料学报,6(1):3-10.
    [56]刘恩科,赵秉强,胡昌浩,等.2004.长期不同施肥制度对玉米产量和品质的影响[J].中国农业科学,37(5):711-716.
    [57]刘世全,高丽丽,蒲玉琳,等.2004.西藏土壤有机质和氮素状况及其影响因素分析[J].水土保持学报,18(6):54-67.
    [58]刘树堂,刘培利,迟睿,等.2005.长期定位施肥对无石灰性潮土0-100cm土层NO_3~--N动态变化的影 响[J].水土保持研究,12(5):153-155.
    [59]刘晓宏,郝明德,樊军.2000.黄土高原旱区长期不同轮作施肥对土壤供氮能力的影响[J].干旱地区农业研究,1 8(3):1-6.
    [60]吕珊兰,杨熙仁,张耀东,等.1996.山西土壤氮矿化势与供氮量的预测[J].中国农业科学,29(1):21-26
    [61]吕殿青,同延安,孙本华.1998.氮肥施用对环境污染影响的研究[J].植物营养与肥料学报,4(1):8-15.
    [62]卢红玲,李世清,金发会,等.2008.黄土高原石灰性土壤长期间隙淋洗淹水培养下的氮素矿化过程及其模拟[J].中国农业科学,41(10):3140-3148.
    [63]鲁彩燕,牛明芬,陈欣,等.2007.不同施肥制度培育土壤氮矿化势与供氮潜力[J].辽宁工程技术大学学报,26(5):773-775.
    [64]鲁如坤等著.1998.土壤-植物营养学[M].北京:化学工业出版社.
    [65]鲁如坤.2000.土壤农业化学分析方法[M].北京:中国农业科技出版社.
    [66]陆景陵.1994.植物营养学(上)[M].北京:北京农业大学出版社.
    [67]马红星,刘春梅,徐义刚.2008.长期不同施肥处理对连作玉米产量和土壤养分变化的影响[J].现代化农业,6:23-25.
    [68]马正华,宋维秀,魏国良.2002.菜地土壤有机肥转化试验[J].青海大学学报,20:10-12.
    [69]穆兴民,樊小林.1999.土壤氮素矿化的生态模型研究[J].应用生态学报,10(1):114-118.
    [70]彭令发,郝明德,来璐.2003a.长期施肥对土壤有机氮影响研究Ⅰ氮肥及其配施下土壤有机氮组分变化[J].水土保持研究,10(1):53-54.
    [71]彭令发,郝明德,来璐.2003b.土壤有机氮组分及其矿化模型研究[J].水土保持研究,10(1):46-49,70.
    [72]彭宇,易建华,蒲文宣,等.2006.长期稻草还田对烟田土壤氮素矿化特征的影响[J].中国农学通报,22(10):230-233.
    [73]丘华昌,陈家宙.1995.旱地土壤的供氮潜力[J].植物营养与肥料学报,1(2):33-39.
    [74]沈其荣,史瑞和.1990.不同土壤有机氮的化学组分及其有效性的研究[J].土壤通报,21(2):54-57.
    [75]沈善敏.1995.长期土壤肥力试验的科学价值[J].植物营养与肥料学报,1(1):1-9.
    [76]施书莲,文启孝,廖海秋,等.1992.耕垦对土壤氮素形态分布和氨基酸组成的影响[J].土壤,24(1):14-18.
    [77]史蒂文森等著,闵九康等译.1989.农业土壤中的氮[M].北京:科学出版社.
    [78]史吉平,张夫道,林葆2002.长期定位施肥对土壤腐殖质含量的影响[J].土壤肥料,(1):15-20.
    [79]宋琦.1988.我国几种土壤的有机氮组成和性质的研究[J].土壤学报,25(1):95-110.
    [80]宋永林,袁锋明,姚造华.2002.化肥与有机物料配施对作物产量及土壤有机质的影响[J].华北农学报,17(4):73-76.
    [81]孙成斌.2002.什么形态的氮容易被作物吸收[J].化学教育,(5):3-5.
    [82]孙聪姝,王宏燕,王兆荣,等.1998.长期培肥定位试验耗竭阶段各培肥物质对土壤有机质持续效应的研究[J].东北农业大学学报,29(1):11-29.
    [83]孙艳,张英莉.1991.不同施肥条件下塿土中固定态按的含量及其有效性[J].土壤通报,22(4):160-161,156.
    [84]孙玉焕,张杨珠.2002.土壤固定态铵的研究进展[J].湖南农业大学学报,28(2):171-176.
    [85]隋跃宇,张兴义,焦晓光,等.2005.长期不同施肥制度对农田黑土有机质和氮素的影响[J].水土保持学报,19(6):190-192,200.
    [86]隋跃宇,焦晓光,张兴义,等.2006.不同施肥制度对大豆生育期土壤微生物量的影响[J].土壤通报,37(5):894-896.
    [87]田茂洁.2004.土壤氮素矿化模型研究进展[J].四川环境,23(4):37-42..
    [88]田秀萍,向春阳,于连波.1996.北方淹育水稻土中残留有机氮组分的研究[J].现代化农业,(7):12-13.
    [89]田秀萍,徐秋玲,高淑英,等.1997.北方淹育水稻土速效氮的研究[J].黑龙江八一农垦大学学报,9(4):8-12.
    [90]田秀萍,关连珠,须湘成,等.1998.北方淹育水稻土不同施肥处理氮矿化位势的研究[J].土壤通报,29(5):209-211.
    [91]田秀平,薛菁芳,韩晓日.2007a.长期耕作和施肥对白浆土氮素矿化的影响[J].土壤,39(2):314-317.
    [92]田秀平,薛晶芳,韩晓日.2007b.土壤中各形态氮与玉米吸氮量关系的研究[J].天津农学院学报,14(1):9-12.
    [93]万素梅,韩清芳,胡守林,等.2008.黄土高原半湿润区苜蓿草地土壤氮素消耗特征研究[J].植物营养与肥料学报,14(1):84-89.
    [94]王家玉,王胜佳.1996.稻田土壤中氮素淋失的研究.土壤学报,33(1):28-36.
    [95]王克鹏,张仁陟,索东让.2008.长期施肥对河西灌漠土有机氮组分的影响[J].生态环境,17(2):699-703.
    [96]王霖晓,沈阿林,寇长林,等.2007.小麦-玉米轮作下有机肥与氮肥配施对土壤微生物量氮及作物氮利用的影响[J].河南农业科学,(6):96-100.
    [97]王瑞军,李世清,张兴昌,等.2004.西北地区不同生态系统几种土壤有机氮组分和微生物体氮的差异[J].干旱地区农业研究,22(4):21-27.
    [98]王胜佳,陈义,李实烨.2002.多熟制稻田土壤有机质平衡的定位研究[J].土壤学报,39(1):9-15.
    [99]王维进,李仁岗.1991.河北平原土壤有效氮测定方法评价[J].土壤通报,22(6):263-267.
    [100]王岩,蔡大同,史瑞和.1993.肥料残留氮的有效性及其与形态分布的关系[J].土壤学报,30(1):19-25.
    [101]王艳杰,邹国元,付桦,等.2005.土壤氮素矿化研究进展[J].中国农学通报,21(10):203-208.
    [102]王艳杰.2006.京郊保护地土壤氮素矿化过程[D].北京:首都师范大学,硕士学位论文.
    [103]王英.2001.作物根茬对土壤肥力及小麦产量的影响[J].中国农学通报,17(4):47-48.
    [104]万大娟.2003.湖南省主要旱耕地土壤固定态铵的研究[D].湖南:湖南农业大学,硕士学位论文.
    [105]文启孝.1984.土壤有机质研究法[M].北京:农业出版社.
    [106]文启孝,程励励,陈碧云.2000.我国土壤中的固定态铵.土壤学报,37(2):145-156
    [107]吴金水,郭胜利,党廷辉.2003.半干旱区农田土壤无机氮积累与迁移机理[J].生态学报,23(10):2041-2049.
    [108]武冠云.1986.土壤有机氮的形态、分布及其易分解性[J].土壤通报,17(2):90-95.
    [109]武俊喜.2003.冬小麦夏玉米轮作体系中土壤供氮能力的研究[D].北京:中国农业大学,硕士学位论文.
    [110]武天云.2003.黄土高原和北美大平原主要农业土壤的有机碳性质和动态对比研究[D].兰州:兰州大学,博士学位论文.
    [111]肖敏.2006.长期施肥对土壤碳氮贮量及氮素矿化动力学的影响[D].北京:中国农业大学,硕士学位论文.
    [112]肖伟伟,范晓晖,杨林章,等.2007.长期施肥对黄土旱塬黑垆土有机氮和有机碳的影响[J].农业环境科学学报,26(2):672-675..
    [113]肖伟伟,范晓晖,杨林章,等.2008.长期施肥对太湖地区黄泥土有机氮和有机碳的影响[J].土壤,40(1):93-99.
    [114]向春阳,凌碧莹,关义新,等.2003.氮肥及基因型差异对玉米吸氮量的反应[J].中国农学通报,19(3):26-28.
    [115]徐明岗,秦道珠,邹长明,等.2002.湘南红壤丘陵区稻田土壤氮素供应特征的研究[J].土壤与环境,11(1):50-52.
    [116]徐阳春,沈其荣,茆泽圣.2002a.长期施用有机肥对土壤及不同粒级中酸解有机氮含量与分配的影响[J].中国农业科学,35(4):403-409.
    [117]徐阳春,沈其荣,冉炜.2002b.长期免耕与施用不同有机肥对土壤微生物生物量碳、氮、磷的影响[J].土壤学报,39(1):89-95.
    [118]徐阳春,沈其荣.2004.有机肥和化肥长期配合施用对土壤及不同粒级供氮特性的影响[J].土壤学报,41(1):87-92.
    [119]许春霞.1988.填土晶格固定态铵有效性试验[J].陕西农业科学,(2):21-23.
    [120]许艳华.2004.长期不同施肥对土壤氮素形态转化及其有效性的影响[D1.沈阳:沈阳农业大学,硕士学位论文.
    [121]闫德智,王德建.2005.土壤供氮能力研究方法进展[J].土壤,37(1):20-24.
    [122]杨江龙.2004.土壤有效氮测定方法的研究[D].杨凌:西北农林科技大学,硕士学位论文.
    [123]杨江龙,李生秀2005.土壤供氮能力测试方法与指标[J].土壤通报,36(6):959-964.
    [124]杨劲峰.2004.长期施肥对棕壤耕层碳氮含量及其有效性影响[D].沈阳:沈阳农业大学,博士学位论文.
    [125]杨路华,沈荣开,覃奇志.2003.土壤氮素矿化研究进展[J].土壤通报,34(6):569-571.
    [126]杨生茂,李凤民,索东让,等2005.长期施肥对绿洲农田生产力及土壤硝态氮积累的影响[J].中国农业科学,38(10):2043-2052.
    [127]叶优良,张福锁,李生秀.2001.土壤供氮能力指标研究[J].土壤通报.32(6):273-277.
    [128]宇万太,赵鑫,张璐,等.2007.长期施肥对作物产量的贡献[J].生态学杂志,26(12):2040-2044.
    [129]袁颖红,黄欠如,黄荣珍,等.2007.长期施肥对红壤土有机碳和全氮含量的影响[J].南昌工程学院学报,26(4):29-33.
    [130]赵琳,李世清,李生秀,等.2004.半干旱区生态过程变化中土壤硝态氮累积及其在植物氮素营养中的作用[J].干旱地区农业研究,22(4):14-20.
    [131]赵明宇,韩晓日,郭鹏程.1996.不同施肥条件下土壤固定态铵的动态变化[J].土壤通报,27(2):79-81.
    [132]赵晓宇.2008.寒地稻田土壤养分状况及供氮指标初探[D].吉林:东北农业大学,硕士学位论文
    [133]张爱君,张明普.2002.黄潮土长期轮作施肥土壤有机质消长规律的研究[J].安徽农业大学学报,29(1):60-63.
    [134]张崇玉,李生秀.2003.西部农业土壤固定态铵及影响因素的研究[J].干旱地区农业研究,21(2):54-58.
    [135]张夫道.1996.长期施肥条件下土壤养分的动态和平衡[J].植物营养与肥料学报,2(1):39-47.
    [136]张桂兰,宝德俊,王英,等.1999.长期施用化肥对作物产量和土壤性质的影响[J].土壤通报,30(2):64-67.
    [137]张金波,宋长春.2004.土壤氮素转化研究进展[J].吉林农业科学,29(1):38-43,46.
    [138]张俊清,朱平,张夫道.2004.有机肥和化肥配施对黑土有机氮形态组分及分布的影响[J].植物营养与肥料学报,10(3):245-249.
    [139]张仁陟,李增风,陶永红.1993.河西灌漠土壤氮素矿化势的研究[J].甘肃农业大学学报,28(3):261-264.
    [140]张旭东,须湘成,陈恩凤.1989.施用猪粪培肥土壤后土壤氨基酸含量的变化[J].土壤通报,20(6):260-262.
    [141]张英.2003.长期施肥对太湖地区黄泥土碳氮磷库特征及迁移性的影响[D].南京:南京农业大学,硕士学位论文.
    [142]张永帅,潘薇薇,郭金强,等.2007.不同肥力土壤氮素矿化与模拟[J].新疆农业科学,44(5):599-603.
    [143]张玉玲,张玉龙,虞娜,等.2008a.长期不同施肥对水稻土有机氮素矿化特性影响的研究[J].植物营养与肥料学报,14(2):272-276.
    [144]张玉玲,党秀丽,虞娜,等.2008b.辽河平原地区长期施肥水稻土氮素矿化及其模拟的研究[J].土壤通报,39(4):761-765.
    [145]张智猛,戴良香,张电学,等.2004.冬小麦一夏玉米轮作周期内碱解氮、硝态氮时空变化及施氮安全值的研究[J].土壤通报,35(1):38-42.
    [146]周鸣铮,于文涛,方樟法.1976.土壤速效氮的测定方法[J].土壤,5:316-323.
    [147]周卫军,王凯荣,刘鑫2004.有机物循环对红壤稻田土壤氮矿化的影响[J].生态学杂志,23(1):39-43.
    [148]朱兆良.1985.我国土壤供氮和化肥去向研究的进展[J].土壤,1:2-9.
    [149]朱兆良.1989.关于土壤氮素研究中的几个问题[J].土壤学进展,2:1-9.
    [150]朱兆良,文启孝.1992.中国土壤氮素[M].南京:江苏科技出版社.
    [151]朱兆良.2002.氮素管理与粮食生产和环境[J].土壤学报(增刊),39:3-11.
    [152]朱兆良.合理使用化肥充分利用有机肥发展环境友好的施肥体系[J].中国科学院院刊,2003,(2):89-93.
    [153]邹焱,苏以荣,路鹏.2006.洞庭湖区不同耕种方式下水稻土壤有机碳、全氮和全磷含量状况[J].土壤通报,37(4):671-674.
    [154]Addiscott T M.1983.Kinetics and temperature relationships of mineralization and nitrification in Rothamsted soils with differing histories[J].Euro.J.Soil Sci.,34(2):343-353.
    [155]Ajwa H A,Rice C W,Sotomayor D.1998.Carbon and nitrogen mineralization in tallgrass prairie and agricultural soil profiles[J].Soil Sci.Soc.Am.J.,62:942-951.
    [156]Azam F,Yousaf M,Hussain F et a/.1989.Determination of biomass N in some agricultural soils of Punjab,Pakistan[J].Plant and Soil,113:223-228.
    [157]Beauchamp E G,Reynolds W D,Brasche-villeneuve D et al.1986.Nitrogen mineralization kinetics with different soil pretreatments and cropping histories[J].Soil Sci.Soc.Am.J.,50(6):1478-1483.
    [158]Belay A,Claassens A S,Wehner F C.2002.Effect of direct nitrogen and potassium and residual phos-phorus fertilizers on soil chemical properties,microbial components and maize yield under long-term crop rotation[J].Biol.Fertil.Soil,35:420-427.
    [159]Benedetti A,Sebastiani G.1996.Determination of potentially mineralizable nitrogen in agricultural soil[J].Biol.Fertil.Soil,21(1/2):114-120.
    [160]Bergstrom L F,Kirchmann H.1999.Leaching of total nitrogen from nitrogen-15-1abeled poultry manure and inorganic nitrogen fertilizer[J].J.Environ.Qual.,28:1283-1290.
    [161]Bjarnason S.1987.Immobilization and remineralization of ammonium and nitrate after addition of different energy sources to soil[J].Plant and Soil,97:381-389.
    [162]Bridgham S D,Updegraff K,Pastor J.1998.Carbon,nitrogen,and phosphorus mineralization in northern wetlands[J].Ecology,79:1545-1561.
    [163]Bundy L G,Meisinger J J.1994.Nitrogen availability indices.In:Weaver R W et al.Methods of soil analysis.Madison,Wis:SSSA,951-984.
    [164]Buyanovsky G A,Wagner G H.1998.Changing role of cultivated land in the global carbon cycle[J].Biology and Fertility of Soils,27:242-245.
    [165]Cabrera M L.1993.Modeling the flush of nitrogen mineralization caused by drying and rewetting soils[J].Soil Sci.Soc.Am.J.,57:63-66.
    [166]Carter M R,Rennie D A.1982.Changes in soil quality under zero tillage farming systems:Distribution of microbial biomass and mineralization C and N potentials[J].Can.J.Soil Sci.,62:587-597.
    [167]Carter M R,Rennie D A.1984.Dynamics of soil microbial biomass N under zero and shallow tillage for spring wheat using ~(15)N urea[J].Plant and Soil,76:157-164.
    [168]Campbell C A,Schnitzer M,Stewart JWB et al.1986.Effect of manure and P fertilizer on properties of a black chernozem in southern Saskatchewan[J].Canadian Journal of Soil Science,66:601-614.
    [169]Campbell C A,Zentner R P,Knipfel J E et al.1991 .Thirty-year crop rotations and management practices effects on soil and amino nitrogen[J].Soil Sci.Soc.Am.J.,55:739-745.
    [170]Carpenter-Boggs L,Pikul J L,Vigil M F et al.2000.Soil nitrogen mineralization influenced by crop rotation and nitrogen fertilization[J].Soil Sci.Soc.Am.J.,64:2038-2045..
    [171]Christenson D R,Butt M B.1998.Nitrogen mineralization in soils from Michigan's Saginaw valley and Thumb region[J].Communications in Soil Science and Plant Analysis,29:2355-2363.
    [172]Cornfield A H.1960.Ammonia released on treating soils with N sodium hydroxide as a possible means of predicting the nitrogen-supplying power of soils[J].Nature,187: 260-261.
    [173]Craft C B,Chiang C.2002.Forms and amounts of soil nitrogen and phosphorus across a long- leaf pine-depressional wetland landscape[J].Soil Sci.Soc.Am.J.,66:1713-1721.
    [174]Dahnke W C,Johnson G V.1990.Testing soils for available nitrogen.7n:Westerman RLe( a/.Soil testing and plant analysis.Madison,Wis:SSSA,3rd ed.
    [175]Dalai R C.1989.Long-term effects of no-tillage,crop residue,and nitrogen application on properties of a vertisol[J].SoilSci.Am.J.,53:1511-1515.
    [176]Deans J R,Molina JAE,Clapp C E.1986.Models for predicting potentially mineralizable nitrogen and decomposition rate constants[J].Soil Sci.Soc.Am.J.,50:323-326.
    [177]Dou Z,Toth J D,Jabro J D.1995.Soil nitrogen mineralization during laboratory incubation: Dynamics and model fitting[J].Soil Biol.Biochem.,28:625-632.
    [178]Feigin A,Yaalon D H.1974.Non-exchangeable ammonium in soils of Israel and its relation to clay and parent materials[J].European Journal of Soil Sci.,25(3):384-397.
    [179]Fox T R.2004.Nitrogen mineralization following fertilization of Douglas-fir forests with urea in western Washington[J].Soil Sci.Soc.Am.J.,68:1720-1728.
    [180]Friedel J K,Scheller E.2002.Composition of hydrolysable amino acids in soil organic matter and soil microbial biomass[J].Soil Biol.Biochem.,34:315-325.
    [181]Goh K M.Edmeades d C.1970.Distribution and partial characterization of hydrolysable organic nitrogen in six New Zealand soil[J].Soil Biol.Biochem.,11:127-132.
    [182]Griffith S M,Sowden F J.Schnitzer M.1976.The alkaline hydrolysis of acid-resistant soil and humic acid residues[J].Soil Biol Biochem.8:529-531
    [183]Hanway J,Dumenil L.1955.Predicting nitrogen fertilizer needs of Iowa soils:Ⅲ.Use of nitrate production,together with other information as a basis for making nitrogen fertilizer recommendation for corn in Iowa[J].Soil Sci.Soc.Am.J.,19:77-80.
    [184]Harmsen G W,Lindenbergh D J.1949.Investigations on the nitrogen nutrition of plants I .A new method for the determination of nitrogen requirement of soils[J].Plant and Soil.,2:l-29.
    [185]Holmes W E,Zak D R.1994.Soil microbial biomass dynamics and net nitrogen mineralization in northen hardwood ecosystems[J].Soil Sci.Soc.Am.J.,58:238-243.
    [186]Ivarson K C,Schnitzer M.1979.The biodegradability of the "unknown" soil nitrogen[J].Can.J.Soil Sci.,59:59-67.
    [187]Janssen B H.1996.Nitrogen mineralization in relation to C/N ratio and decomposability of organic materials[J].Plant and Soil,181:39-45.
    [188]Jones D L,Owen A G,Farrar J.2002.Simple method to enable the high resolution determina- tion of total free amino acids in soil solutions and soil extracts[J].Soil Biol.Biochem.,34:1893-1902.
    [189]Jorgensen,S.E.1986.Fundamentals of Ecological Modelling.Elsevier Science Publishing Company Inc.,NewYork.pp.98-101.
    [190]Keeney D R,Bremner J M.1964.Effect of cultivation on the nitrogen distribution in soils[J].Soil Sci.Soc.Am.J.,28:653-656.
    [191]Keeney D R.1982.Nitrogen management for maximum efficiency and minimum pollution.Nitrogen in Agricultural Soil.Madison,Wis.Amer.Soc.Agron,Inc.605-649.
    [192]Kowalenko C G,Yu S.1996.Solution,exchangeable and clay-fixed ammonium in south coast British Columbia soils[J].Can.J.Soil Sci.,76:473-483.
    [193]Lindermann W C,Cardenas B M.1984.Nitrogen mineralization potential and nitrogen transformations of sludge-amended soil[J].Soil Sci.Soc.Am.J.,48:1072-1077.
    [194]Martens D A,Loeffelman K L.2003.Soil amino acid composition quantified by acid hydrolysis and anion chromatography-pulsed amperometry[J].J.Agric.Food Chem.,51(22):6521-6529.
    [195]Martens D A,Jaynes D B,Colvin T S et al.2006.Soil organic nitrogen enrichment following soybean in an Iowa corn-soybean rotation[J].Soil Sci.Soc.Am.J.,70:382-392.
    [196]Matus F J,Rodriguez J.1994.A simple model for estimating the contribution of nitrogen mineralization to the nitrogen supply of crops from a stabilized pool of soil organic matter and recent organic input[J].Plant and Soil,162(2):259-271.
    [197]Mikha M M,Rice C W,Benjamin J G.2006.Estimating soil mineralizable nitrogen under different management practices[J].Soil Sci.Soc.Am.J.,70:1522-1531.
    [198]Mulvaney R L,Khan S A,Hoeft RGe( al.2001.A soil organic nitrogen fraction that reduces the need for nitrogen fertilization[J].Soil Sci.Soc.Am.J.,65:l 164-1172.
    [199]Narteh L T,Sahrawat K L.2000.Ammonium in solution of flooded west African soils[J].Geoderma.,95:205-214.
    [200]Opuwaribo E,Odu CTI.1974.Fixed ammonium in Nigerian soils.I Selection of a method and amounts of native fixed ammonium[J].European Journal of Soil Science,25(2):256-264.
    [201]Paramasivam S,Breitenbeck G A.1994.Distribution of nitrogen in soils of the southern Mississippi River alluvial plain[J].Communications in soil science and plant analysis,25(3/4):247-267.
    [202]Patra D D,Bhandari S C,Misra A.1992.Effect of plant residues on the size of microbial biomass and nitrogen mineralization in soil incorporation of cowpea and wheat straw[J].Soil Sci Plan Nutr,38:l-6.
    [203]Paul E A,Clark F E.1996.Methods for studying soil micro-organisms.In:Soil Microbiology and Biochemistry ,Academic Press,San Diego.
    [204]Persson J,Kirchmann H.1994.Carbon and nitrogen in arable soils as affected by supply of N fertlizers and organic manures[J].Agric.Ecosyst.Environ.,51:249-255.
    [205]Power J F,Doran J W,Wilhelm W W.1986.Uptake of nitrogen from soil,fertilizer,and crop residues by no-till corn and soybean[J].Soil Sci.Soc.Am.J.,50:137-142.
    [206]Rasiah V.1995.Comparison of pedotransfer functions to predict nitrogen mineralization parameters of one- and two-pool models[J].Communications in Soil Science and Plant Analysis,26(11/12):1873 -1884.
    [207]Rasmussen P E,Rohde C R.1988.Long-term tillage and nitrogen fertilization effects on organic nitrogen and carbon in semiarid soil[J].Soil Sci.Soc.Am.J.,52:1114-1117.
    [208]Sahrawat K L.1980.Nitorgen supplying ability of some Philippine rice soils [J].Plant and Soil,55(2): 181-187.
    [209]Schmitt M A,Randall G W.1994.Developing a soil nitrogen test for improved recommendations for corn[J].J.Prod.Agric.,7(3):328-334.
    [210]Senwo Z N,Tabatabai M A.1998.Amino acid composition of soil organic matter[J].Biol.Fertility of Soil,26:235-242.
    [211]Serna M D,Pomares F.1992.Evaluation of chemical indices of soil organic nitrogen availability in calareous soils[J].Soil Science Society American,56:1486-1491.
    [212]Seyfried M SJRao PSC.1988.Kinetics of nitrogen mineralization in Costa Rican soils:Model evaluation and pretreatment effects[J].Plant soil,106:159-169.
    [213]Fang S,Xie B,Zhang H.2007.Nitrogen dynamics and mineralization in degraded agricultural soil mulched with fresh grass [J].Plant soil,300:269-280.
    [214]Shi W,Miller B E,Stark JMe/ a/.2004.Microbial nitrogen transformations in response to treated dairy waste in agricultural soils[J].Soil Sci.Soc.Am.J.,68:1867-1874.
    [215]Smith S J,Stanford G.1971.Evaluation of a chemical index of soil nitrogen availability[J].Soil Sci.,111:228-232.
    [216]Smith S J,Young L B.1975.Distribution of nitrogen forms in virgin and cultivated soils[J].Soil Sci.,120(5):354-360.
    [217]Smith J L,Paul E A.1990.The significance of soil microbial biomass estimations[J].Soil Biochem.,6: 359-396.
    [218]Soper R J,Huang P M.1963 .The effect of nitrate nitrogen in the soil profile on the response of barley to fertilizer nitrogen[J].Can.J.Soil Sci.,4:350-358.
    [219]Stanford G,Smith,S J.1972.Nitrogen mineralization potentials of soils[J].Soil Sci Soc.Am.Proc.,36: 465-472.
    [220]Stanford G,Legg J O.Smith S J.1973.Soil nitrogen availability evaluations based on nitrogen mineralization potentials of soils and uptake of labeled and unlabeled nitrogen by plants[J].Plant and Soil,39(1):113-124.
    [221]Stevenson F J.1957.Distribution of the forms of nitrogen in some soil profiles[J].Soil Sci.Soc.Am.J.,21:283-287.
    [222]Stevenson F J.1982.Organic forms of soil nitrogen.In:Stevenson F J,ed.Nitrogen in Agricultural Soils.Madison,Wisconsin:American Society of Agronomy,22:67-122.
    [223]Sugihara S,Konno T,Ishii K.1986.Kinetics of mineralization of organic nitrogen in soil[J].Bulletin of the National Institute of Agro-Environmental Sciences,l:127-166.
    [224]Suzuki M,Kamekawa K,Sekiya S et al.1990.Effects of continuous application of organic and inorga nic fertilizer for 60 years on soil fertility and rice yield in paddy field[J].Trans.14th Icss.,4:14-19.
    [225]Vairavamurthy M A,Maletic D,Wang S et al.1997.Characterization of sulfur-containing functional groups in sedimentary humic substances by X-ray absorption near-edge structure spectroscopy [J].Energy Fuels,11(3):546-553.
    [226]Vanotti M B,Leclerc SA,Bundy LG.1995.Short-term effects of nitrogen fertilization on soil organic nitrogen availability[J].Soil Sci.Soc.Am.J.,59:1350-1359.
    [227]Walley F,Yates T,C van Kessel.2002.Relationships between soil nitrogen availability indices,yield,and nitrogen accumulation of wheat[J].Soil Sci.Soc.Am.J.,66:1549-1561.
    [228]Wang W J,Smith C J,Chen D.2004.Predicting soil nitrogen mineralization dynamics with a modified double exponential model[J].Soil Sci.Soc.Am.J.,68:1256-1265.
    [229]Witter E,Martensson A M,Garcia F V.1993.Size of the soil microbial biomass in a long-term field experiment as affected by different N-fertilizers and organic manures[J].Soil Biol.Biochem.,25(6): 659-669.
    [230]Yang Jin Yan,Fan Jing.2003 .Review of study on mineralization,saturation and cycle of nitrogen in forest ecosystems[J].Journal of Forestry Research,14(3):239-243.
    [231]Yoshino T,Dei T.1974.Patterns of nitrogen release in paddy soils predicted by an incubation method [J].JARQ,8:137-141.
    [232]Zhang Y G,Jiang Y,Liang W J.2004.Vertical variation and storage of nitrogen in an aquic brown soil under different land uses[J].J.For.Res.,15(3):192-196.
    [233]Zhao B,Maeda M,Ozaki Y.2002.Natural ~(15)N and ~(13)C abundance in andisols influenced by long term fertilization management in Japan[J].Soil Sci.Plant Nutr.,48(4):555-562.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700